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Many modern problems in medicine and public health leverage
machine-learning methods to predict outcomes based on observ-
able covariates. In a wide array of settings, predicted outcomes
are used in subsequent statistical analysis, often without account-
ing for the distinction between observed and predicted outcomes.
We call inference with predicted outcomes postprediction infer-
ence. In this paper, we develop methods for correcting statistical
inference using outcomes predicted with arbitrarily complicated
machine-learning models including random forests and deep neu-
ral nets. Rather than trying to derive the correction from first
principles for each machine-learning algorithm, we observe that
there is typically a low-dimensional and easily modeled represen-
tation of the relationship between the observed and predicted
outcomes. We build an approach for postprediction inference
that naturally fits into the standard machine-learning framework
where the data are divided into training, testing, and valida-
tion sets. We train the prediction model in the training set,
estimate the relationship between the observed and predicted
outcomes in the testing set, and use that relationship to correct
subsequent inference in the validation set. We show our postpre-
diction inference (postpi) approach can correct bias and improve
variance estimation and subsequent statistical inference with pre-
dicted outcomes. To show the broad range of applicability of
our approach, we show postpi can improve inference in two dis-
tinct fields: modeling predicted phenotypes in repurposed gene
expression data and modeling predicted causes of death in verbal
autopsy data. Our method is available through an open-source R
package: https://github.com/leekgroup/postpi.
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The past decade has seen an explosion both in data avail-
able for precision health (1–3) and, simultaneously, in user-

friendly tools such as the caret package (4) and Scikit-learn
(5) that make implementing complex statistical and machine-
learning methods possible for an increasingly wide range of
scientists. For example, machine learning from electronic med-
ical records is used to predict phenotypes (6, 7), genomic data
are used to predict health outcomes (8), and survey data are
used to predict the cause of death in settings where deaths
happen outside of hospitals (9, 10). The increased focus on
ideas like precision medicine means the role of machine learn-
ing in medicine and public health will only increase (11). As
machine learning plays an increasingly critical role across scien-
tific disciplines, it is critical to consider all sources of potential
variability in downstream inference to ensure stable statistical
results (12, 13).

In many settings, researchers do not observe outcomes
directly, so observed outcomes are often replaced with predicted
outcomes from machine-learning models in downstream analy-
ses (6, 14–18). One example from genetics is association studies
between genetic variants and Alzheimer’s disease for young
adults. Because young adults have not developed Alzheimer’s
disease, it is difficult to associate the phenotype with genetic
variants. However, these adults’ older relatives can be used to
predict the ultimate phenotype of participants in the study using

known inheritance patterns for the disease. The predicted out-
come can be used in place of the observed Alzheimer’s status
when performing a genome-wide association study (15).

This is just one example of the phenomenon of postpredic-
tion inference (postpi). Although common, this approach poses
multiple statistical challenges. The predicted outcomes may be
biased, or the predicted outcomes may have less variability than
the actual outcomes. Standard practice in many applications
is to treat predicted outcomes as if they were observed out-
comes in subsequent regression models (6, 14–18). As we will
show, uncorrected postprediction inference will frequently have
deflated standard errors, bias, and inflated false positive rates.

Postprediction inference appears across fields and has been
recognized as a potential source of error in recent work on
prevalence estimation (see for example refs. 19 and 20 in the
context of dataset shift and ref. 21 in document class preva-
lence estimation). Here, we focus on developing analytical
and bootstrap-based approaches to correct regression estimates,
SEs, and test statistics in inferential regression models using
predicted outcomes. We examine settings where a predicted
outcome becomes the dependent variable in the subsequent
inferential regression analysis. We derive an analytical cor-
rection in the case of linear regression and bootstrap-based
corrections for more general regression models, focusing on
linear and logistic regression as they are the most common
inferential models. Our bootstrap-based approach can, how-
ever, easily be extended to any generalized linear regression
inference model.

Both our analytical and bootstrap-based corrections take
advantage of the standard structure for machine-learning prob-
lems. We assume that we have at least three separate subsamples,
which we here label as training set, testing set, and validation set
(Fig. 1). We assume that the data-generating distribution for the
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Fig. 1. Data split diagram. The common structure of our approach is to divide the observed data into training, testing, and validation sets. The training set
is used to train the prediction model, the testing set is used to estimate the relationship between observed and predicted outcomes, and the validation set
is for fitting the downstream inferential model where the relationship model is used to correct inference in the subsequent statistical inference.

three datasets is the same and that the training and testing sets
are complete—we observe both the outcome of interest (y) and
the covariates (x ). In the validation set, we assume that only the
covariates are observed. The validation set could represent either
a validation subset from a single sample or a future prospectively
collected dataset where we wish to perform inference but it is too
costly or challenging to collect the outcome.

A prediction function for the outcome (yp = f̂ (x )) is gener-
ated in the training set and applied in the testing and validation
sets. In the validation set our goal is to perform inference on
a regression model of the form g(E [y |X ])=Xβ. However, in
the validation set, only the covariates are observed so instead we
must fit g(E [yp |X ])=Xβp . Our goal is to recover the inference
we would have obtained if we had observed the true outcomes
y in the validation set. To correct inference using the pre-
dicted outcomes, we take advantage of the testing dataset where
we have both the predicted (yp) and observed (y) outcomes.
We derive a correction for inference using yp based on the
relationship between y and yp .

An advantage of this approach is that it is not specific to
a particular machine-learning model. That is, we do not need
to know a priori the expected out-of-sample operating char-
acteristics for a given method. Instead, we assume that the
relationship between the predicted and observed outcomes in
the testing set well characterizes the same relationship in the
validation set.

The setting we describe has parallels with multiple imputation
(22) for missing data, but has several distinct features. Any pre-
diction problem could be cast as a missing data problem where all
of the values are missing and no missingness mechanism distin-
guishes observed and unobserved outcomes. The reason is that
in the validation set or subsequent analyses in practical prob-
lems, there are no observed outcome data. Multiple imputation
also frequently relies on a generative model for simulating data.
However, in our setting, we wish to build a framework that can
be used for any machine-learning model, regardless of its operat-
ing characteristics. We, therefore, need a methodology that can
use a black-box machine-learning algorithm, but build a simple
model for the relationship between predicted and observed out-
come data. This problem is also related to the idea of errors in
variables (23) or measurement error models (24), where either
the outcome or the covariates are measured with error. How-
ever, in prediction problems, we can no longer assume that

the errors are independent of the predicted values, since the
machine-learning predictions may be more accurate for subsets
of the y values.

Aside from its utility in medicine and public health, the
method we propose is also broadly applicable in the social
sciences. In political science, for example, researchers use
machine-learning tools to classify sentiment or political identi-
fication in segments of text and then fit regression models to
identify features of text leaning toward one party or another
(25). In sociology, researchers use machine-learning tools to
infer the race of household heads subject to eviction and
then use regression models to understand heterogeneity in cir-
cumstances related to evictions of individuals of a particular
race (26).

Here, we apply our postpi approach to two open problems:
modeling the relationship between gene expression levels and
tissue types (8) and understanding trends in (predicted) cause
of death (27, 28). We show that our method can reduce bias,
appropriately model variability, and correct hypothesis testing
in the case where only the predicted outcomes are observed.
We also discuss the sensitivity of our approach to changes
in the study population that might lead to a violation of the
assumptions of our approach. Our postpi approach is avail-
able as an open-source R package available from GitHub:
https://github.com/leekgroup/postpi.

Illustrative Example
We begin with an illustrative simulated example to highlight
the issues that can arise with uncorrected postprediction infer-
ence. The methods we present in the subsequent sections cover
a wider range of settings and do not require the distributional
assumptions we make here for exposition. Here we simulate
observations for the outcome yi and covariates xij for i =
1, . . . ,n, j =1, . . . , p. We use xi to denote vector [xi1, . . . , xip ].
In our simulation, we generate data according to the following
true relationship between y and x which we denote by f (·):

yi = f (xi)+ eui . [1]

This model represents the true underlying data-generating
distribution, which is unknown in actual analysis settings.

