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Abstract: Kidney disease is a major public health concern that has only recently emerged. Toxins are
removed from the body by the kidneys through urine. In the early stages of the condition, the patient
has no problems, but recovery is difficult in the later stages. Doctors must be able to recognize this
condition early in order to save the lives of their patients. To detect this illness early on, researchers
have used a variety of methods. Prediction analysis based on machine learning has been shown to
be more accurate than other methodologies. This research can help us to better understand global
disparities in kidney disease, as well as what we can do to address them and coordinate our efforts to
achieve global kidney health equity. This study provides an excellent feature-based prediction model
for detecting kidney disease. Various machine learning algorithms, including k-nearest neighbors
algorithm (KNN), artificial neural networks (ANN), support vector machines (SVM), naive bayes
(NB), and others, as well as Re-cursive Feature Elimination (RFE) and Chi-Square test feature-selection
techniques, were used to build and analyze various prediction models on a publicly available dataset
of healthy and kidney disease patients. The studies found that a logistic regression-based prediction
model with optimal features chosen using the Chi-Square technique had the highest accuracy of
98.75 percent. White Blood Cell Count (Wbcc), Blood Glucose Random (bgr), Blood Urea (Bu), Serum
Creatinine (Sc), Packed Cell Volume (Pcv), Albumin (Al), Hemoglobin (Hemo), Age, Sugar (Su),
Hypertension (Htn), Diabetes Mellitus (Dm), and Blood Pressure (Bp) are examples of these traits.

Keywords: usability score artificial intelligence; medical information systems; image matching;
machine learning algorithms; morphological operations

1. Introduction

Kidney disease affects over 750 million people worldwide, a figure that is growing.
Kidney disease is a condition that affects people all over the world, but the disease’s
prevalence, identification, and treatment are all very different. Renal failure is the leading
cause of death among people living in modern society. Cigarette smoking, excessive
alcohol consumption, high cholesterol, and a variety of other risk factors all play a role in
the disease. The kidney is a vital organ in the human body, performing a variety of vital
functions. Despite the fact that kidney disease is better understood in developed countries,
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new research indicates that the condition is more prevalent in developing countries. The
primary function is to collect waste and excess fluid from the circulatory system and excrete
it via the kidneys via urine. If the function of this organ is compromised, the amount of
harmful liquids and wastes in our systems may have disastrous consequences [1]. It is
critical to emphasize that there are two kinds of kidney disease: acute kidney disease and
chronic (long-term) kidney disease [2]. The most common type of kidney illness is acute
renal disease. Chronic kidney failure is characterized by a progressive decline in kidney
function over time (usually years). When the kidney’s blood supply is cut off, the flow
of urine is hampered by an enlarged prostate, or the kidney itself is injured and becomes
ineffective, this type of kidney failure occurs. As a result of a chronic renal condition,
kidney failure does not occur overnight. In the early stages of the disease, the patient
exhibits no signs or symptoms of the illness. Patients who have had diabetes and high
blood pressure for a long time are more likely to develop this syndrome. Patients who have
been exposed for an extended period of time to lead-based medications and poisons are at
risk of developing this disease. According to a poll, this condition affects a large number
of people in our country, and thousands of people die from it each year. Only the most
affluent countries have access to renal failure treatment. According to the World Health
Organization, only 11% of the world’s population receive adequate treatment for renal
failure. Because they cannot afford dialysis or a kidney transplant, low-income patients die
of renal failure. Patients who are identified and treated early on have a better chance of
avoiding renal failure entirely. Scientists have developed a number of methods for detecting
kidney disease at an early stage [3,4]. Patients’ doctors may inform them ahead of time.
Taking preventative measures before things get out of hand is a viable option.

Chronic Kidney Disease

Humans have two kidneys that are roughly the size of a fist. Their primary purpose
is to filter blood. They remove waste and excess water, which turn into urine. They also
help to keep the body’s chemical balance, control blood pressure, and produce hormones.
Chronic kidney disease means that the kidneys are damaged and are unable to filter blood
as effectively as they should. This damage can cause waste to accumulate in the body
and cause other issues that can be harmful to health. The most common causes of chronic
kidney disease are diabetes and high blood pressure. Kidney damage occurs gradually
over a long period of time. Many people have no symptoms until their kidney disease
is advanced. Only blood and urine tests can inform you if you have kidney disease.
Treatments cannot cure kidney disease, but they can help to slow its progression. They
include blood pressure medications, blood sugar control medications, and cholesterol-
lowering medications. Chronic kidney disease can worsen over time. It can occasionally
result in kidney failure. Dialysis or a kidney transplant will be required if your kidneys
fail. Based on population studies from developed countries, a systematic review found
a mean prevalence of 7.2% in individuals older than 30 years. According to WHO data,
it affects approximately 10% of the adult population and more than 20% of those over
the age of 60, and it is undoubtedly underdiagnosed. The prevalence of CKD can reach
35–40% in patients followed up in primary care for diseases as common as high blood
pressure (HBP) or diabetes mellitus (DM). The magnitude of the problem is magnified
by the increase in morbidity and mortality, particularly cardiovascular mortality, caused
by renal deterioration. CKD is thought to be the common final destination of a group of
pathologies that affect the kidney in a chronic and irreversible manner. Once the diagnostic
and therapeutic options for primary kidney disease have been exhausted, CKD necessitates
common protocols of action that are, in general, independent of it. The most common
causes of ACKD are described below, along with links to further information. More than
one cause frequently coexists and worsens kidney damage.

