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Abstract
The rapid advances of high-throughput sequencing technologies dramatically prompted metagenomic studies of
microbial communities that exist at various environments. Fundamental questions in metagenomics include the
identities, composition and dynamics of microbial populations and their functions and interactions. However, the
massive quantity and the comprehensive complexity of these sequence data pose tremendous challenges in data ana-
lysis. These challenges include but are not limited to ever-increasing computational demand, biased sequence sam-
pling, sequence errors, sequence artifacts and novel sequences. Sequence clustering methods can directly answer
many of the fundamental questions by grouping similar sequences into families. In addition, clustering analysis also
addresses the challenges in metagenomics. Thus, a large redundant data set can be represented with a small
non-redundant set, where each cluster can be represented by a single entry or a consensus. Artifacts can be rapidly
detected through clustering. Errors can be identified, filtered or corrected by using consensus from sequences
within clusters.
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INTRODUCTION
Metagenomics [1, 2] is a genomic approach that uses

culture-independent sequencing to study the micro-

organism populations under different environments.

It offers unprecedented vision of the identities, com-

position, dynamics, functions and interactions of the

diverse microbial world and has become an import-

ant tool in many fields such as ecology, energy, agri-

culture and medicine.

Earlier metagenomics projects, such as Sargasso

Sea [3], human gut [4] and soil [5], relied on trad-

itional Sanger sequencing technology, so most of

these projects have limited throughput. In recent

years, the rapid advances of next-generation sequen-

cing (NGS) technologies [6], such as 454, Illumina,

SOLiD, PacBio and Ion Torrent, dramatically pro-

pelled the expansion of metagenomics research, and

large ‘waves’ of metagenomics sequencing projects

were launched to study a diverse range of microbial

communities in their environments, such as the

virome [7], farm animals [8] and the human micro-

biome [9, 10]. It is widely expected that many more

environmental and microbiome samples will be stu-

died by NGS technologies. However, the intrinsic
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complexity and massive quantity of metagenomics

data create tremendous challenges for data analysis.

First, because of the sheer number of sequences, all

kinds of sequence analyses, including database search,

multiple alignment, sequence mapping, assembly and

phylogenetic analysis, are getting more time con-

suming and memory demanding and require more

manual efforts for parsing the output results. Second,

the growth of sequence data in the public databases

has been very uneven due to highly biased efforts

toward model organisms and those populations or

environments of special interest. Metagenomic ana-

lyses that rely on comparison with these biased and

redundant reference databases may lead to incorrect

conclusions. Third, different NGS techniques and

protocols show quite different bias and artifacts.

For example, single-cell multiple displacement amp-

lification produces very non-uniform coverage by

orders of magnitude [11]. Many sequencers generate

tens or hundreds of copies of artificially duplicated

reads for same templates [12]. Fourth, NGS platforms

have higher error rates than traditional Sanger se-

quencers and also have platform-specific error pat-

terns, such as homopolymer indels for 454 and Ion

Torrent reads and degraded quality at 30-ends for

Illumina reads. Finally, sequence errors and artifacts

are propagated from reads to protein sequences,

which can be false genes, fragmented or with

frame-shift errors.

Clustering analysis, a method that identifies and

groups similar objects, is a powerful tool to explore

and study large-scale complex data. It can effectively

resolve many of the challenges stated earlier. By

sequence clustering, a large redundant data set

can be represented with a small non-redundant

(NR) set, which requires less computation. Errors

can be identified, filtered or corrected by using con-

sensus from sequences within clusters. In addition,

many fundamental questions in metagenomics can

be readily addressed by clustering, such as the iden-

tification of gene families and the classification of

species in a population. So, since the infancy

of metagenomics, clustering analysis has been an es-

sential part of this field for applications, such as

identification of artificial duplicates [12, 13], classifi-

cation of operational taxonomic units (OTUs) [14],

protein family analysis [15, 16] and transcriptomics

analysis [17].

In this article, we will discuss several common

clustering applications in metagenomics and the

methodologies for different types of analysis.

CLUSTERINGMETHODSAND
RESOURCES
Sequence clustering is not a new topic; it existed

long before the emerging of metagenomics and

NGS technologies. In the past, many available clus-

tering programs were used for clustering protein se-

quences such as ProtoMap [18], ProtoNet [19],

RSDB [20], GeneRAGE [21], TribeMCL [22],

ProClust [23], UniqueProt [24], OrthMCL [25],

MC-UPGMA [26], Blastclust [27] and CD-HIT

[28–31]. Many methods were also used for clustering

expressed sequence tags (ESTs), such as Unigene

[32], TIGR Gene Indices [33], d2_cluster [34] and

several others [35–37].