Linear or generalized linear models are common approaches
to perform inference, even when the data-generating process is
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unknown. We use Xi to denote the design matrix. For example,
we may be interested in fitting models of the form

yi =Xiβ+ eii . [2]

We assume that we are in the setting where the outcome yi is
too expensive or time consuming to collect. Instead, we use a
prediction model of the form

ypi = f̂ (xi) [3]

to predict the outcome. The prediction model may be arbitrarily
complicated since the goal of the prediction is to minimize a suit-
able loss function, E‖y − f (x )‖, not to perform inference on the
relationship between y and x .

Then, we fit the regression model of interest, using the
predicted outcomes ypi :

ypi =Xiβp + epi . [4]

Since the observed outcomes yi are not available, we instead use
the predicted ypi to get a coefficient estimate β̂p based on the
model fit using ypi as the outcome, such that E(ypi |Xi)=Xiβp .
Eq. 4 no long appropriately reflects our uncertainty about the
outcome—leading to bias in the estimates, SEs that are too small,
and anticonservatively biased P values and false positives.

Fig. 2 shows the results of our simulated example. We simulate
covariates xi1, xi2, xi3, and xi4 and error terms eui from nor-
mal distributions and simulate the observed outcome yi using a
simple regression model as the state of nature, f (·). Then we sep-
arate the simulated values into training, testing, and validation
sets that have the same data-generating systems, and we follow
the same procedure in each set as described in the data split

Fig. 2. Simulated example. Data were simulated from the ground truth
model as a linear model. (A) Observed outcomes versus the covariate of
interest. The x axis shows the covariate of interest x1 and the y axis shows
the observed outcomes of y. (B) Predicted outcomes versus the covariate of
interest. The x axis shows the covariate of interest x1 and the y axis shows
the predicted outcomes of yp. (C) Observed outcomes versus predicted out-
comes. The x axis shows the observed outcomes of y and the y axis shows
the predicted outcomes of yp.

diagram in Fig. 1. In the training set, we train a random forest
(29, 30) model as the prediction model f̂ (·) using all covariates
xi1, xi2, xi3, and xi4 and observed outcome yi . In the testing set,
we apply this prediction model to the observed covariates xi1,
xi2, xi3, and xi4 to obtain the predicted values ypi = f̂ (xi). Then
we estimate the relationship between the predicted and observed
outcomes. In the validation set, we fit a linear regression model
as the inference model.

This simulation is designed to highlight the issues that arise
with postprediction inference in a setting where both yi and ypi
are available. In actual data analysis with predicted outcomes,
we would not observe the true yi in the validation set and all
inference would be performed with ypi .

In Fig. 2A we illustrate the true relationship between the sim-
ulated y and x1 (blue color). In Fig. 2B we show the predicted
values yp versus x1 (red color). In Fig. 2B, the relationship has
changed, with different slope and variance. In Fig. 2C we show
the relationship between the observed and predicted outcomes.
In this simulated example, we know that the estimated coeffi-
cient for the relationship between the observed outcome y and x
is 3.87 with a SE of 0.14. However, when we fit the model using
the predicted outcome yp , we get an estimate of 3.7 with a SE of
0.068. This simple simulated example illustrates that inferences
drawn with predicted outcomes may have 1) biased estimates,
2) too small SEs, and hence 3) P values and inference that are
anticonservatively biased.

To adjust for error in predictions, one option would be to
derive bias and SE corrections for a specific machine-learning
method. This approach would leverage knowledge about how
a specific prediction tool works. To compute the bias and SEs
analytically, we both 1) need to know what machine-learning
model was used and 2) need to be able to theoretically character-
ize the properties of that machine-learning model’s predictions.
This approach would restrict an analyst to only machine-learning
approaches whose inferential operating characteristics have been
derived. Fig. 2C suggests an alternative approach. In this case,
the relationship between the observed and predicted outcome
can easily be modeled using linear regression. We will show
that this observation holds for a variety of machine-learning
techniques.

The key idea of our approach is that we use the relationship
between the predicted and observed data in the testing set, to
estimate the bias and variance introduced by using predicted out-
come as the dependent variable in the downstream inferential
regression model in the validation set. This approach does not
require idiosyncratic information about each machine-learning
approach and, instead, assumes that a relatively simple model
captures the relationship between the predicted and observed
outcomes.

Method
Overview of Our Approach. Our goal is to develop a method for correcting
inference for parameters in an inferential regression model where predicted
outcomes are treated as observed outcomes.

We make the following assumptions about the structure of the data and
model. We assume that the data are generated from an unknown data-
generating model of the form

g[E(yi|xi1, xi2, . . . , xip)] = f(xi1, xi2, . . . , xip). [5]

This model represents the “true state of nature” but is not directly observed
in any practical problem.

We also assume that in a new dataset, it may be too expensive, too
time consuming, or too difficult to collect outcome variable yi for all sam-
ples. We, therefore, attempt to predict this outcome with an arbitrary
machine-learning algorithm f̂(·) so that ypi = f̂(xi1, xi2, . . . , xip) is the pre-
dicted outcome based on the observed covariates. However, the primary
goal of our analysis is not to simply predict outcomes but to perform infer-
ence in the new dataset on the relationship between the outcomes and the
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covariates. This must be a subset of covariates used in the prediction model
f̂(·) (see SI Appendix, section 2C for further discussion of this assumption).

In practice, the true data-generating process is rarely known. The com-
mon statistical practice is to fit linear or generalized linear models to relate
outcomes to covariates for inference (6, 14–18). Letting Xi denote a covari-
ate of interest in matrix notation, then a typical regression model may be of
the form

g [E(yi|Xi)]= Xiβ. [6]

When the outcome is observed, we can directly compute the estimate of
β. However, here we consider the case where it will not be possible to
observe the outcome in future datasets due to cost or inconvenience, so
the predicted outcome ypi will be used in Eq. 6.

The most direct approach to performing postprediction inference is
to use predicted outcomes and ignore the fact that they are predicted.
However, this approach can lead to bias in the estimates, small SEs, anti-
conservative test statistics, and false positives for estimated coefficients as
we saw in the simple example in Illustrative Example. We will demonstrate
that this approach produces consistently inaccurate inference in the sim-
ulation and real application settings. Despite these potential biases, this
approach to direct use of predicted outcomes in inferential models is pop-
ular in genomics (18), genetic (15), public health (10), and electronic health
record phenotyping (6) among other applications.

Another strategy would be to try to directly derive the properties of the
coefficients and SEs in the subsequent inference model using the definition
of the machine-learning algorithm f̂(·). When a prediction is based on a
sufficiently simple machine-learning algorithm, this may be possible to do
directly. However, machine-learning models now commonly include compli-
cated algorithmic approaches involving thousands or millions of parameters,
including k-nearest neighbors (31), support vector machine (SVM) (32),
random forest (29, 30), and deep neural network (33).

We instead focus on modeling the relationship between the observed
and predicted outcomes. Our key insight is that even when we use a compli-
cated machine-learning tool to predict outcomes, a relatively simple model
can describe the relationship between the observed and predicted outcomes
(Fig. 3). We then use this estimated relationship to compute bias and SE cor-
rections for the subsequent inferential analyses using predicted values as
the dependent variable.

Fig. 3. Relationship between the observed and predicted outcomes using
different machine-learning models. Data were simulated from the ground
truth model as a linear model with normally distributed noise. On the x
axis is the observed outcome of y and on the y axis are the predicted
outcomes yp. We show that regardless of the prediction method, (A) k-
nearest neighbors, (B) random forest, (C) SVM, or (D) neural network,
the observed and predicted outcomes follow a distribution that can be
accurately approximated with a linear regression model.