In this work, the primary objective is to identify the best early-stage prediction
model [5] for renal disease based on the most optimal attributes possible [6]. The fol-
lowing sub-goals are included:
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• Review the existing approaches for the detection of kidney disease.
• Determine the best feature by applying various feature selection techniques.
• Build various prediction models on a kidney dataset using different machine learning

algorithms and analyze their accuracy in the detection of kidney disease.

The rest of the article is organized as follows: Section 2 provides a review of the
literature on the detection of kidney disease. Section 3 proposes a method for detecting
kidney disease that makes use of machine learning and feature extraction. Section 4
discusses the kidney dataset, experimental results, and comparisons with existing methods.
Section 5 discusses the conclusion and future work.

2. Related Works

The diagnosis of kidney illness using machine learning algorithms is an emerging
subject of computer vision in healthcare. Because of their great accuracy in identifying
illnesses, these procedures are gaining prominence. Using machine learning algorithms,
such as decision trees, J48, Support Vector Machine (SVM), and others, researchers have
developed several methods for identifying kidney illness. This section describes previous
research ideas proposed by a variety of scholars.

Boukenze, B. et al. [6] suggested a machine learning-based method for identifying
renal disorders. They employed the k-nearest neighbors algorithm (KNN), support vector
machine (SVM), decision tree, and artificial neural network (ANN) machine learning
algorithms. They used a number of performance measures to evaluate the accuracy of
prediction models. They observed that the decision tree-based model outperformed all
other models in diagnosing chronic failure, with an accuracy of 63 percent.

A. Salekin and colleagues employed SVM, KNN, and random forest techniques to
build prediction models. They based their findings on a dataset of 400 cases. There were
24 properties in each record. Different machine learning algorithm-based models produced
variable degrees of accuracy, it was revealed. The accuracy of the decision tree-based model
was 98 percent, which was greater than that of earlier models.

H. Polat et al. [7] predicted renal disease using the SVM machine learning technique.
They had a 97.5 percent accuracy rate. In order to enhance the accuracy, they applied
a variety of feature selection methodologies. They improved the accuracy by 1% by
employing feature selection.

Panwong, P. et al. [8] proposed an approach using KNN, NB, and decision tree classi-
fiers. They also reduced the number of features by using the wrapper technique. Using the
decision tree technique, they attained a maximum accuracy of 85 percent.

Dulhare, U. N. et al. [9] suggested a technique for diagnosing kidney illness using the
naive Bayes machine learning algorithm in combination with the R attribute selector. They
were 97.5% accurate in diagnosing renal illness.

Vasquez-Morales et al. [10] developed a neural network classifier based on massive
quantities of CKD data, and the model proved to be 95 percent accurate in its predictions.
To predict the advancement of diabetic kidney disease, Makino et al. [11] collected pa-
tient diagnoses and treatment information from textual data in an attempt to predict the
progression of diabetic kidney disease.

According to Ren et al. [12], they developed a prediction model for diagnosing chronic
kidney disease (CKD) using data from electronic health records (EHR). Based on a neural
network architecture, the proposed model encoded and decoded textual and numerical
data from electronic health records (EHR). A deep neural network model for identifying
chronic renal disease was developed by Ma F. et al. [13]. Comparing the supplied model
with ANN and SVM, the accuracy of the given model was the highest.

Almansour and colleagues [14] utilized machine learning to develop a technique
for preventing chronic kidney disease. Researchers used machine learning classification
methods, such as SVM and ANN, to make their findings. The experiments revealed that
ANN outperformed SVM in terms of accuracy, with a 99.75% accuracy rate.
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J. Qin and colleagues [15] presented a machine learning strategy for diagnosing chronic
kidney disease (CKD) in its early stages. In order to construct their models, they used
logistic regression, random forest, SVM, naive Bayes classifier, KNN, and the feedforward
neural network as techniques. With an accuracy rating of 99.75%, the random forest
classification model was shown to be the most accurate.

Z. Segal and colleagues [16] developed an ensemble tree-based machine learning algo-
rithm (XGBoost) for the diagnosis of kidney disease in its early stages. Models such as ran-
dom forest, CatBoost, and regression with regularization were used to compare the results
of the stated model. All matrices were improved by using the proposed model, which had c-
statistics of 0.93, sensitivity of 0.715%, and specificity of 0.958, among other improvements.

Khamparia et al. [17] developed a deep learning model for the early identification
of chronic kidney disease (CKD) that employed a stacked autoencoder model to extract
features from multimedia data and was published in Nature Communications. The au-
thors used a SoftMax classifier to predict the final class, which they found to be accurate.
Using the UC Irvine Machine Learning Repository (UCI) chronic kidney disease (CKD)
dataset [18], it was revealed that the recommended model outperformed standard classifi-
cation algorithms when compared to the data set in question.

Ebiaredoh Mienye Sarah A. et al. [19] developed a robust model for predicting chronic
kidney disease (CKD) by combining an enhanced sparse autoencoder (SAE) with Softmax
regression. The autoencoders in our proposed model achieved sparsity by penalizing
the weights, as previously stated. Because the SoftMax regression model was specifically
tailored for the classification task, the proposed model performed wonderfully in the testing
environment. On the chronic kidney disease (CKD) data set, the proposed model had a
precision of 98 percent, according to the researchers. When it came to performance, the
proposed model outperformed other already available strategies.

According to Zhiyong Pang et al. [20], a fully automated computer-aided diagnos-
tic approach that employed breast magnetic resonance imaging to differentiate between
malignant and benign masses was proposed.

Using a combination of the support vector machine and the ReliefF feature selection
approaches, the texture features were selected for use. It was found that this method was
92.3% accurate.