Many of the above clustering methods require all

against all comparisons of sequences for optimal re-

sults, so they are very computational intensive for

large data sets. A method for reducing the intensive

requirement arose with CD-HIT. Thus, with the

rapid growth of sequence data, the fast program

CD-HIT become a very popular clustering tool; it

has been widely used in many areas such as preparing

NR reference databases [38]. CD-HIT uses a greedy

incremental algorithm. Basically, sequences are first

ordered by decreasing length, and the longest one

becomes the seed of the first cluster. Then, each re-

maining sequence is compared with existing seeds. If

the similarity with any seed meets a pre-defined

cutoff, it is grouped into that cluster; otherwise, it

becomes the seed of a new cluster. More recently,

several new fast programs, including Uclust [39],

DNACLUST [40] and SEED [41], have been de-

veloped using greedy incremental approaches similar

to that introduced by CD-HIT. These methods use

various heuristics and achieved high speed in cluster-

ing NGS sequences. Herein, we briefly introduce the

features and functions of these programs.

CD-HIT [28–31] is a comprehensive clustering

package. The current version (v 4.5) has seven pro-

grams. CD-HIT and CD-HIT-EST cluster protein

and deoxyribonucleic acid (DNA) data sets, respect-

ively. CD-HIT-454 identifies duplicates from 454

reads. PSI-CD-HIT clusters proteins at low-identity

cutoff (20–50%). CD-HIT-DUP identifies duplicates

from single or paired Illumina reads. CD-HIT-LAP

identifies overlapping reads. CD-HIT-OTU is a

multi-step pipeline to generate OTU clusters for

ribosomal ribonucleic acid (rRNA) tags from 454

and Illumina platforms. CD-HIT uses a heuristics

based on statistical k-mer filtering to speed up clus-

tering calculations. It also has a multi-threading
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function, so it can run in parallel on multi-core com-

puters. CD-HIT is open source software available

from http://cd-hit.org. It is also available from the

cd-hit web server [28], the CAMERA web portal

[42] and the WebMGA server [43] for metagenomic

data analysis.

Uclust [39] follows CD-HIT’s greedy incremental

approaches, but it uses a heuristics called Usearch for

fast sequence comparison. It also gains speed by com-

paring a few top sequences instead of the full data-

base. Uclust can run on DNA, protein and rRNA

sequences. Currently, its 32-bit pre-compiled bin-

aries are freely available from http://www.drive5

.com/usearch/. DNACLUST [40] also follows

greedy incremental approach; it uses a suffix array

to index the input data set. Unlike CD-HIT and

Uclust, which can process both proteins and

DNAs, DNACLUST only works on DNA se-

quences, and it is suitable for clustering highly similar

DNAs, especially for rRNA tags. It is available as

open source program at http://dnaclust.source

forge.net/. SEED [41] only works with Illumina

reads and only identifies up to three mismatches

and three overhanging bases. It uses an open hashing

technique and a special class of spaced seeds, called

block spaced seed. SEED is also an open source soft-

ware available at http://manuals.bioinformatics.ucr

.edu/home/seed.

Although some programs are claimed to be faster

than other programs, those claims are usually based

on a certain type of sequences and clustering param-

eters (e.g. an identity cutoff). Herein, we do not

intent to make a side-by-side performance compari-

son but simply list some examples that we ran to give

some hints on the speed and results for some

common clustering analyses by these programs

(Table 1). CD-HIT and Uclust often produce com-

parable results in both protein and DNA clustering

tests. SEED is faster than other programs in clustering

Illumina reads, but it yields many more clusters.

Except for SEED, the other three programs all

work on rRNA sequences, where Uclust is fastest

and CD-HIT gives the fewest clusters.

IDENTIFICATIONOFARTIFICIAL
DUPLICATES
NGS platforms, such as 454 and Illumina, commonly

produce artificially duplicated reads, which can lead

to an overestimated abundance of species, genes or

functions. The duplicates originate from the same

template but are separately sequenced, so they can

be exactly identical or can be nearly identical with

variable read lengths (454 reads) and mismatches due

to sequence errors.

In 454 data sets, duplicated reads can make up

11–35% of the raw reads [12]. As finding identical

sequences is very easy, only exact duplicates were

identified and removed in some early studies [7].