Based on the observation in Fig. 3, we relate the observed to the
predicted data through a flexible model k(·):

ypi = k(yi). [7]

For continuous outcomes, we can estimate this relationship as a linear
regression model. For categorical outcomes, we can use a logistic regression
model or a simple machine-learning model. To fit this relationship model,
we take advantage of the standard structure of machine-learning model
development. In these problems, the observed data are split into training,
testing, and validation sets, and we assume that the three sets have the
same data-generating system. As illustrated in Fig. 1, we can build a predic-
tion model in the training set and then compute an unbiased estimate of
the relationship model in the testing set. Using this relationship model, we
derive a correction for the estimates, SEs, and test statistics for our infer-
ence model. Then in the validation set, we can evaluate the quality of our
correction in an independent sample.

In the following two sections, we derive bootstrap-based and analyti-
cal methods to correct inference for parameters in an inferential model
on future datasets where predicted outcomes are treated as observed out-
comes. For both methods, we generalize the approach to split the data into
training, testing, and validation sets, and we assume that the three sets fol-
low the same data-generating procedures. With either method, we assume
that the covariates of interest in the subsequent inferential model must be
a subset of covariates observed in the training and testing sets and used in
the prediction model f̂(·). Our methods do not provide the optimal infer-
ence correction results in the case where new covariates (not observed in
the training and testing sets) are introduced as independent variables in the
downstream inferential model (see SI Appendix, section 2C for an example
and figures).

In Bootstrap-Based Correction, we develop a flexible bootstrap proce-
dure for postprediction inference correction. The bootstrap-based approach
allows for flexibility in both the relationship model and the subsequent
inferential models. This approach is applicable provided that the rela-
tionship can be modeled through any sufficiently simple relationship that
allows bootstrap sampling. In Analytical Correction, we derive an ana-
lytic correction that can be applied subject to additional assumptions. For
the analytical derivation, we assume that 1) the outcome is continuous
in the training, testing, and validation sets, 2) the relationship between
the observed and predicted outcomes can be modeled using a normal lin-
ear regression model, and 3) the inferential goal is a linear regression
model in the validation set. Under these assumptions, the analytic correction
holds regardless of the choice of machine-learning algorithm used to make
the predictions.

Bootstrap-Based Correction. In this section, we propose a bootstrap-based
approach for correcting the bias and variance in the downstream inferen-
tial analyses. This approach can be applied for continuous, nonnormal data,
categorical data, or count data. For our approach we make the following
assumptions: 1) We have a training set to build the prediction model, a
testing set to estimate parameters of the relationship model, and a valida-
tion set to fit a generalized regression model as the subsequent inferential
model, and all three sets must follow the same data-generating system; 2)
the relationship between the observed and predicted outcomes can be mod-
eled through a flexible but specific simple model in the form of yi = k(ypi)
that is easy to sample from; 3) the relationship model will hold in future
samples; and 4) the covariates of interest in the subsequent inferential anal-
yses must be variables already seen in the training and testing sets and used
in the prediction model.

The first step of our bootstrap procedure is to randomly split the data into
training, testing, and validation sets, as illustrated in Fig. 1. The algorithm
then proceeds as follows:
Bootstrap procedure.

1) Use the observed outcomes and covariates in the training set (y(tr), x(tr))
to estimate a prediction model yp = f̂(x).

2) Use the observed outcomes and predicted outcomes in the testing set
(y(te), yp(te)) to estimate the relationship model y = k(yp), where k(·) can
be any flexible function.

3) Use the predicted outcomes and observed covariates in the validation set
(yp(val), x(val)) to bootstrap as follows:

Bootstrap iteration b = 1 to B.

i) For i = 1, 2, . . . , n, sample predicted values and the matching covariates
(yb

pi(val), xb
i(val)) with replacement.
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ii) Simulate values from the relationship model ỹb
i = k(yb

pi(val)) using the
function k(·) estimated from the testing set in step 2.

iii) Fit the inference model g
[
E(ỹb|Xb

(val))
]
= Xb

(val)β
b using the simulated

outcomes ỹb which build in the prediction error from the relationship
model and the matching model matrix based on the sampled covariates
in matrix notation Xb.

iv) Extract the coefficient estimator β̂b from the fitted inference model
in iii.

v) Extract the SE of the estimator se(β̂b) from the fitted inference model
in iii.

4) Estimate the inference model coefficient using a median function on the

estimators β̂b collected in step 3, iv: β̂boot = median
(
β̂1, β̂2, . . . , β̂B

)
.

5) Estimate the inference model SE:
a) For the parametric method, use a median function on the SEs SE(β̂b)

collected in step 3, v: ŜE
boot,par

= median
(

ŜE(β̂1), ŜE(β̂2), . . . , ŜE(β̂B)
)
.

b) For the nonparametric method, use the SE of the estimators β̂b collected

in step 3, iv: ŜE
boot,non−par

= SD
(
β̂1, β̂2, . . . , β̂B

)
.

The bootstrap-based approach builds in two types of errors: the error due
to random sampling and the prediction error. The prediction error is intro-
duced by sampling from the relationship model in the for loop, step 3, ii. We
again make the simplifying assumption that y and yp can be related through
a model that is easy to fit. We can focus here on the class of generalized lin-
ear models, but in the Bootstrap Procedure step 2, the relationship function
k(·) could be more general, even flexible as a machine-learning algorithm,
provided it can be easily estimated and sampled. The advantage of the rela-
tionship model is that we do not need to assume the type or complexity of
the prediction function f̂(·). It can be arbitrarily complicated as long as the
estimated relationship between the observed and predicted values can be
sampled.

Analytical Correction. In this section, we propose an analytical method to
correct inferences for the parameters in the downstream linear model. We
assume that the data have been divided into training (tr), testing (te), and
validation sets (val) and that the data-generating distribution is the same
across the three sets: y∼N(f(x),σ2

t ), where f(·) is an arbitrary and unknown
function of the covariates. In the training set, we use the observed out-
comes and covariates (y(tr), x(tr)) to estimate a prediction model yp = f̂(x). In
the testing set, we use the predicted and observed outcomes (y(te), yp(te))
to estimate a linear relationship model. In the validation set, we would fit
a linear inference model using predicted outcomes and covariates in matrix
notation (yp(val), X(val)). Our goal is to infer the relationship between the out-
come y and some subset of the covariates in the validation set or a future
dataset where a collection of outcomes is either prohibitively expensive or
complicated.

The analytical derivation approach computes the corrected parameters
in the inference model more efficiently than the bootstrap-based approach,
but with more restrictions in the assumptions to calculate a closed-form
solution to the parameters in the downstream inferential model: 1) We
concentrate on a setting where the outcome can only be continuous and
approximately normally distributed, 2) the relationship model estimated
in the testing set is also approximately normally distributed, and 3) the
subsequent inferential model must be a linear model that we can correct
inference from.

In the validation set, ideally we would fit the model

y(val)|X(val)∼N(X(val)β(val),σ
2
i ). [8]

However, the outcome is not observed in the validation set. Instead, we fit
the model

yp(val)|X(val)∼N(X(val)βp(val),σ
2
p). [9]

In this case, we are no longer estimating the same quantity due to the
change in the dependent variable. This uncorrected strategy to postpredic-
tion inference is commonly used in real practice (6, 14–18). Our goal here
is to develop a correction to recover the inference about β(val) as if the
observed outcomes were available.

We can use information about the relationship between the observed
and predicted outcomes to correct inference in datasets where y is not
observed and we substitute yp. We assume a relationship model

y(te)∼N(γ0 + γ1yp(te),σ
2
r ). [10]

The key observation we have made is that a simplified model often holds,
even when the machine-learning function used to make the predictions f̂(x)
is quite complicated (Fig. 3).

Our goal is not to model the full distribution of (y(val), yp(val), x(val)),
but instead to infer the relationship between the outcome y(val) and a
set of covariates x(val). If we had observed y(val) and fit the inference
model as shown in Eq. 8, we have the ordinary least-squares estimator
β̂(val) = (XT

(val)X(val))
−1XT

(val)y(val). However, y(val) is unobserved and thus β̂(val)

cannot be calculated directly. So, we first want to estimate y(val) using the
conditional expectation E[y(val)|X(val)]. This expectation can be written as

E [y(val)|X(val)] = E
[
E
(
y(val)|X(val), yp(val)

)
|X(val)

]
≈ E

[
E
(
y(val)|yp(val)

)
|X(val)

]
= γ0(te) + γ1(te) X(val)βp(val).