Chen, G. et al. [21] developed a model for identifying Hepatitis C virus infection that
used the Fisher discriminating analysis method with an SVM classifier to obtain a more
accurate diagnosis. The comparison of the proposed methodology to current methods
showed that the hybrid method outperformed all other methods, reaching the highest
classification accuracy of 96.77%. The authors of this paper developed a breast cancer
diagnosis model [22]. Artificial neural networks are used to classify breast cancer based
on qualities that have been selected using sequential forward and backward selection
processes. SBSP obtained the highest level of accuracy, with a score of 98.75%.

Table 1 outlines prior studies by different researchers. According to the table, re-
searchers employed multiple machine learning algorithm-based prediction models to pre-
dict renal disorders. The accuracy of these models varied and was inadequate. We noticed
that many researchers did not pre-process their data and used no feature selection strategy.
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Table 1. Summary of related work.

Sr. No. Author Year Machine Learning Algorithms and Accuracy (%)

1. A. J. Aljaaf et al. [1] 2018 Naïve Bayes: 83.4%, J48: 86.23%

2. N. Borisagar, D. Barad, and P. Raval [5] 2017 ANN: 99.5

3. B. Boukenze, A. Haqiq, and H. Mousannif [6] 2018 SVM: 63.5%, LR: 64.0, C4.5: 63%, KNN: 55.15%

4. H. Polat, H. D. Mehr and A. Cetin [7] 2019 SVM: 97.5%

5. P. Panwong and N. Iam-On [8] 2016 KNN: 86.32%, naïve Bayes: 60.46%, ANN: 83.24%,
RF: 86.60%, J48: 79.52%

6. Makino et al. [11] 2019 KNN, Naïve Bayes + LDA + random subspace +
Tree-based decision: 94%

7. Ren et al. [12] 2019 SVM + ReliefF: 92.7%

8. Ma F. et al. [13] 2019 Fisher discriminatory analysis and SVM: 96.7%

9. Almansour and colleagues [14] 2020 KNN and SVM: 99%

10. J. Qin and colleagues [15] 2019 SVM, KNN, and naïve Bayes decision tree: 99.7%

11. Z. Segal and colleagues [16] 2019 SVM, KNN, and decision tree: 99.1%

12. Khamparia et al. [17] 2020 Logistic regression, KNN, SVM, random forest,
naive Bayes, and ANN: 99.7%

13. Ebiaredoh-Mienye Sarah A. et al. [18] 2017 SVM 98.5%

14. Zhiyong Pang et al. [19] 2020 Softmax regression 98%

15. Tabassum, Mamatha et al. [23] 2017 DT: 85%, RF: 85%

16. K. R. A. Padmanaban and G. Parthiban [24] 2016 DT: 91%, naïve Bayes: 86%

17. Sahil Sharma, Vinod Sharma, and Atul Sharma [25] 2018 ANN: 80.4%, RF: 78.6%

18. Pratibha Devishri [26] 2019 ANN: 86.40%, SVM: 77.12%

19. Sujata Drall, G. Singh Drall, S. Singh, Bharat Naib [27] 2018 Naïve Bayes: 94.8%, KNN: 93.75%, SVM: 96.55%

LR: Logistic Regression; KNN: k-Nearest Neighbors; SVM: Support Vector Machines; CART: Classification and
Regression Trees; ANN: Artificial Neural Networks; LDA: Linear Discriminant Analysis; DT: Decision Tree; RF:
Random Forest.

3. Support Vector Machine

The first concepts and foundational principles of SVM were provided by the statis-
tical learning theory (structural risk minimization). It can be used in classification and
nonlinear regression. This broad classification of SVM can be further subdivided into two
subcategories: linear SVM (linear SVM) and nonlinear SVM (nonlinear SVM) [28].

L-SVM [29] training data of different types are classified using linear SVM, which
classifies training data by giving Class 1 to the “+1” and Class 2 to the “−1” symbols, then
uses the mathematical notation

{{xi, yi}T
i−1, xi ∈ Rm, yi ∈ {−1,+1}}

w · x + b = 0
(1)

here w is the weight vector, x is the input dataset, and b is a bias in the hyper plane,
which is referred to as a displacement. Bias is used to make sure that the hyper plane [11]
is positioned correctly following movement in a horizontal plane. Thus, prejudice is
affected by training with bias. A hyper plane has its parameters, which are w and b. A
decision surface G. Chen et al. (2020) [29] is considered to be a function when SVM is used
for classification.

f (x) = sign(w · x + b) (2)
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SVM generally serves to increase the marginal distance of the data set and there-
fore enhance the distinguishing function, allowing better categorization. Improving the
hyperplane’s distinguishing function is a quantic programming issue.

minimize Lp =
1
2
‖ w ‖2 subject to yi(xi · w + b)− 1 ≥ 0, i = 1, . . . , l (3)

To solve the initial minimization issue, we apply the Lagrange theory:

LD(α) =
l

∑
i=1

αi −
1
2

l

∑
i=1

l

∑
j=1

αiαjyiyj(xixj)

subject to
l

∑
i=1

αiyi = 0, i = 1, . . . , l

αi ≥ 0, i = 1, . . . , l

(4)

In the end, the linear divisive decision-making function has been completed.

f (x) = sign

(
n

∑
i=1

yiα
∗
i (x · xi) + b∗

)
(5)

To sum up, when f (x) > 0, it indicates that the sample is marked +1 and is in the same
category as samples marked with “+1”; otherwise, it indicates that the sample is marked
−1 and is in the same category as samples marked with “−1”. Linear hyper planes [30]
cannot properly identify data points when training data include noise. Slack variables ξi
are introduced to the constraint, resulting in a modification of the original (3):

minimize 1
2 ‖ w ‖2 +C

(
l

∑
i=1

ξi

)
subject to yi(xi · w + b)− 1 + ξi ≥ 0, i = 1, . . . , l

ξi ≥ 0, i = 1, . . . , l

(6)