Nearly identical duplicates were considered ever

Table 1: Clustering speed and results for common data sets

Data seta Program and parametersb Timec (minutes) Clusters

NCBI NR, proteins, 4.3 GB: 12054 819 sequencesd cd-hit v4.5.7 ‘-n 5 -M 0 -c 0.9’ 1405/181 7036 029
cd-hit v4.5.7 ‘-n 5 -M 0 -c 0.7’ 962/152 4933 074

Swissprot, proteins, 222 MB: 437168 sequences cd-hit 4.5.7 ‘-n 5 -M 0 -c 0.9’ 3.7/0.8 298 617
Uclust v5 ‘-id 0.9’ 17.3 301076
cd-hit 4.5.7 ‘-n 5 -M 0 -c 0.7’ 4.6/0.8 190 695
Uclust v5 ‘-id 0.7’ 7.6 192 847

Illumina (SRR061270), 380 MB, 5 million reads cd-hit v4.5.7 ‘-n 10 -M 0 -c 0.95’ 56.8/9.2 956734
Uclust v5 ‘-id 0.95’ 164.6 958 887
cd-hit v4.5.7 ‘-n 10 -M 0 -c 0.9’ 347.5/46.0 751581
Uclust v5 ‘-id 0.9’ 227.5 734981
cd-hit v5.0 beta ‘-c 0.9’ 23.5/4.0 750276
SEED (default parameters) 7.9 1056109

1.1million 16s rRNAs: 454 reads Ref. [44] cd-hit v4.5.7 ‘-n 10 -M 0 -c 0.97’ 47.9/7.5 24 842
Uclust v5 ‘-id 0.97’ 4.3 29586
DNACLUST ‘-s 0.97’ 15.3 31151

aNR and Swissprot were downloaded from NCBI at ftp://ftp.ncbi.nih.gov/blast/db/FASTA/. Illumina reads from SRR061270 was downloaded from
NCBI at http://www.ncbi.nlm.nih.gov/sra.The16s rRNAs was kindly provided by the authors from Ref. [44]. b‘-c 0.9’,‘-id 0.9’ and ‘-s 0.9’mean 90%
identity. However, DNACLUST’s definition is slightly different from CD-HITand Uclust (Ref. [40]). cThe second number is the time for eight cores;
currently, only CD-HIT has a multiple threading function. dThe free 32-bit version of Uclust cannot process NR, so only CD-HIT is used.
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since the study by Gomez-Alvarez et al. [12].

Gomez-Alvarez’s method applies CD-HIT-EST to

cluster the reads at 90% identity and then parses the

clustering results. Later, CD-HIT-454 [13] was

introduced by reengineering CD-HIT-EST.

CD-HIT-454 is faster and more accurate than

Gomez-Alvarez’s method. It identifies duplicates

that are either exactly identical or meet the following

criteria: (i) reads must be aligned at 50-ends; (ii) for

sequences of different length, a shorter read must be

fully aligned with the longer one (the seed) and

(iii) they have less than user-defined percentage of

indels and substitutions (default 4%). The default cut-

off value, which is trained according to the pyrose-

quencing’s error model, maximizes the sensitivity

and specificity of identification of duplicates from

454 reads. Another common, easy way for finding

duplicates is to compare prefixes and consider that

the reads are duplicates if they share a common

prefix of a certain length. Both MG-RAST [45]

and IMG/M [46] use prefix checking for identifica-

tion of duplicates. Prefix checking is faster but less

accurate than CD-HIT-454. CD-HIT-454 only

needs a few minutes to run a typical 454 data set

with less than a million reads, so it is still very effi-

cient, similar to the original CD-HIT.

For Illumina data sets, prefix checking has more

advantages, because it is relatively faster than

CD-HIT-454, and it fits features of Illumina reads,

which have fewer indels and exhibit worse quality at

the 30-ends. For pair-ended Illumina reads, a reason-

able way for finding duplicates is to check prefixes at

both ends. This function is available in

CD-HIT-DUP.

When removing duplicates, a question that needs

to be considered is ‘are these duplicates all artificial’?

The experimentally observed duplicated sequences

also include natural duplicates, i.e. those that

happen to be duplicates by chance. So, simply

removing all duplicates may also cause an underesti-

mation of abundance associated with natural dupli-

cates. The CD-HIT-454 article investigated the

occurrence of natural duplicates for different types

of metagenomic samples and found that (i) the rate

of natural duplicates highly correlates with the read

density (the number of reads divided by genome

size); (ii) for high-complexity metagenomic samples,

natural duplicates make up a few percent of all du-

plicates and (iii) for viral metagenomic samples or

metatranscriptomics, natural duplicates can be more

abundant than artificial duplicates. These guidelines

help to decide whether to remove or to keep dupli-

cated reads in a metagenomic sample [13].

DIVERSITY
Metagenomic projects (e.g. [9, 47, 48]) often survey

both genomic DNAs and 16S rRNAs. The later are

used to estimate the microbial diversity, which is

often quantitatively described in OTUs. Because of

read length limitation, it is not practical to sequence

the full length of 16s rRNA (�1.5 kb), so 16s rRNA

studies often use individual variable regions (V1–V9)

or sections that cover a few variable regions (e.g.

V1–V3 and V3–V5). Pyrosequencing of 16S

rRNA amplicons has been the dominant approach

in rRNA studies. Finding OTUs from 16S rRNA

tags can be readily addressed by clustering.