[11]

Here βp(val) represents the parameter in the linear regression inference
model where predicted outcome is used as the dependent variable. The
approximation in Eq. 11 is based on using the relationship between the pre-
dicted outcome and observed outcome E(y(val)|yp(val)) as an approximation
to the conditional expectation E(y(val)|X(val), yp(val)) (see SI Appendix, section
1A.1 for full analytical derivation).

This approximation can be made exactly in the extreme scenario where
the predicted outcome exactly captures the relationship between the out-
come and the covariates yp = f(x). In this case, the real outcome can be writ-
ten as y = yp + ε, and we have exactly E(y(val)|X(val), yp(val)) = E(y(val)|yp(val))
(see SI Appendix, section 1A.4 for a full analytical derivation). Thus, we can
approximate the unobserved outcome y(val) as

y?(val) = γ̂0(te) + γ̂1(te)X(val)β̂p(val) [12]

and we then approximate the estimator β̂(val) as

β̂
?
(val) = (XT

(val)X(val))
−1XT

(val)(γ̂0(te) + γ̂1(te)X(val)β̂p(val)). [13]

Through this approximation, we further show that E(β̂?(val)|X(val))≈ β(val) (see
SI Appendix, section 1A.2 for full analytical derivation).

To make inferences, we also need to estimate the SE of the estimator
β̂(val). The challenge is that the SE cannot be simply calculated by fitting the
regression model in Eq. 8 because y(val) is unobserved. Instead, we first esti-
mate the conditional variance Var[y(val) |X(val)] using the variance that comes
from both the relationship model in Eq. 10 and the inference model in Eq.
9 with predicted outcomes. This is a similar approach to the expectation
derivation above where we assume that the observed outcome is unknown.
Using the law of total conditional variance

Var [y(val) |X(val)]

= E
[
Var

(
y(val) | yp(val), X(val)

)
|X(val)

]
+ Var

[
E
(
y(val) | yp(val), X(val)

)
|X(val)

]
≈ E

[
Var

(
y(val) | yp(val)

)
|X(val)

]
+ Var

[
E
(
y(val) | yp(val)

)
|X(val)

]
=σ

2
r(te) + γ

2
1(te)σ

2
p(val),

[14]

where in the second step of Eq. 14 we again have made the approximation
of using the relationship between y(val) and yp(val) to model the condi-
tional variance Var[y(val)|yp(val), X(val)]. We show that under the extreme case
where the predicted outcome exactly captures the relationship between
the outcome and the covariates, we have exactly Var[y(val)|yp(val), X(val)] =

Var[y(val)|yp(val)] (see SI Appendix, section 1A.4 for full analytical derivation).
Then we estimate the SE of the estimator β̂(val) (see SI Appendix, section 1B
for full analytical derivation):

SE[β̂(val)|X(val)]≈
√

(XT
(val)X(val))−1(σ̂2

r(te) + γ̂2
1(te)σ̂

2
p(val)). [15]

Therefore, with the estimated corrected coefficient β̂?(val) and the estimated

SE SE(β̂(val)|X(val)), we now can estimate a test statistic to recover the infer-
ence we would have made in Eq. 8 when the observed outcomes had been
available (see SI Appendix, section 1B for details in the hypothesis test and
the defined decision rule). The test statistic is approximated as

t(β̂(val))≈
β̂?(val)√

(XT
(val)X(val))−1(σ̂2

r(te) + γ̂2
1(te)σ̂

2
p(val))

. [16]
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Simulated Data. We simulate independent covariate x and error term eu

and then observe outcome y using the true state of nature model in
Eq. 5. The true state of nature is not directly observed in practical prob-
lems but can be specified in simulated problems. We consider both the
case of a continuous outcome in Continuous case and that of a binary
outcome in Binary case that demonstrate uncorrected postprediction infer-
ence leads to bias in the estimates, small SEs, and anticonservative test
statistics.

We also include simulations that demonstrate anticonservative bias in P
values from uncorrected postprediction inference in SI Appendix, section 2A.
The key insight of our postpi methods relies on the fitness of the relation-
ship between the observed and predicted outcomes (y and yp) estimated in
the testing set. In many cases, this relationship can be well described as a
simple model but this may not always hold. For instance, when the pre-
dicted values are obtained from weak learners, the correlation between
the observed and predicted outcomes may not be sufficiently strong to
allow corrected inference. As expected, we observe improved operating
characteristics of our methods with increasing accuracy of the prediction
model. We show that our postpi methods successfully approximate the esti-
mates, SEs, t statistics, and P values as we would have obtained using the
observed y (SI Appendix, Figs. 1 and 2). We also show our corrections are
reasonably robust to the levels of correlation between y and yp ranging
from 0.1 to 0.8. Across all levels of correlation, our postpi methods suc-
cessfully correct the distribution of P values compared to the uncorrected
postprediction inference—recovering type I error rate control (SI Appendix,
Fig. 1).
Continuous case. For the continuous case, we simulate covariates xij and
error terms eui from normal distributions and then simulate the observed
outcome yi using a linear function h(·) as the true state of nature model for
i = 1, . . . , n, j = 1, . . . , p. (34)

In each simulation cycle, we set the total sample size n = 900 and
the dimension of covariate matrix p = 4. To mimic a complicated data-
generating distribution and make predictions sufficiently variable for illus-
tration purposes, we generate data including both linear and smoothed
terms. For the smoothed terms, we use Tukey’s running median smooth-
ing with a default smoothing parameter “3RS3R” (35). The error terms are
also simulated from a normal distribution with independent variance. The
model specification is

xi1, xi2, xi3∼N (1, 1)

xi4∼N (2, 1)

eui ∼N (0, 1)

yi = β1xi1 + β2xi2 + β3 · smooth (xi3)

+ β4 · smooth (xi4)+ eui .

[17]

We create a training, testing, and validation set by randomly sampling the
observed data into three equal size groups, each with sample size 300.
Across the 300 simulated cases, we fix the values of β2 = 0.5, β3 = 3, β4 = 4
and set β1 to be a range of values in [−6,−5, . . . , 5, 6] for the covariate of
interest xi1 in the downstream inferential model. To mimic a more realistic
setting, we assume that we are interested only in associating the outcome

(yi) and one covariate (in this case xi1), and we use a linear inference model
to quantify this relationship.

For our simulation, we fit a generalized additive model (GAM) (36) to
the data in the training set. To estimate the prediction function f̂(·), we
use all of the covariates xi1, xi2, xi3, xi4 as features to predict the observed
outcomes yi . This prediction is meant to simulate the case where we are
trying to maximize predictive accuracy, not to perform statistical infer-
ence. In the testing set, we apply the trained prediction model to get
predicted outcomes ypi . We estimate the relationship between the observed
and predicted outcome (yi and ypi) as a simple linear regression model:
yi ∼N(γ0 + γ1ypi ,σ

2
r ).

Our evaluation of the performance of different methods is done on an
independent validation set by fitting a linear regression model as the infer-
ence model. We compare inference using the predicted outcome with no
correction, postprediction inference through analytical derivation postpi
and postprediction inference through parametric bootstrap postpi, and
nonparametric bootstrap postpi (method details in SI Appendix, section 2B).
In this simulation, we also have the observed outcome y, so we can calcu-
late the coefficients, estimates, and test statistics that come from using the
observed values in inferential models. The baseline model we are compar-
ing to fits the regression model E[yi|xi1] = β0 + xi1β1 to the observed data
in the validation set.