The position of the border and the classification point are separated by a distance of ξi;
in this case, C represents the cost of the training data classification mistake, as specified
by the user. A lower C value means that the margin will be narrower, suggesting that
fault tolerance has a lower chance of working in the event of a problem [31,32]. The fault
tolerance rate will be larger if C is lower. The linear inseparable issue (also known as the
infinitely large linear problem) will degenerate into a linear separable problem as C→∞. In
this instance, the parameters and the optimal solution of the target function may be found
by using the Lagrangian coefficient [33,34] in order to solve the linear inseparable dual
optimization issue; hence, the solution of the linear inseparable dual optimization problem
is as follows:

Max LD(α) =
l

∑
i=1

αi − 1
2

l
∑

i=1

l
∑

j=1
αiαjyiyj

(
xixj

)
subject to

l
∑

i=1
αiyi = 0, i = 1, . . . , l

0 ≤ αi ≤ C, i = 1, . . . , l

(7)

Finally, the linear decision-making function is

f (x) = sign

(
n

∑
i=1

yiα
∗
i (x · xi) + b∗

)
, (8)

a support vector machine whose operation can include nonlinear inputs (nonlinear SVM).
In the case where we cannot separate training samples using linear SVM, we may apply
feature transformation, such as the function ϕ, to convert original 2-D data into a new,
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high-dimensional feature space that allows us to solve linear separable problems. SVM
can use the kernel technique to effectively conduct nonlinear classification utilizing an
approach known as the kernel trick. For the time being, there are many diverse foundational
components being put forward. Differentiating distinct data characteristics with respect to
different core functions allows for more efficient computation with SVMs [7]. Of the very
common fundamental functions, these four functions have something in common:

Linear kernel function:
K(xi, yi) = xt

i · yj (9)

Polynomial kernel function:

K
(
xi, yj

)
=
(
γxt

i xj + r
)m, γ > 0 (10)

Radial basis kernel function:

K
(
xi, yj

)
= exp

(
− ‖ xi − yj ‖2

2σ2

)
, γ > 0 (11)

Sigmoid kernel function:

K
(
xi, yj

)
= tanh

(
γxt

i · yj + r
)

(12)

This study utilizes the emissive core function, because settings such as γ and C can
increase computation efficiency and lower SVM complexity.

4. Materials and Methods

The proposed strategy is based on data mining framework as shown in Figure 1. Data
mining employs computational approaches at the intersection of artificial intelligence,
machine learning, statistics, and database systems [35]. Data mining is predicated on the
idea that data can be analyzed from a variety of perspectives. The “Knowledge Discovery
in Databases” (KDD) process is employed in this study to extract unknown patterns from
web data [36]. This section describes the suggested method for detecting kidney disease.
The availability of kidney disease care is directly affected by each country’s public policies
and financial situation. A lower dialysis–to–transplant ratio, for example, suggests that
more affluent countries have a higher rate of kidney transplantation.
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4.1. Kidney Disease Dataset

In this work, we used a dataset of 400 patients, each with 24 attributes [18,37]. The
dataset had 250 records of patients who were suffering from kidney disease and 150 med-
ical records for completely healthy people. This dataset has medical data for different
age groups. It has 50 records of people less than 30 years old and 55 records of people
greater than 70 years old. The remaining records belong to people aged 31–69. From the
various studies, it was found that people of any age group may suffer from kidney disease.
Therefore, there is no risk of bias in evaluating the performance of prediction models.
Table 2 shows the details of the various kidney disease-related attributes.

Table 2. Details of the various kidney disease-related attributes.

Name Feature Description

Age Age Patient’s age

Blood pressure Bp Blood pressure of the patient

Sugar level Su Sugar level of the patient

Bacteria Ba Presence of bacteria in the blood

Ratio of the density of urine Sg Ratio of the density of urine

Albumin level in the blood Al Ratio of the albumin level in the blood

Pedal edema Pe Does the patient have pedal edema or not

Red blood cells Rbc Patients’ red blood cell counts

Patient class Class Does the patient have kidney disease or not

Pus cell clumps Pcc Presence of pus cell clumps in the blood

Anemia Ane Does the patient have anemia or not

Red blood cell count Rc Red blood cell count of the patient

Hypertension Htn Does the patient have hypertension on not

Serum creatinine Sc Serum creatinine level in the blood

Diabetes mellitus Dm Does the patient have diabetes or not

Blood urea Bu Blood urea level of the patient

Blood glucose Bgr Blood glucose random count

Sodium Sod Sodium level in the blood

White blood cell count Wc White blood cell count of the patient

Hemoglobin Hemo Hemoglobin level in the blood

Packed cell volume Pcv Packed cell volume in the blood

Pus cell Pc pus cell count of patient

Potassium Pot Potassium level in the blood

Appetite Appet Patient’s appetite

Coronary artery disease Cad Does the patient have coronary artery
disease or not

To explain the proposed approach in an easy and efficient manner, a flow chart of the
whole procedure is given in Figure 2 and the steps are explained one–by–one as follows:
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4.2. Proposed Algorithm

Procedure: The proposed approach for the detection of kidney disease
Input: Dataset of kidney disease records
Output: Performance of the prediction models in detecting kidney disease.
It has the following steps:
Step 1: The Glomerular Filtration Rate (GFR) is the most often utilized measure of kid-

ney health function in CKD medical therapy. In order to calculate which, the formula uses
information such as the patient’s blood creatinine, age, race, gender, and other variables.
As is widely accepted, the standard formula for renal disease modification of diet (MDRD).