Conventionally, tags with �97% identity are placed

in the same OTUs at the species level. CD-HIT [29]

and DOTUR [49] were often used for OTU clus-

tering during early studies.

However, a big problem in OTU analysis is that

directly clustering the raw rRNA reads or even the

high-quality reads often greatly over-estimates the

diversity. A recent review [50] analyzed a list of

methods and discussed solving this problem at the

clustering algorithm level. This article suggested

using average linkage-based hierarchical clustering

methods such as ESPRIT [51], instead of greedy in-

cremental methods such as CD-HIT [29] and Uclust

[39] for OTU clustering.

In the meantime, many other studies [52–56]

found that the single biggest cause of the over-

estimation problem is the sequence errors or noise,

so new methods such as SLP [52], PyroNoise [54],

Denoiser [55] and Ampliconnoise [56] focus at iden-

tifying and removing sequence noise. All these

methods find sequence errors by clustering analysis

and are based on a principle that a high-abundance

cluster can recruit small clusters and singletons,

which have more sequence errors. SLP clusters the

actual rRNA tags, and the rest of the methods cluster

the original flowgram data. Currently, the best per-

forming method among them is AmpliconNoise

[56], which has been benchmarked by several com-

monly used Mock data sets; these data sets are arti-

ficial mixtures of 16S rRNA clones at different

abundance levels from a number of known species.

Although the speed of AmpliconNoise is consid-

erably improved over its predecessor version

(PyroNoise), it is still quite computational intensive.
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Recently, CD-HIT-OTU was introduced to the

CD-HIT package. CD-HIT-OTU also uses a

multi-step clustering method to remove reads with

sequence errors and achieves results comparable with

AmpliconNoise. However, as CD-HIT-OTU clus-

ters sequences instead of flowgram data and inherits

unique heuristics from CD-HIT, it is orders of mag-

nitude faster than AmpliconNoise and other meth-

ods such as Denoiser. Table 2 lists the performance of

CD-HIT-OTU, AmpliconNoise and Denoiser (im-

plemented in QIIME [57]) on clustering the Mock

benchmark data sets [56] at 97% identity level.

CD-HIT-OTU has following steps: (i) the raw

reads with ambiguous base calls are removed.

Reads are also removed if their 50-ends do not

match user-provided primer sequence or a consen-

sus, which is built from the 50 of all reads of k bases

(k¼ 6 by default, adjustable by users). For long reads,

it also trims off the tails portion at 30-ends that are

beyond median read length. (ii) Processed reads are

clustered at 100% identity using CD-HIT-DUP. At

this step, the reads from a unique rRNA template

will form one large primary cluster (it contains

error-free reads) and some small clusters, which

contain reads with sequence errors. (iii) The repre-

sentative sequences from step 2 are sorted by abun-

dance and then clustered by CD-HIT-EST at a

threshold that allows up to two mismatches. For

example, 200-bp reads are clustered at 99.0% iden-

tity, so that small clusters are recruited into their

primary clusters. (iv) Let x to be the median size of

small clusters recruited into the most abundant pri-

mary cluster with two mismatches. Clusters smaller

than x are dominated by reads with more than two

errors from the most abundant template; so these clus-

ters are removed. Herein, x is often very small (2 or

3), so that rare species will still be kept in the analysis.

(5) The remaining representative sequences from step

2 are clustered into OTUs using CD-HIT-EST (par-

ameters: -c 0.97 -n 10 -l 11 -p 1 -d 0 -g 1). Herein,

option ‘-c 0.97’ means 97% identity. (6) The

non-representative tags are recruited into the OTUs

using CD-HIT-EST-2D (parameters: -c 0.97 -n 10 -l

11 -p 1 -d 0 -g 1).

The ultra-high speed of CD-HIT-OTU allows

clustering multi-million rRNA tags pooled from a

series of related samples. Such clustering can signifi-

cantly increase the accuracy of OTU identification,

because tags shared by different samples validate each

other. Clustering pooled samples may identify very

rare OTUs, which may be missed if individual sam-

ples are processed independently. We applied

CD-HIT-OTU on two pooled data sets,

Human_gut_V6 [48] and Human_body_V2 [44];

these include 33 gut samples from obese and lean

twin families and 815 samples from different body

sites, respectively (Table 3). CD-HIT-OTU only

used a few minutes for these two data sets.