We use hextri plots to compare multiple scatter plots simultaneously (37).
These plots are designed so that the size of each bin is proportional to
the number of points in the bin, and they are divided into colors in pro-
portion to the number of points from each comparison. In this simulation
example, the prediction has relatively little bias, so the estimated coeffi-
cients using the predicted outcome are relatively close to the estimates
using the observed outcome. In Fig. 4A all of the colors lie close to the
line of equality. However, the SEs for the no correction approach (orange
color) in Fig. 4B are much lower than what we would have observed in
the observed outcomes. This is because the prediction function attempts
to capture the mean function, but not the variance in the observed out-
come. We compute the root mean-square error (rmse) (38) to show that
both the postpi analytical derivation and postpi bootstrap approaches out-
perform the no correction approach. The SEs are closer to the truth with
an rmse reduced from 0.088 for no correction (orange color) to 0.015 for
analytical derivation postpi (green color) and also improved to 0.015 for
parametric bootstrap postpi (dark blue color) and 0.019 for nonparamet-
ric bootstrap postpi (light blue color) in Fig. 4B. The improved SEs are
reflected in improved t statistics using analytical derivation postpi and
the two bootstrap postpi approaches in Fig. 4C, with rmse reduced from
26.33 for no correction (orange color) to 2.45 for analytical derivation
postpi (green color), and improved to 2.41 for parametric bootstrap postpi
(dark blue color) and 2.89 for nonparametric bootstrap postpi (light blue
color).
Binary case. For the binary case, we simulate a categorical covariate xic,
continuous covariates xi1, xi2, and an error term eui and then the observed
outcome yi assuming a generalized linear model f(·) for i = 1, . . . , n. In this
case, we specify the true state of nature model f(·) to be a logistic regres-
sion model. To simulate observed outcomes yi , we first set up covariates
through a linear combination where we smooth a subset of continuous
covariates using Tukey running median smoothing (35) and include errors

Fig. 4. Continuous simulation. Data were simulated from the ground truth model as described in Continuous case. On the x axis are the values cal-
culated using the observed outcome and on the y axis are the values calculated using no correction (orange color), analytical derivation postpi (green
color), parametric bootstrap postpi (dark blue color), and nonparametric bootstrap postpi (light blue color). We show (A) the estimates are simi-
lar across all four approaches since the data were simulated from a normal model, (B) the SEs are too small for the uncorrected inference (orange
color) but corrected with our approaches, and (C) the t statistics are anticonservatively biased for uncorrected inference but corrected with our
approaches.
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to increase variability in outcomes yi . We apply the inverse logit function
to the linear predictor to simulate probabilities which we use to simulate
Bernoulli outcomes (yi = 0 or 1) through binomial distributions. We simulate
as follows:

xi1∼N (1, 1)

xi2∼N (2, 1)

xic ∼Multinom(1, (1/3, 1/3, 1/3))

eui ∼N (0, 1)

zi = βB1(xic = B) + βC1(xic = C) + β1 · smooth (xi1)

+ β2 · smooth (xi2)+ eui

pri =
1

1 + e−zi

yi ∼ Binom(1, pri).

[18]

We generate 1,500 samples for each iteration and separate the data into
training, testing, and validation sets of equal size n = 500. We set 1(xc = C)
as the covariate of interest in the subsequent logistic regression inferential
model. Then we use the two bootstrap methods—parametric and nonpara-
metric bootstrap postpi—to estimate the corrected coefficient estimate, SE,
and test statistic (39).

In the training set, we use a k-nearest neighbors (31) model as a machine-
learning tool and all independent covariates xic, xi1, xi2 as features to
estimate the prediction function f̂(·) . Then we apply the trained prediction
model in the testing and validation sets to get the predicted outcome ypi as
well as the probability pri of the predicted outcomes (i.e., pri = Pr(yi = 1)).
In the testing set, we use a logistic regression to estimate the relation-
ship between the observed outcome and the predicted probability: g(E[yi =

1|pri]) = γ0 + priγ1, where g(·) is the natural log of the odds such that
g(p) = Ln( p

1−p ). Here we form the relationship model with the predicted
probability. The reason is that the outcome is dichotomous, so we have little
flexibility to model the variance in the observed outcome as a function of
the predicted outcome. Instead, using predicted probability provides more
flexibility to model the relationship. In the case of a binary outcome, the
analytical derivation approach no longer applies, so we apply the two boot-
strap correction methods only. In the validation set, we follow the Bootstrap
Procedure steps 1 to 5. First, we set the bootstrap size B = 100 to start the
for loop. In step 3, ii, ỹb

i = k(prb
i ), we simulate values in two steps: 1) use prb

i
and the estimated relationship model to predict the probability of getting
the “success” outcome (i.e., Pr(ỹb

i = 1)) and then 2) sample ỹb
i from a bino-

mial distribution with the probability parameter as Pr(ỹb
i = 1) obtained from

step 1. In step 3, iii we again fit a logistic regression model as the inference
model: g[E(ỹb

i |x
b
c )] = βp0 + 1(xc = C)bβpC . Then in steps 4 and 5 we estimate

the parametric and nonparametric bootstrap postpi coefficient, SE, and test
statistics.

Across the 300 simulated cases, we fix the values of β1 = 1, β2 =−2, βB =

1. Here we choose 1(xc = C) as the covariate of interest in the down-
stream inferential analyses, and we set βC to be a range of values in
[−2,−1.5, . . . , 4.5, 5]. Under many simulations, there is a problem of spar-
sity in the dichotomous covariates where inference from observed yi would
be unstable. In this example, we exclude such sparse cases in the simula-
tions which lead to extremely large SEs and inaccurate estimates across

all approaches. In Fig. 5 A and B, we see that the estimates and SEs are
inflated in the case of no correction (orange color). In detail, we see bias in
the coefficient estimate using the no correction approach (orange color)
in Fig. 5A with rmse 2.94 compared to the truth. This bias is corrected
through the parametric bootstrap (dark blue color) and nonparametric
bootstrap (light blue color) postpi methods with rmse reduced to 0.53.
The SEs for no correction (orange color) in Fig. 5B have rmse 0.49 but
reduced to 0.018 for parametric bootstrap postpi (dark blue color) and
0.025 for nonparametric bootstrap postpi (light blue color). In Fig. 5C,
the t statistics have rmse 2.06 using no correction (orange color), 2.04 for
parametric bootstrap postpi (dark blue color), and 2.12 for nonparamet-
ric bootstrap postpi (light blue color). We observe a slight conservative
bias in the t statistics due to the postpi corrections—the blue points are
consistently slightly below the line of equality. This conservative bias is
an acceptable trade-off in cases where the observed outcomes are not
available.

Applications. To demonstrate the wide applicability of our methodology
for performing postprediction inference, we present two examples from
very different fields: genomics and verbal autopsy analysis. These appli-
cations share very little in common scientifically, but represent two high-
profile examples where inference is typically performed with uncorrected
predictions as the outcome (dependent) variable.

First, consider the “Recount2” Project (https://jhubiostatistics.shinyapps.
io/recount) (40) which consists of RNA sequencing (RNA-seq) gene expres-
sion data for over 70,000 human samples aligned using a common pipeline
processed in Rail-RNA (41). While Recount2 human samples have available
gene expression information, not all samples contain observed phenotype
information since the majority of the samples are pulled directly from public
data on the sequence read archive (42). However, we previously showed that
many of these missing phenotype data can be predicted from the genomic
measurements (8). Our goal is to perform inference using these predicted
phenotypes.