G f R = 186× (create )−1.154 × (age )−0.203 ×
(

mL
min

173 m2

)
(13)

Then preprocess the collected data: In this step, we preprocess the collected kidney
disease dataset. In the original dataset, the ‘rbc’ and ‘pc’ columns have normal, abnormal,
and empty values. The ‘rbc’ and ‘pc’ columns have 150 and 120 entries without any values,
respectively. In this dataset, the ‘pcc’ and ‘ba’ columns have ‘present’ and ‘not present’
values. The ‘cad’, ‘pe’, ‘htn’, ‘dm’, and ’ane’ columns have the values ‘yes’ and ‘no’. Also,
in this dataset, ‘appet’ has the values ‘poor’ and ‘good’. Therefore, preprocessing of this
dataset is a mandatory task for correct results. In this step, the empty values are replaced
by NaN. We converted nominal values to binary values as follows:
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1. In the ‘rbc’ and ‘pc’ columns, ‘normal’ and ‘abnormal’ nominal values are replaced
with 1 and 0, respectively.

2. In the ‘pcc’ and ‘ba’ columns, the ‘present’ and ‘nonpresent’ values are replaced with
1 and 0, respectively.

3. In the ‘htn’, ‘pe’, ’ane’, ‘dm’, and ‘cad’ columns, the values ‘yes’ and ‘no’ are replaced
with 1 and 0, respectively.

4. Finally, in the ‘appet’ column, ‘good’ and ‘poor’ are replaced with 1 and 0, respectively.

In the next step, null values are replaced by the average value of that particular
column’s values.

Step 2. Observe the relationship between different features. In this step, we find the
relationship between input and target features. We found that ‘pot’ and ‘ba’ are weakly
related to the target feature.

Step 3. Divide the dataset. In this step, we divide the dataset into training and testing
datasets using an 80:20 ratio. It means that 80% of data are used for training and 20% of
data are used for testing purposes.

Step 4. Set the parameters of the machine learning algorithms. In this step, the kidney
disease dataset’s processed features are used with machine learning algorithms to build
prediction models. We used Logistic Regression, Naive Bayes, Support Vector Machine,
K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN) machine learning
algorithms. We applied a 10-fold cross validation for building the prediction models.

Let φ(x) be a ridge basis function, nonconstant, limited, and monotonically growing.
If K is a compact subset on Rn, and f (x1, . . . , xn) is a real-valued continuous function on K,
then K may be represented as a subset of Rˆn, where f is a collection of real numbers. Given
an arbitrary positive parameter, there are integer N and real parameters

vj, θj, wij for i = 1, . . . , n and j = 1, . . . , m.
f∼(x1, . . . , xn) = ∑m

j=1 vjφj
(
∑n

i=1 wijxi + θj
)
+ d (14)

it satisfies the condition
maxX∈K| f∼(X)− f (X)| < ε (15)

We are saying that, for every given ε > 0, there exists a three-layer network, where
the hidden layer represented by the ridge basis function φ(x) and whose input–output
function is f∼(x1, . . . , xn), which has a maxX∈K| f∼(X)− f (X)| < ε mapping function
f∼(x1, . . . , xn) that results in f (x1, . . . , xn) being greater than or equal to ε.

Step 5. Feature selection. In this step, we select the best features using the Recur-
sive Feature Selection (RFE) and Chi-Square feature selection methods. As our kidney
disease data set was a labeled dataset, we used the wrapper and filter technique that is
the supervised feature selection technique. As we discussed earlier, the supervised feature
selection techniques were divided into three categories, which had different methods in
each category.

For feature selection, we used S = (U, C ∪ D) and B ⊆ C, where S is the set of
attributes of feature and attribute set D with respect to the conditional attribute subset B,
then the evaluation function for feature selection is defined by

σ(B, D) =
1
N
(σB(D1) + σB(D2) + · · ·+ σB(DN)) (16)

In this case, N is the number of decision classes generated by the decision attribute set
D, and is equal to σB(Di), i = 1, 2, . . . , N, reflecting the uncertainty measure of each decision
class, and σ(B, D) describes the integrated uncertainty degree of blocks D1, D2, . . . , DN .

Recursive Feature Elimination (RFE) is a feature selection algorithm of the wrapper
type. Internally, it employs filter-based techniques that are distinct from the filter approach.
It has two important configuration options: a. it specifies the number of features to be
selected, and b. it specifies the machine learning algorithm used in feature selection. In
the first case, it searches for a subset of features by considering all of the features in the
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training dataset and removing them until the required number of features remains. In the
second case, it employs a machine learning algorithm that ranks features [38] based on
their importance. It removes the least important features and then repeats the model fitting
process. The process is repeated until the specified number of features remain.

The Chi-Squared feature selection method investigates the relationship between the
input features and the target class. In this test, the Chi-Square value is calculated for each
input feature and the target class. It has the required number of features, as well as the
highest Chi-Square scores. We used the formula below to calculate the chi-square metric
(Xc2) between each target class feature and each input feature. It chooses only the input
features with the highest Chi-Squared values.

Chi-Square feature selection in data with m attribute values and k class labels as output.
Then, the value of χ2 is

χ2 =
m

∑
i=1

k

∑
j=1

(
Oij − Eij

)2

Eij
(17)

where Oij is the observed frequency.
Step 6. Build the prediction model using the selected features. In this step, again, we

applied 10-fold cross validation with the selected features and various machine learning
algorithms to build different prediction models.

Step 7. Finally, the performance of prediction models with all features and selected
features are compared.

5. Results and Analysis

To assess the performance of machine learning approaches, researchers use a variety
of performance metrics. To evaluate and compare the performance of proposed prediction
models, we used the precision, recall, F-measure, and accuracy performance measures.