In this analysis, we found that clustering the

pooled samples identified 19–80 more rare OTUs

than clustering individual samples for the 33

human gut data sets. For the 815 human body data

sets, clustering pooled samples found up to 50 more

rare OTUs. Clustering pooled samples also provides

a very straightforward way to define a ‘core micro-

biome’ and to compare the diversity and

Table 2: Accuracy and speed for OTUs identificationa

Datab True OTUsc Number of predicted OTUs, sensitivity (%), specificity (%),CPU time (h, min, s)

CD-HIT-OTU AmpliconNoise Denoiser

Divergent 23 26 100 88 11s 28 100 82 32h 35 100 65 15m
Artificial 33 32 100 100 13 s 34 96 91 22h 38 96 81 13m
Even1 53 71 100 74 8 s 85 100 62 68h NAd

Even2 53 57 96 89 7 s 83 100 63 49h NAd

Even3 52 60 100 86 7 s 90 100 57 65h NAd

Uneven1 49 56 91 80 5 s 76 97 63 39h NAd

Uneven2 41 45 85 77 7 s 67 95 58 35h NAd

Uneven3 38 42 100 90 7 s 73 97 50 44h NAd

Titanium 69 69 98 98 7 s 90 100 76 388h 146 100 47 6h

aAll data sets were downloaded from http://people.civil.gla.ac.uk/�quince/Data/AmpliconNoise.html according to an article [56]. bParameters are
based on each programs default setting. cTrue OTUs were calculated by clustering the reference sequences that are covered by the raw reads.
dFlowgramdata are only available inAmpliconNoise-specific format, sowe canrunAmpliconNoisebutnotDenoiser.However,Denoiser’sperform-
ance for these data sets can be referenced from an article [56].
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composition of samples. For example, we calculated

NAT50 for each sample. Herein, NAT50 is a diver-

sity indicator we defined, which stands for the

number of most abundant taxonomic groups cover-

ing 50% populations. Figure 1 shows that obese sam-

ples have less diversity than lean samples. Please note

the abundance of OTUs is the abundance of rRNA

genes and may not be the abundance of species, be-

cause the rRNA copy numbers are unknown.

However, rRNA genes abundance largely correlates

with species abundance. The full results for human

gut and human body are also available as examples

with the CD-HIT-OTU software, which is available

from http://weizhongli-lab.org/cd-hit-otu. CD-

HIT-OTU is also available as a web server within

WebMGA [43], a collection of web servers for meta-

genomic data analysis.

FILTERING SEQUENCE ERRORS
As shown in the previous section, clustering-based

approaches very well address sequencing errors in

rRNA tags. Similar clustering analyses can also

filter out errors in genomic and metagenomic reads

and, therefore, improve sequence assembly, gene

prediction and other analyses. However, finding

errors from genomic reads is more difficult than

from rRNA tags, which can be aligned at their

50-ends, because they all start with the same universal

primers. For genomic reads, there are several existing

methods in detecting sequence errors by various

clustering approaches. For example, FreClu [58]

and EDAR [59] use k-mer frequency; Hammer

[60] uses a Hamming graph and ECHO [61] clusters

overlapping reads through k-mer hashing. These

methods avoid very time-consuming full-length se-

quence alignment in clustering the reads. However,

full-length sequence alignment is feasible using

ultra-fast sequence clustering algorithms. For ex-

ample, the analysis in the SEED article [41] shows

that genome assembly can be notably improved by

only assembling cluster representatives.

Herein, we show an example using clustering-

based filtering to improve metagenome assembly.

Metagenomic samples often contain a small

number of dominant organisms along with hundreds

or more less abundant species. Because of sequencing

errors, major problems in metagenome assembly

Figure 1: Distribution of microbial diversity measured by NATs (NAT20, NAT50,NAT80 and NAT99) for 33 human
gut samples. The x-axis is NAT category. The y-axis is NATvalue. Samples are colored by sample type (obese, over
weight or lean). The results show that obese samples have less average NAT50 than the lean samples.

Table 3: OTU analysis for pooled human gut and
human samples

Data seta Reads Region Platform OTUs CPU (s)

Human_gut 817942 V6 GS 20 317 37
Human_body 1071335 V2 GS FLX 238 295

aThe Human_gut data set was downloaded from http://gordonlab.wustl.
edu/NatureTwins_2008/TurnbaughNature_11_30_08.html.The Human_body
data setwas kindly provided by the authors from Ref. [44].
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often occur for the high-abundance species.

Clustering methods, including the k-mer

frequency-based approaches, benefit from high se-

quence redundancy, from which better consensus

can be derived. So, the assembly difficult for the

dominant species in metagenome can be effectively

corrected.

Herein, as a demonstration, we use an Illumina

data set representing the high-abundance species of

a human gut sample (MH0006) from MetaHIT pro-

ject [9] at http://gutmeta.genomics.org.cn. The

MetaHIT study also provided Sanger reads for

sample MH0006 as reference and assembled them

into 995 contigs. We mapped the Illumina reads to

these reference contigs using SOAP2 [62] (option: -

M 4); 144 contigs have a coverage of at least 200.