Second, we describe the distribution of (predicted) causes of death. In
regions of the world where routine monitoring of births and deaths is
not possible, one approach to estimating the distribution of deaths by
cause is the verbal autopsy (VA) survey. These surveys take place with a
caregiver or relative of the decedent and ask about the circumstances sur-
rounding the person’s death and typically take place when deaths happen
outside of hospitals or routine medical care. Either expert guidance about
the relationship between reported symptoms prior to death and the even-
tual cause or small “gold standard” datasets are used to train algorithms
that predict causes of death based on reported symptoms. Algorithm devel-
opment to predict causes of death is an active area of research and is
challenging since data typically contain a mixture of binary, continuous,
and categorical symptoms and many causes of death have similar pre-
sentations. After assigning a predicted cause of death, a common task is
to describe patterns in the cause of death distribution. A scientist may
be interested, for example, in how the distribution of deaths varies by
region or by sex.
Predicting tissue types. We consider a motivating problem from the
Recount2 Project (40) (https://jhubiostatistics.shinyapps.io/recount/). In this
example, the phenotype we care about is the tissue type where the RNA is
sampled from (43). Understanding gene expression levels across tissues and

Fig. 5. Binary simulation. Data were simulated from the ground truth model as described in Binary case. On the x axis are the values calculated using
the observed outcome and on the y axis are the values calculated using no correction (orange color), parametric bootstrap postpi (dark blue color), and
nonparametric bootstrap postpi (light blue color). We show (A) the uncorrected estimates are anticonservatively biased but this bias is corrected with our
postpi approaches, (B) the uncorrected SEs are also inflated and corrected by postpi, and (C) the t statistics show a slight conservative bias compared to the
no correction case.
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cell types has many applications in basic molecular biology. Many research
topics concentrate on finding which genes are expressed in which tissues,
aiming to expand our fundamental understanding of the origins of complex
traits and diseases (44–48). The Genotype-Tissue Expression (GTEx) project
(49), for example, studies how gene expression levels are varied across indi-
viduals and diverse tissues of the human body for a wide variety of primary
tissues and cell types (44, 49). Therefore, to better understand the cellular
process in human biology, it is important to study the variations in gene
expression levels across tissue types.

Even though tissue types are available in GTEx (49), they are not available
for most samples in the Recount2. In a previous paper (8), we developed
a method to predict for those missing phenotypes using gene expression
data. In this example, we collected a subset of samples that we have
observed tissue types as breast or adipose tissues. We also had predicted
values for the above samples calculated in a previous training set (8) using
the 2,281 expressed regions (50) as predictors. Our goal in this example is
to understand which of these regions are most associated with breast tis-
sue in new samples (i.e., samples without observed tissue types) so that
we can understand which measured genes are most impacted by the bio-
logical differences between breast and adipose tissues. Although here the
phenotype we care about is the tissue types, especially breast and adi-
pose tissues, our method can be broadly applied to any predictions to all
phenotypes.

To test our method, we collected 288 samples from the Recount2 with
both observed and predicted tissue types. Among the observed tissue
types, 204 samples are observed as adipose tissues and 84 samples are
observed as breast tissues. The predicted values obtained from a previ-
ously trained dataset (8) include the predicted tissue type (i.e., adipose
tissue or breast tissue) and the probability for assigning a predicted tis-
sue type. In this example, we compare no correction and postpi bootstrap
approaches only since the outcomes (tissue types) we care about are
categorical.

The inference model we are interested in is g[E(yi = 1|ERj
i)] = β

j
0 + β

j
1ERj .

Here g(·) is the logit link function for j = 1, . . . , 2,281 (expressed regions)
and i = 1, . . . , n, n is the total number of samples in the Recount2. In the
model, yi = 1 or yi = 0 represents whether breast tissue is observed or adi-
pose tissue is observed at the ith sample, and ERj

i is the gene expression level
for the jth region on the ith sample.

For this dataset (288 samples), we have binary tissue type outcomes. Since
the predicted outcomes were obtained in a previously trained set (8), we
need only to separate our data into a testing and a validation set, each
with a sample size n = 144. In the testing set, we fit a k-nearest neighbors
(31) model to estimate the relationship between the observed tissue type
and the probability of assigning the predicted value. In the validation set,
we follow the Bootstrap Procedure. Particularly in step 3, ii, we simulate
values from a distribution ỹb

i |prb
i ∼ Fγ̂ . Similar to what we did with the sim-

ulated data in Simulated Data, in this example, we set Fγ to be a binomial
distribution with the probability parameter (i.e., probability of assigning
the outcome as breast cancer) estimated from the relationship model. In
this way, we utilize the estimated relationship to account for necessary
variations in simulated outcomes.

Among the 2,281 expressed regions (50) used to make tissue type pre-
dictions (8), we care about the regions that have expression values across a
relatively large amount of samples in the validation set. It is a well-known

phenomenon that many RNA-seq measurements may be zero if the num-
ber of collected reads is low. To avoid highly variable model fits due to zero
variance covariates, we only fit logistic regressions inference models to each
filtered expressed region with expressed values over at least 20% of samples.
Under this filtering procedure, we include 101 expressed regions as regres-
sion variables and fit the inference model described above to each region
in the validation set. We then get 101 estimates, SEs, and t statistics. We
compare them to the no correction approach as we did with the simulated
data.

By comparing the rmse, we observed that the estimates, SEs, and test
statistics are improved from no correction to parametric and nonpara-
metric bootstrap postpi methods. In Fig. 6A, no correction (orange color)
estimates have rmse 0.36 compared to the truth and it reduces to 0.08
with parametric bootstrap postpi (dark blue color) and nonparametric
bootstrap postpi (light blue color). The SEs in Fig. 6B have rmse 0.08
for no correction (orange color), but corrected to 0.01 for parametric
bootstrap postpi (dark blue color) and 0.03 for nonparametric bootstrap
postpi (light blue color). The resulting t statistics are improved from rmse
0.91 for no correction (orange color) to 0.63 for parametric bootstrap
postpi (dark blue color) and 0.93 for nonparametric bootstrap postpi (light
blue color).

We also applied our approach to correct inference for models using pre-
dicted RNA quality as an example of how to do postprediction inference for
continuous outcomes (SI Appendix, section 3A).
Describing cause of death distributions. We now move to our second exam-
ple where the outcome of interest is the (predicted) cause of death and
inputs are symptoms or circumstances reported by a caregiver or rela-
tive (51). Symptoms might include, for example, whether a person had
a fever before the person died, how long a cough lasted (if one was
reported), or the number of times the person visited a medical professional.
We use data from the Population Health Metrics Research Consortium
(PHMRC), which consists of about 7,800 gold standard deaths from six
regions around the world. These data are rare because they contain both
a physical autopsy (including pathology and diagnostic testing) and a ver-
bal autopsy survey. Typically, only a small fraction of deaths will have an
assigned cause (e.g., by a clinician reading the verbal autopsy survey) and
these few labeled deaths will be used as inputs to train a model for the
remaining deaths.

We split the data into training and testing sets, with 75% of the data
used for training. The PHMRC data classify cause of death at several lev-
els of granularity. For our experiments, we combined causes into 12 broad
causes of death (cancers, diabetes, renal diseases, liver diseases, cardiovas-
cular causes, stroke, pneumonia, HIV/AIDS or tuberculosis, maternal causes,
external causes, other communicable diseases, and other noncommunicable
diseases). We predicted the cause of death using InSilicoVA (52) which uses
a naive Bayes classifier embedded in a Bayesian framework to incorporate
uncertainty between cause classifications.

In this example, we want to understand trends in the 12 combined
causes of death across multiple symptoms representing health behaviors and
demographics. Demographic symptoms include age of the decedent and sex
(male or female) of the decedent. Behavioral symptoms include whether the
decedent used tobacco (yes or no), used alcohol (yes or no), and used medi-
cal care for the illness (yes or no). Additional symptoms include whether the
decedent had obesity (yes or no), accident (yes or no), and previous health

Fig. 6. Breast versus adipose tissue prediction. Data were collected from the Recount2 as described in Predicting tissue types. On the x axis are the values
calculated using the observed outcome and on the y axis are the values calculated using no correction (orange color), parametric bootstrap postpi (dark
blue color), and nonparametric bootstrap postpi (light blue color). We show (A) the estimates, (B) the SEs, and (C) the t statistics. The two bootstrap postpi
approaches clearly improve the estimates and SEs compared to no correction.
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Fig. 7. Twelve causes of death prediction. Data were collected from PHMRC described in Describing cause of death distributions. On the x axis are the
values calculated using the observed outcome and on the y axis are the values calculated using no correction (orange color), parametric bootstrap postpi
(dark blue color), and nonparametric bootstrap postpi (light blue color). We show (A) the estimates, (B) the SEs, and (C) the t statistics. The parametric
bootstrap postpi approach improves the rmse of estimates, SEs, and t statistics compared to no correction.

records (yes or no). These symptoms are used in the training model as a sub-
set of the symptoms to classify the cause of death with InSilicoVA (52) and
used again for downstream statistical inference. The inference model we
are interested in is g[E(yi|SYM j

i )] = β
j
0 + β

j
1SYMj . Here g(·) is the logit link

function for j = 1, . . . , 13 (symptoms) and i = 1, . . . , n, n is the total number
of samples in the dataset. In this model, yi represents one of the 12 com-
bined causes at the ith sample and SYM j

i is the jth symptom of interest on
the ith sample.