5.1. Performance Measures

Accuracy is calculated by dividing the number of test records by the number of
successfully classified records. The percentage of True Positive (TP) records to the total
number of True Positive (TP) records in a certain class is called precision. There are two
types of recall: true positives and false negatives. The total number of records properly
categorized to the total number of records in a class is known as the recall ratio (FN). The
precision, recall, F-measure, and accuracy were calculated using the following formulas:

Precisioni =
TPi

TPi + FPi
(18)

Recalli =
TPi

TPi + FNi
(19)

Fβ =

(
1 + β2) precision ∗ recall

β2 ∗ precision + recall
(20)

where β is a parameter that can be used to give the importance to any one precision or recall.
Accuracy is commonly used as a measure for categorization techniques.

Accuracyi =
TPi + TNi

TPi + FPi + FNi + TNi
(21)

where TPi is the number of records correctly classified as belonging to the kidney disease
class, FPi is the number of records incorrectly classified as having kidney disease, FNi is
the number of records that were not classified as having a kidney disease, and TNi is the
number of images that were not assigned to the correct kidney disease class.
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Precision (P) is a metric that quantifies the proportion of correct positive outcomes
among all possible outcomes. It is computed as follows:

P = TP/(TP + FP) (22)

Specificity: The system’s ability to accurately recognize the absence of impurities in
the ghee picture is measured in this category. To obtain it, the number of true negatives
recognized in the photographs must be counted and divided by the amount of pure milk
included in the images. It was utilized to determine the specificity of the data.

Speci f icity (SP) = (TN)/(TN + FP) (23)

Mean: Means are a straightforward approach commonly used in pure mathematics, as
well as in analysis and computing; a wide variety of means have been invented to perform
these duties. During an image processing competition, the technique of filtering by the
mean is evaluated as abstraction filtering and is utilized for noise reduction.

X− =
∑n

i=0 Xi

n
(24)

A measure of variability or diversity in statistics, the standard deviation is the most
widely used measure available to researchers. In the context of image processing, it
indicates what fraction of variance or dispersion occurs between the predicted value and
the observed value. An extremely low standard deviation suggests that the data points
have a strong tendency to be extremely near to one another. A large standard deviation, on
the other hand, shows that the data points are evenly distributed throughout a wide range
of values.

X−rms =

√
∑n

Xi=1
(Xi − X−)2

(n− 1)
(25)

We used Anaconda, an enterprise-ready, secure, and scalable data science platform,
and Spyder to build and analyze the prediction approaches (Python 3.6). To evaluate
the proposed method’s performance, we downloaded a kidney disease dataset containing
400 patient records. We pre-processed the data to remove null values and for other purposes.
The data set was divided into two parts: training and testing, with 80 percent of the records
in training and 20% in testing. Using machine learning algorithms, such as Logistic
Regression, NB, SVM, K-Nearest Neighbors (KNN), and Artificial Neural Network, we
developed a variety of prediction models (ANN).

The data correlation matrix was represented using Heatmap [6]. It shows how different
features interact with one another. It is a useful visualization technique for comparing the
values of any two features. A positive correlation indicates that, as the value of a feature
increases, so does the value of the target variable. It could be negative, implying that
increasing the value of a feature decreases the value of the target variable. The heatmap
was created with the help of the seaborn library. It visually displays which features are
closely related to the target variable. By simply looking at the different color tones used,
it can be determined which value is higher, lower, and so on. A heatmap correlation
matrix of kidney disease data was displayed. It showed that the Ane, Bgr, Bu, Sc, Pcv, Al,
Hemo, Age, Su, Htn, Dm, and Bp characteristics were highly related to the target variable
(represented in green color). This means that raising these parameter values raises the risk
of kidney disease.

5.2. Prediction Models with All Features

Table 3 and Figure 3 show the performance of the prediction models by considering
all features or, in other words, without applying any feature selection technique. From the
table and graph, we can see that the accuracies of the Logistic Regression, Naïve Bayes,
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SVM, KNN, and ANN-based prediction models with all features were 97.5%, 95%, 97.5%,
66.25%, and 65% respectively.

Table 3. Results of the prediction models with all features.

Machine Learning Precision Recall F-Measure Accuracy

Algorithms (%) (%) (%) (%)
Logistic regression 98 97 98 97.5

Naïve Bayes 95 95 95 95
Support Vector Machines 98 97 98 97.5

k-Nearest Neighbors 76 66 66 66.25
Artificial Neural Networks 42 65 51 65

Healthcare 2022, 9, x  13 of 20 
 

 

increases, so does the value of the target variable. It could be negative, implying that in-
creasing the value of a feature decreases the value of the target variable. The heatmap was 
created with the help of the seaborn library. It visually displays which features are closely 
related to the target variable. By simply looking at the different color tones used, it can be 
determined which value is higher, lower, and so on. A heatmap correlation matrix of kidney 
disease data was displayed. It showed that the Ane, Bgr, Bu, Sc, Pcv, Al, Hemo, Age, Su, 
Htn, Dm, and Bp characteristics were highly related to the target variable (represented in 
green color). This means that raising these parameter values raises the risk of kidney disease. 

5.2. Prediction Models with All Features 
Table 3 and Figure 3 show the performance of the prediction models by considering 

all features or, in other words, without applying any feature selection technique. From the 
table and graph, we can see that the accuracies of the Logistic Regression, Naïve Bayes, 
SVM, KNN, and ANN-based prediction models with all features were 97.5%, 95%, 97.5%, 
66.25%, and 65% respectively. 

Table 3. Results of the prediction models with all features. 