The reads mapped to these contigs are selected as a

high-abundance subset, which contains 36 175 286

of 75 bp pair-ended reads. The clustering-based ap-

proach has the following steps: (i) reads are clustered

with CD-HIT-EST (options: ‘-c 0.96 -n 10 -r 1 –aS

0.5 -b 2 -G 0’); (ii) for each cluster, we only kept at

most N reads that have the best average quality score

per base and filtered out the extra sequences, where

N is a redundancy cutoff parameter and (iii) the re-

maining reads were assembled at different N levels

and optimal assembles achieved. The comparison of

contigs between original reads and filtered reads

using Velvet [63] and SOAPdenovo [64] is shown

in Figure 2. The filtered data sets largely improve the

N50 and longest contig. Actually, for the unfiltered

data set, because the coverage is so low, there is no

valid N50. The accuracy and coverage are also much

higher with the filtered reads.

There are two reasons that we used the high-

abundance subset instead of the full MH0006 data.

First, sequence errors deteriorate sequence assembly

for high-abundant reads. So, our filtering method

only improves the high-abundance species. Second,

we evaluated the contigs assembled from Illumina

reads by comparing them with high-quality refer-

ences (contigs from Sander reads). Most contigs

assembled from the low-abundance Illumina reads

cannot be mapped to any reference sequences. So,

we cannot evaluate these contigs.

DATABASE SEARCH
In metagenomic projects, an important annotation

step is to query the reads or Open Reading Frames

(ORF) against reference databases of known gen-

omes, DNAs or proteins with an alignment program

such as basic local alignment search tool (BLAST)

[27], BWA [65], BLAT [66], FR-HIT [67] or

Rapsearch [68]. Because of the huge size of both ref-

erence databases and the query, such database searches

can be very time consuming. However, both refer-

ence databases and the query sample can be very re-

dundant, so simply using NR data sets may save a

great deal of computation time and, in some cases,

also improve the accuracy of database search [69].

As illustrated in Figure 3, before database search-

ing, both the reference database and the query are

clustered at certain similarity thresholds. Then, the

Figure 2: Assembly performance of the filtered reads for metagenomic sample MH0006. x-axis is the redundancy
cutoff N. The length of the longest contig (kb) and N50 (kb) are plotted against the left y-axis. The accuracy and
genome coverage are against the right y-axis. The assembly results for original reads are at far right side marked as
‘ALL’ on x-axis.The accuracy of contigs is the total length of correct contigs divided by the total length of all contigs.
The genome coverage is the fraction of reference genome covered by the correct contigs.
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NR sequences (i.e. representatives) from the query

are aligned to the NR sequences in the reference

database. Finally, the annotation results are copied

from the representatives to other sequences in the

same clusters.

A big concern of this approach is to ascertain how

much difference there is between annotations calcu-

lated from the NR data sets and from the original full

data sets. The key of this approach is to use appro-

priate, conservative clustering parameters, such that

the clusters are homogeneous, as required by anno-

tation goals. For example, we can use 97% as the

identity cutoff for 16S rRNAs at species level, to

obtain a taxonomy annotation for 16S rRNA reads

at a species level by aligning them to a reference

rRNA database such as Silva [70], RDP [71] and

Greengene [72]. Then, the query and references

should be clustered at a similarity cutoff greater

than 97%. If the goal is to annotate ORFs using

the KEGG database [73], then clustering both

KEGG reference sequences and the ORFs at 90%

will be harmless, because sequences sharing 90%

identity will rarely belong to different KEGG

orthology groups.

To further reduce the annotation difference be-

tween NR data sets and full data sets, this approach

should only be used to cluster sequences of similar

length and with enough overlapping regions

(Figure 3D), instead of other clustering settings

(Figure 3B, C). The CD-HIT program has many

parameters such as sequence length, alignment

length and alignment coverage for users to finely

tune the clustering process to form more homoge-

neous clusters.

Table 4 lists the clustering results for commonly

used reference databases in metagenomic studies at

conservative thresholds. Herein, the sizes of the NR

data sets are 28–58% of the original ones. After clus-

tering, the size of a NR query data set, which highly

depends on the sequencing depth, can often be 50%

to many times smaller than the original data set. So

overall, the annotation using NR data sets can be

easily accelerated by 10-fold.

PROTEIN FAMILY IDENTIFICATION
Reference-based metagenome annotation by com-

parison with known sequences is essential but has

drawbacks, with the biggest limitation being the in-

ability to annotate novel sequences. Large metagen-

omes and those from under-explored environments

contain a large number of novel genes, which

might be specific to the environment. These novel

proteins can well be overlooked by reference-based

annotation.

Clustering analysis is the most effective way to

discover novel gene families from large data sets.

This has been demonstrated by the global ocean

sampling (GOS) study, which identified 3995 novel

protein clusters from 17.4 million ORFs [16]. Other

large-scale studies, such as MetaHIT [9], also found

novel gene families through sequence clustering.