For this dataset, we use categorical outcomes as the causes of death for
the 1,960 samples and assume the outcomes are unobserved, as they typ-
ically would be in practice, for the remaining cases. Since the predicted
values were obtained in a previously trained set using InSilicoVA (52), we
separate our data only into testing and validation sets, each with a sam-
ple size n = 980. In the testing set, we fit a k-nearest neighbors model
(31) to estimate the relationship between the observed cause of death and
the probability of assigning the cause. In the validation set, we follow the
Bootstrap Procedure. Particularly in step 3, ii, we simulate values from a
distribution ỹb

i |prb
i ∼ Fγ̂ . In this example, we set Fγ to be a multinomial dis-

tribution with the probability parameters (i.e., probability of assigning each
of the 12 broad causes of death) estimated from the relationship model as
we did in the simulated data.

Among all of the symptoms used to make causes of death prediction (52),
we use a subset of symptoms that also have balanced classes across the 12
broad causes of death. This is to avoid highly variable model fits due to
zero variance covariates that is categorized as a well-known issue for sparse
outcomes (53). We then filter the eight symptoms we are interested in as
regression variables and fit a logistic regression inference model to each
selected symptom in the validation set. There is one continuous variable
and there are seven categorical regression variables, each with two factor
levels (yes or no). For the inference results, we get eight estimates, SEs, and
t statistics in the validation set. We then compare them to the no correction
approach as we did with the simulated data.

We observed that the uncorrected estimates, SEs, and t statistics (orange
color) have higher rmse compared to the parametric bootstrap postpi
method (dark blue color). In Fig. 7A the no correction estimates have rmse
0.46 (orange color) compared to the truth, which is reduced to 0.24 with
parametric (dark blue color) and nonparametric (light blue color) bootstrap
postpi methods. The no correction SEs in Fig. 7B have a rmse of 0.03 (orange
color), which are corrected to rmses of 0.013 for parametric bootstrap postpi
(dark blue color) and 0.024 for the nonparametric bootstrap postpi (light
blue color). The resulting t statistics in Fig. 7C are improved from an rmse of
1.21 for no correction (orange color) to 0.79 for parametric bootstrap postpi
(dark blue color) and to 0.73 for nonparametric bootstrap postpi (light blue
color).

Discussion
As machine learning becomes more common across a range of
scientific settings, predicted outcomes will be used more often
as dependent variables in subsequent statistical analyses. As we
have shown, an uncorrected postprediction inference can lead to
highly variable or biased estimates of parameters of interest, SEs
that are too small, anticonservatively biased P values, and false
positives.

We introduced methods to correct for postprediction infer-
ence and adjust point and interval estimates when using pre-
dicted outcomes in place of observed outcomes. Our method
is flexible enough to be applied to continuous and categori-
cal outcome data, observed in fields such as medicine, pub-
lic health, and sociology. Through simulated and real data,
we show that our results outperform the most common cur-
rent approach of ignoring the prediction step and performing
inference without correction. By appropriately modeling the
variability and bias due to the prediction step, the estimates,
SEs, test statistics, and P values are corrected toward the gold
standard analysis we would obtain as if we had used the true
outcomes.

Our approach relies on the key observation that the rela-
tionship between the observed and predicted outcomes can be
described as a simple model. While this observation is empiri-
cally true for the models and algorithms we considered, it may
not hold universally. One limitation of our approach is that it
depends on the fitness of the relationship model. For instance,
when the predicted values are obtained from weak learners,
the correlation between the observed and predicted outcomes
is not strong, which may not be well captured by a simple model.
Another limitation is that we assume the training, testing, and
validation sets follow the same data-generating distribution. If
this assumption does not hold, inference performed on the boot-
strapped values in the validation set will no longer reflect the true
underlying data-generating process. A potential solution is that
we should first conduct data normalization using methods such as
surrogate variable analysis (54), remove unwanted variation (55),
and removeBatchEffect in linear models for microarray data (56)
to correct for latent confounders in the testing or validation sets.
The normalized samples can then be input into our method for
subsequent inferential analyses.

Despite these limitations, correcting for postprediction infer-
ence is crucial for accurate inference when using outcomes
produced by machine-learning methods. Our correction repre-
sents a step toward a general solution to the postprediction
inference problem.

Data Availability. RNA-seq, verbal autopsy, and simulation data have
been deposited in postpi (https://osf.io/g4w28/). To make this method
useable by the community we have released the postpi R package:
https://github.com/leekgroup/postpi.

ACKNOWLEDGMENTS. The research reported in this publication was sup-
ported by the National Institute of General Medical Sciences of the National
Institutes of Health (NIH) under Award R01GM121459, the National Institute
of Mental Health of the NIH under Award DP2MH122405, and the Eunice
Kennedy Shriver National Institute of Child Health and Human Development
of the NIH under Award R21HD095451.

30274 | www.pnas.org/cgi/doi/10.1073/pnas.2001238117 Wang et al.

https://osf.io/g4w28/
https://github.com/leekgroup/postpi
https://www.pnas.org/cgi/doi/10.1073/pnas.2001238117


ST
A

TI
ST

IC
S

1. M. J. Khoury, M. F. Iademarco, W. T. Riley, Precision public health for the era of
precision medicine. Am. J. Prev. Med. 50, 398–401 (2016).

2. E. A. Ashley, The precision medicine initiative: A new national effort. JAMA 313,
2119–2120 (2015).

3. C. Sudlow et al., UK biobank: An open access resource for identifying the causes of
a wide range of complex diseases of middle and old age. PLoS Med. 12, e1001779
(2015).

4. M. Kuhn et al., Building predictive models in R using the caret package. J. Stat.
Software 28, 1–26 (2008).

5. F. Pedregosa et al., Scikit-learn: Machine learning in python. J. Mach. Learn. Res. 12,
2825–2830 (2011).

6. J. Pathak, A. N. Kho, J. C. Denny, Electronic health records-driven phenotyping: Chal-
lenges, recent advances, and perspectives. J. Am. Med. Inform. Assoc. 20, e206–e211
(2013).

7. A. Rajkomar et al., Scalable and accurate deep learning with electronic health records.
NPJ Digit. Med. 1, 18 (2018).

8. S. E. Ellis, L. Collado-Torres, A. Jaffe, J. T. Leek, Improving the value of public RNA-seq
expression data by phenotype prediction. Nucleic Acids Res. 46, e54 (2018).

9. S. J. Clark, T. McCormick, Z. Li, J. Wakefield, Insilicova: A method to automate cause
of death assignment for verbal autopsy. arXiv:1504.02129 (8 April 2015).

10. S. Khoury, D. Massad, T. Fardous, Mortality and causes of death in Jordan 1995-96:
Assessment by verbal autopsy. Bull. World Health Organ. 77, 641–650 (1999).

11. R. C. Deo, Machine learning in medicine. Circulation 132, 1920–1930 (2015).
12. T. Ching et al., Opportunities and obstacles for deep learning in biology and medicine.