Machine Learning Precision Recall F-Measure Accuracy 
Algorithms (%) (%) (%) (%) 

Logistic regression 98 97 98 97.5 
Naïve Bayes 95 95 95 95 

Support Vector Machines 98 97 98 97.5 
k-Nearest Neighbors 76 66 66 66.25 

Artificial Neural Networks 42 65 51 65 

 
Figure 3. Results of the prediction models with all features. SVM: Support Vector Machine; KNN: 
K-Nearest Neighbors; ANN: Artificial Neural Network. 

These also show that the accuracy of the Logistic Regression and SVM algorithm-based 
prediction models were highest i.e., 97.5%. The ANN-based prediction model achieved the 
lowest accuracy in the detection of kidney diseases. The performances of Logistic Regression 
and SVM were the same and can be used interchangeably for the detection of kidney dis-
eases in the early stage. We can also see that the precision, recall, and F-measure values were 
the highest for the Logistic Regression and SVM-based prediction models. 

Figure 3. Results of the prediction models with all features. SVM: Support Vector Machine; KNN:
K-Nearest Neighbors; ANN: Artificial Neural Network.

These also show that the accuracy of the Logistic Regression and SVM algorithm-based
prediction models were highest i.e., 97.5%. The ANN-based prediction model achieved
the lowest accuracy in the detection of kidney diseases. The performances of Logistic
Regression and SVM were the same and can be used interchangeably for the detection of
kidney diseases in the early stage. We can also see that the precision, recall, and F-measure
values were the highest for the Logistic Regression and SVM-based prediction models.

5.3. Prediction Models with RFE Feature Selection Technique

Recursive Feature Elimination (RFE) is a feature selection algorithm of the wrapper
type. It internally uses filter-based techniques; however, it is different to the filter approach.
It has two important configuration options: a. it specifies the number of features to be
selected, and b. it sets the machine learning algorithm in choosing the features. In the
first case, it searches a subset of features by considering all features present in the training
dataset and removes the features until the required number of features remains. In the
second case, it uses a machine learning algorithm and ranks the features by their importance.
It discards the least important features and repeats the model fitting process. The whole
process is repeated until the mentioned number of features remains.

Table 4 and Figure 4 show the results of the prediction models built with basic logistic
regression and with the RFE feature selection technique. From the table and graph, we can
see that it achieved 97.5% accuracy without feature selection and 91.25% accuracy with RFE
feature selection. It was also observed that the values of precision, recall, and F-measure
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were better without the RFE feature selection technique. Therefore, we conclude that the
accuracy of the basic logistic model is higher than that with the RFE feature selection
technique. Table 5 shows the results of the prediction models built with basic SVM and
with the RFE feature selection technique.

Table 4. Results of the LR model with RFE feature selection technique.

Performance Measure Basic Logistic
Regression

Logistic Regression with RFE
Feature Selection

Precision (%) 98 92
Recall (%) 97 94

F-Measure (%) 98 93
Accuracy (%) 97.5 91.25

RFE: Recursive Feature Selection.
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Table 5. Results of the SVM model with the RFE feature selection technique.

Performance Measure Basic SVM SVM with RFE Feature Selection

Precision (%) 98 98
Recall (%) 97 96

F-Measure (%) 98 97
Accuracy (%) 97.5 96.25

SVM: Support Vector Machine; RFE: Recursive Feature Elimination.

From this, we can see that it achieved 97.5% accuracy without feature selection and
96.25% accuracy with RFE feature selection. It was also observed that the values of preci-
sion, recall, and F-measure were also better without the RFE feature selection technique.
Therefore, we conclude that the accuracy of the basic SVM model is higher than that with
the RFE feature selection technique.

5.4. Performance of Prediction Models with Chi-Square Feature Selection

In this subsection, from Table 3, we found that the accuracy of the Logistic Regression-
based model was highest among the other built models in the detection of kidney disease.
As we know, the feature selection technique may improve the performance of the model.
In this section, we applied the Chi-Squared (chi2) statistical test to select the K-best features
from the kidney disease-prediction dataset.
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The Chi-Square feature selection method checks the relationship between input fea-
tures and the target class. In this test, Chi-Square is determined among each input feature
and the target class. It provides the required number of features with the best Chi-Square
scores. It selects only those input features that have the maximum Chi-Square values. The
scikit-learn library provides the SelectKBest class that is used to select a specific number of
features in a suite of different statistical tests. Table 6 shows the scores of various features.
It shows that the Wbcc, Bgr, Bu, Sc, Pcv, Al, Hemo, Age, Su, Htn, Dm, and Bp features have
high scores in comparison with the other features.

Table 6. Features and their scores by the Chi-Square test.

Features Score

Wbcc 12,733.73
Bgr 2428.328
Bu 2336.005
Sc 354.4105

Pcv 324.7065
Al 228.1047

Hemo 125.0657
Age 113.4602
Su 100.95

Htn 86.29181
Dm 82.2
Bp 80.02432
Pe 45.10802

Ane 35.6116
Sod 28.7933
Pcc 24.07546

Rbcc 20.848
Cad 19.93604
Pc 14.16913
Ba 12.58705

Appet 12.58703
Rbc 9.416036
Pot 4.071145
Sg 0.005035

Wbcc: White Blood Cell Count; brg: Blood Glucose Random; Bu: Blood Urea; Sc: Serum Creatinine; Pcv: Packed
Cell Volume; Al: Albumin; Hemo: Hemoglobin; Su: Sugar; Htn: Hypertension; Dm: Diabetes Mellitus; Bp: Blood
Pressure; Pe: Pedal edema; Ane: Anemia; Sod: Sodium; Pcc: Pus cell clumps; Rbcc: Red blood cells count; Cad:
Coronary artery disease; Pc: Pus cell; Ba: Bacteria; Appet: Appetite; Rbc: Red blood cells; Pot: Potassium; Sg:
Ratio of the density of urine.