Clustering metagenomic proteins into families is

more complicated than creating a NR data set. In

both the GOS and MetaHIT projects, the analyses

started by removing highly similar sequences (95–

98% identity), followed by several steps of protein

clustering. In GOS, these steps include (i) calculation

of all-against-all similarities using BLAST; (ii) con-

struction of core sequence clusters, which are dense

sub-graphs in the whole graph where the vertices are

sequences and the edges are defined by a set of very

strong similarities cutoffs; (iii) calculation of sequence

profiles for large core clusters using FFAS [74] and

Figure 3: Using NR query and NR reference database for metagenome annotation.
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PSI-BLAST [27], (iv) creation of protein families by

merging core clusters using FFAS profiles and (5)

recruitment of small clusters and singletons into

large core clusters using PSI-BLAST profiles. In

MetaHIT, families were clustered from all-against-all

BLAST results with an algorithm called MCL, whose

details were not described in the MetaHIT article.

The above clustering pipelines require very

time-consuming BLAST calculation (e.g. GOS

used 1 million CPU hours), so they are not very

feasible for small labs, which now also generate

large-scale metagenomic data by using NGS tech-

nologies. Earlier, the speed of the GOS clustering

pipeline was improved [75] by adopting CD-HIT

as a fast clustering and recruiting tool. An independ-

ent study using only CD-HIT to build protein

families from GOS proteins was also introduced

later [15]. This CD-HIT-based clustering produced

comparable results to the original GOS study but

only used �10 000 CPU hours. Thus, this approach

is more suitable for those projects with large data sets

that lack the computation resources for exploring

protein families.

The above CD-HIT-based protein family finding

process has three clustering steps where each subse-

quent clustering uses the representative sequences

generated in the previous step. The similarity thresh-

olds for these three clustering steps are 90%, 60% and

30%, respectively. The first two steps perform regular

CD-HIT, and the last step uses PSI-CD-HIT, which

also allows an alterative e value threshold. The details

of this method are described in Refs. [15] and [76],

where this method was further improved. The GOS

data set is available from CAMERA project at

http://camera.calit2.net. Herein, we demonstrate

this easy approach for protein family identification

using MetaHIT data. The original 14 792 886 pro-

teins were downloaded from MetaHIT project at

from http://gutmeta.genomics.org.cn/. These pro-

teins were hierarchically clustered at 90%, 80%,

60% and 30% identity or an e value of 1e-6. These

four steps cost 10, 2, 102 and 720 CPU hours and

got 3 076 514; 2 471 148; 1 554 866 and 732 063

clusters, respectively. We used a 4-step clustering

for MetaHIT data set, instead of the 3-step clustering

we used earlier on the GOS data set, because the

4-step clustering provides better classification accur-

acy. The cluster distributions of MetaHIT are illu-

strated along with GOS clusters produced in Ref.

[15] (Figure 4A, B). Compared with GOS ORFs,

which contain more than half spurious ORFs due

to the six reading frame translation, the MetaHIT

genes predicted using Metagene [77] have far fewer

false ORFs. So, using similar clustering parameters,

MetaHIT data set has far fewer small clusters and

singletons than GOS (Figure 4A). Cluster distribu-

tions for MetaHIT clusters grouped by known and

novel are shown in Figure 4C and D. Herein, novel

clusters are those clusters with no detectable similar-

ity to Pfam families [78] using HMMER3 [79]. The

732 063 MetaHIT clusters contain 20 328 large clus-

ters with at least 20 NR proteins, and 2580 of them

are novel (Figure 4C), which covers �9% all

MetaHIT sequences (Figure 4D). These novel clus-

ters may represent human gut-specific gene families

and should be further investigated.

LISTOF TOOLSANDTHEIR
ALGORITHMCHARACTERISTICS
As a summary, the tools tested in this article are listed

in Table 5.

Table 4: Clustering results of reference databases by CD-HIT package////

Data seta Number sequences Total Cutoff b (%) Clusters Reduced to (%) Time (minutes)c

NCBI NR 12054 819 4.3 GB 90 7036 029 58 181
16S (SilvaþGreengene) 555530 799 MB 98 154170 28 90
NCBI microbial genomes 3355 6.4 GB 90 1279 38 389
NCBI virus sequences 1042 347 1.3 GB 95 288 701 28 480