J. R. Soc. Interface 15, 20170387 (2018).
13. B. Yu, K. Kumbier, Three principles of data science: Predictability, computability, and

stability (pcs). arXiv:1901.08152 (23 January 2019).
14. H. Behravan et al., Machine learning identifies interacting genetic variants contribut-

ing to breast cancer risk: A case study in Finnish cases and controls. Sci. Rep. 8, 13149
(2018).

15. J. Z. Liu, Y. Erlich, J. K. Pickrell, Case–control association mapping by proxy using
family history of disease. Nat. Genet. 49, 325–331 (2017).

16. A. Gusev et al., A transcriptome-wide association study of high-grade serous epithelial
ovarian cancer identifies new susceptibility genes and splice variants. Nat. Genet. 51,
815–823 (2019).

17. M. Arumugam et al., Enterotypes of the human gut microbiome. Nature 473, 174–180
(2011).

18. E. R. Gamazon et al., A gene-based association method for mapping traits using
reference transcriptome data. Nat. Genet. 47, 1091–1098 (2015).

19. A. Datta, J. Fiksel, A. Amouzou, S. L. Zeger, Regularized Bayesian transfer learning for
population-level etiological distributions. Biostatistics, 10.1093/biostatistics/kxaa001
(2018).

20. J. Fiksel, A. Datta, A. Amouzou, S. Zeger, Generalized Bayesian quantification
learning. arXiv:2001.05360 (15 January 2020).

21. K. Keith, B. O’Connor, “Uncertainty-aware generative models for inferring docu-
ment class prevalence” in Proceedings of the 2018 Conference on Empirical Methods
in Natural Language Processing (Association for Computational Linguistics, Brussels,
Belgium, 2018), pp. 4575–4585.

22. D. B. Rubin, Multiple Imputation for Nonresponse in Surveys (John Wiley & Sons,
2004), vol. 81.

23. J. Durbin, Errors in variables. Rev. Inst. Int. Stat. 23, 32 (1954).
24. W. A. Fuller, Measurement Error Models (John Wiley & Sons, 2009), vol. 305.
25. S. Lai, L. Xu, K. Liu, J. Zhao, “Recurrent convolutional neural networks for text clas-

sification” in Twenty-ninth AAAI Conference on Artificial Intelligence (AAAI Press,
Austin, TX, 2015).

26. T. A. Thomas, O. Toomet, I. Kennedy, A. Ramiller, U of Washington, The
state of evictions: Results from the University of Washington evictions project.
https://evictions.study/. Accessed 10 November 2020.

27. M. Garenne, V. Fauveau, Potential and limits of verbal autopsies. Bull. World Health
Organ. 84, 164 (2006).

28. J. Leitao et al., Revising the WHO verbal autopsy instrument to facilitate routine
cause-of-death monitoring. Glob. Health Action 6, 21518 (2013).

29. T. K. Ho, “Random decision forests” in Proceedings of 3rd International Conference
on Document Analysis and Recognition (IEEE, 1995), vol. 1, pp. 278–282.

30. I. Barandiaran, “The random subspace method for constructing decision forests” in
IEEE Transactions on Pattern Analysis Machine Intelligence (IEEE, New York, NY, 1998),
vol. 20.

31. N. S. Altman, An introduction to kernel and nearest-neighbor nonparametric
regression. Am. Stat. 46, 175–185 (1992).

32. C. Cortes, V. Vapnik, Support-vector networks. Mach. Learn. 20, 273–297 (1995).
33. J. J. Hopfield, Neural networks and physical systems with emergent collective

computational abilities. Proc. Natl. Acad. Sci. U.S.A. 79, 2554–2558 (1982).
34. S. Wang, J. T. Leek, main sim continuous.R. Open Science Framework. https://osf.

io/g4w28/. Deposited 31 July 2020.
35. R Core Team, R: A Language and Environment for Statistical Computing (Version

4.0.2, R Foundation for Statistical Computing, Vienna, Austria, 2018).
36. S. N. Wood, Fast stable direct fitting and smoothness selection for generalized

additive models. J. R. Stat. Soc. B 70, 495–518 (2008).
37. T. Lumley, Stylised choropleth maps for New Zealand regions and district health

boards. arXiv:1912.04435 (10 December 2019).
38. B. Hamner, M. Frasco, Metrics: Evaluation Metrics for Machine Learning (R package

Version 0.1.4, CRAN, 2018).
39. S. Wang, J. T. Leek, main sim binary.R. Open Science Framework. https://osf.

io/g4w28/. Deposited 31 July 2020.
40. L. Collado-Torres et al., Reproducible RNA-seq analysis using recount2. Nat.

Biotechnol. 35, 319–321 (2017).
41. A. Nellore et al., Rail-RNA: Scalable analysis of RNA-seq splicing and coverage.

Bioinformatics 33, 4033–4040 (2016).
42. R. Leinonen, H. Sugawara, M. Shumway, INSD Collaboration, The sequence read

archive. Nucleic Acids Res. 39, D19–D21 (2010).
43. S. E. Ellis, J. T. Leek, Breast TISSUE results.rds. Open Science Framework.

https://osf.io/g4w28/. Deposited 31 July 2020.
44. GTEx Consortium et al., Genetic effects on gene expression across human tissues.

Nature 550, 204–213 (2017).
45. F. W. Albert, L. Kruglyak, The role of regulatory variation in complex traits and

disease. Nat. Rev. Genet. 16, 197–212 (2015).
46. H. J. Westra et al., Systematic identification of trans eQTLs as putative drivers of

known disease associations. Nat. Genet. 45, 1238–1243 (2013).
47. A. Battle et al., Characterizing the genetic basis of transcriptome diversity through

RNA-sequencing of 922 individuals. Genome Res. 24, 14–24 (2014).
48. M. N. McCall, K. Uppal, H. A. Jaffee, M. J. Zilliox, R. A. Irizarry, The gene expression

barcode: Leveraging public data repositories to begin cataloging the human and
murine transcriptomes. Nucleic Acids Res. 39, D1011–D1015 (2010).

49. J. Lonsdale et al., The genotype-tissue expression (GTEx) project. Nat. Genet. 45, 580–
585 (2013).

50. L. Collado-Torres et al., Flexible expressed region analysis for RNA-seq with derfinder.
Nucleic Acids Res. 45, e9 (2016).

51. Broad Institute of MIT and Harvard et al., Population Health Metrics Research Consor-
tium Gold Standard Verbal Autopsy Data 2005-2011. Global Health Delta Exchange.
http://ghdx.healthdata.org/record/ihme-data/population-health-metrics-research-
consortiumgold-standard-verbal-autopsy-data-2005-2011. Deposited 5 November
2020.

52. T. H. McCormick et al., Probabilistic cause-of-death assignment using verbal autopsies.
J. Am. Stat. Assoc. 111, 1036–1049 (2016).

53. M. Maalouf, T. B. Trafalis, Robust weighted kernel logistic regression in imbalanced
and rare events data. Comput. Stat. Data Anal. 55, 168–183 (2011).

54. J. T. Leek, J. D. Storey, Capturing heterogeneity in gene expression studies by
surrogate variable analysis. PLoS Genet. 3, 1724–1735 (2007).

55. D. Risso, J. Ngai, T. P. Speed, S. Dudoit, Normalization of RNA-seq data using
factor analysis of control genes or samples. Nat. Biotechnol. 32, 896–902
(2014).

56. G. K. Smyth, “Limma: Linear models for microarray data” in Bioinformatics and
Computational Biology Solutions Using R and Bioconductor (Springer, 2005), pp.
397–420.

Wang et al. PNAS | December 1, 2020 | vol. 117 | no. 48 | 30275

https://evictions.study/
https://osf.io/g4w28/
https://osf.io/g4w28/
https://osf.io/g4w28/
https://osf.io/g4w28/
https://osf.io/g4w28/
http://ghdx.healthdata.org/record/ihme-data/population-health-metrics-research-consortiumgold-standard-verbal-autopsy-data-2005-2011
http://ghdx.healthdata.org/record/ihme-data/population-health-metrics-research-consortiumgold-standard-verbal-autopsy-data-2005-2011