Table 7 and Figure 5 show the performance of the LR prediction model with the
Chi-Square feature-selection technique.
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Table 7. Results of the LR prediction model with Chi-Square feature selection.

Performance Measure
Number of Features (K) Best

K > = 15K = 5 5 < K < 15

Precision (%) 96 100 100
Recall (%) 92 98 96

F-Measure (%) 94 99 98
Accuracy (%) 92.5 98.75 97.5

We evaluated the technique using a variety of best features. It was discovered that,
when the k-values ranged from 6 to 14, the model provided the best precision, recall,
f-measure, and accuracy, i.e., 100 percent, 98 percent, 99 percent, and 98.75 percent, respec-
tively. When k = 5 or fewer features are used, the model had the lowest accuracy. The table
also shows that, when more than 15 features were used, the model’s performance suffered.
As a result, it can be concluded that the model with more than 5 and less than 15 features
provided the highest accuracy in detecting kidney disease. The performance of the SVM
prediction model with the Chi-Square feature-selection technique is shown in Table 8.

Table 8. Comparative analysis of existing models on a dataset of 400 patients each with 24 attributes [2,27].

Method Accuracy Recall Precision F-Measure

Logistic regression [28] 91.8 1 0.98 0.98

KNN [29] 92.7 0.88 0.98 0.92

Naïve Bayes [30] 95.21% 0.92 1.00 0.94

SVM [31] 92.32 0.87 0.96 0.93

Decision tree [32] 93.45 0.95 1.00 0.96

Proposed method [33] 97.54 0.99 1.00 1.0
KNN: k-nearest neighbors algorithm; SVM: support vector machines.

We evaluated the technique with different numbers of best features. It was found that
the model achieved the best precision, recall, f-measure, and accuracy when the k-values
were greater than 15, i.e., 100%, 96%, 98%, and 97.5%, respectively. The model gave the
lowest accuracy when K = 5 or a smaller number of features was taken. From the table,
we also see that the performance of the model decreased whenever fewer than 15 features
were taken. Therefore, it can be concluded that the accuracy of the SVM model did not
increase by applying the Chi-Square test.

5.5. Comparison of Models with and without Feature Selection Technique

From all of the results, it can be seen that the accuracy of the Logistic Regression model
with the Chi-Square feature selection techniques was the best in the detection of kidney
disease. This result was the best among the other approaches in the detection of kidney
disease. Table 9 shows the results of various combinations of LR models and Figure 6
graphically compares the accuracy of the different models.

Table 9. Prediction models with and without various feature-selection techniques.

Prediction Model Accuracy (%)

Basic LR model 91.25
LR model + RFE feature selection 97.5

LR model + Chi-Square feature selection (K = 5) 92.5
LR model + Chi-Square feature selection (5 < K < 14) 98.75

LR model + Chi-Square feature selection (K > 14) 97.5
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The accuracies of the basic LR model, LR model with RFE feature selection, LR model
with Chi-Square feature selection (K = 5), LR model with Chi-Square feature selection
(5K14), and LR model with Chi-Square feature selection (K > 14) were 91.25 percent,
97.5 percent, 92.5 percent, 98.75 percent, and 97.5 percent, respectively, as shown in Table 9.
This demonstrates that the Chi-Square method outperformed the RFE feature method in
terms of accuracy. It is also worth noting that the model produced good results, with
5 to 15 of the best features out of a total of 24. In summary, we achieved 98.5 percent
accuracy in detecting kidney disease. In comparison to existing approaches, this has the
highest accuracy.

As a result of the random forest algorithm, 250 positive samples (TP) and 150 negative
samples (TN) were correctly identified as positive. Positive (TP) samples were scored
at 94.74 percent by the SVM, KNN, and Decision Tree algorithms with an error (TN) of
5.26 percent each, and 97.37 percent by the SVM, KNN, and Decision Tree algorithms with
an error (TN) of 1.32 percent each. Table 6 shows the results of the four classifiers that
were used. The random forest method outperformed the other classifiers on all metrics,
including accuracy, precision, recall, and F1-score. The decision tree algorithm came in
second, with accuracy, precision, recall, and F1-score values of 99.17 percent, 100 percent,
98.68 percent, and 99.34 percent, respectively. As a result, the KNN algorithm achieved
98.33 percent accuracy, precision, recall, and an F1-score of 98.67 percent. The final SVM
accuracy, precision, recall, and F1-score were 96 percent, 92 percent, 93 percent, and
97 percent, respectively.

6. Conclusions and Future Work

In this paper, we developed many prediction models by using different machine
learning algorithms and feature-selection techniques. We used a dataset that contained a
large set of healthy and unhealthy patients with kidney disease. We used LR, SVM, and
many other classifiers to develop various prediction models. We exercised the prediction
models with Recursive Feature Elimination (RFE) and Chi-Square test feature selection
techniques. From the results, it was shown that the accuracy of the Logistic Regression
model with the Chi-Square feature selection technique achieved the best result in the
detection of kidney disease. This result was the best among other approaches in the
detection of kidney disease. It was also observed that the model achieved good results
with 5 to 15 best features among 24 features. It was also found that the Wbcc, Bgr, Bu, Sc,
Pcv, Al, Hemo, Age, Su, Htn, Dm, and Bp features had more significance in the detection of
kidney diseases. In the future, we will develop a hybrid approach for improving disease
detection accuracy before actual disease arises in humans.
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