aNCBI NRwas downloaded from NCBI at ftp://ftp.ncbi.nih.gov/blast/db/FASTA/.16S sequences from Silva and Greengene were downloaded from
http://www.arb-silva.de/download/archive/ and http://greengenes.lbl.gov/Download/Sequence_Data/, respectively. NCBI microbial genomes were
downloaded from ftp://ftp.ncbi.nih.gov/genomes/Bacteria/ (file: all.fna.tar.gz).NCBI virus sequences were kindly provided by the CAMERA project
(Ref. 42). bParameters forNR and16SrRNA are‘-c 0.9 -n 5 -g1 -M 0 -T 0’and ‘-c 0.98 -n11 -b 5 -M 0 -T 0 -G1’, respectively.NCBImicrobial genomes
and virus sequences are clustered by a beta version of CD-HIT that can process very long sequences with parameter ‘-c 0.9’ and ‘-c 0.95’. cTime on
computer with eight cores.
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Figure 4: Distribution of GOS and MetaHIT protein clusters.The x-axis is the cluster size X. The y-axis in left fig-
ures is the number of clusters of size at least X; the y-axis in right figures is the percentage of total sequences
included in the clusters of size at least X. Graphs in (A) and (B) are for all GOS and MetaHIT sequences. Graphs in
(C) and (D) are only for MetaHIT sequences, grouped by Known and Novel clusters. In addition, two separate
lines are made for NR sequences (i.e. the 3 076 514 representative sequences clustered at 90% identity).

Table 5: A list of clustering tools for metagenomic sequence analysis used in this study

Tool and reference Description Key parameters

CD-HIT [28^31] Cluster protein sequences -c identity cutoff
-n word size

CD-HIT-EST [28^31] Cluster nucleotide sequences -c identity cutoff
-n word size

Uclust [39] Cluster protein or nucleotide sequences -id identity cutoff
^w word size

SEED [41] Cluster highly similar Illumina reads (up to 3 mismatches and overhanging bases) ^mismatch allowed mismatches
DNACLUST [40] Cluster highly similar DNA sequences (e.g. 16S rRNAs) -s similarity cutoff

-k word size
CD-HIT-454 [13] Identify duplicates for 454 reads -c identity cutoff
CD-HIT-DUP Identify duplicates for single or pair-ended Illumina reads -e allowed mismatches
CD-HIT-LAP Identify overlapping Illumina reads -m overlapping length

-p overlapping coverage
PSI-CD-HIT [28^31] Cluster proteins at low identity cutoff (20^50%) -c identity cutoff

-ce expect value cutoff
CD-HIT-OTU Identify operational taxonomic units (OTUs) from rRNAs Identity cutoff a

AmpliconNoise [56] Cluster flowgram data to remove noises from reads for OTU clustering Identity cutoff a

Denoiser [55] Cluster flowgram data to remove noises from reads for OTU clustering Identity cutoff a

Cluster-based filtering Filter sequence errors for improved sequence assembly See CD-HIT-EST
Protein family clustering [15] Identify protein families from metagenomic sequences See CD-HITand PSI-CD-HIT

aCD-HIT-OTU, AmpliconNoise and Denoiser havemultiple steps involvesmany parameters, which usually do not need to bemodified.
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The key parameters of these programs include the

clustering similarity cutoff and some algorithmic par-

ameters. For clustering similarity cutoff, CD-HIT,

CD-HIT-EST, Uclust, CD-HIT-454, PSI-CD-

HIT and OTU clustering packages use sequence

identity; DNACLUST uses a similarity cutoff based

on edit distance, which is very similar to sequence

identity; SEED and CD-HIT-DUP allow certain

number of mismatches. Word size is the most im-

portant algorithmic parameter for many programs

(Table 5). The choice of word size depends on the

clustering similarity cutoff and the type of sequences

(protein or DNA). A higher similarity cutoff works

with a longer word, which yields higher clustering

speed. An important property of clustering methods

is whether the results will change when the order of

inputted sequences is different. Most methods intro-

duced herein, including programs in CD-HIT pack-

age, Uclust and DNACLUST sort sequences by

length and process them from long to short. The

OTU clustering packages (e.g. CD-HIT-OTU)

sort sequences by abundance and process them

from high to low. So the order of inputted sequences

does not change the output clusters except when the

inputted sequences of the same length (or abun-

dance) are in different order. Reads in most

Illumina data sets have identical length, so the clus-

tering results of Illumina reads depend on the order

of inputted sequences.

Key Points

� Sequence clustering is an effective method to answer and ad-
dress many fundamental questions and challenges in metage-
nomics. The applications include but are not limited to finding
duplicates, diversity analyses, filtering sequence errors, database
searches and finding protein families.

� Ultra-fast clusteringmethods, such as CD-HIT, use less accurate
algorithms than some sophisticated algorithms that rely on
all-against-all similarities.However, when being used intelligently
(e.g. multi-step clustering using parameters that fit a sequencing
error model), the ultra-fast methods can produce comparable
results to those sophisticated methods and can still be orders
of magnitude faster.

� Artificial duplicates should be removed for correct abundance
calculation. However, attention should be paid to high-abun-
danceviral and transcriptomic samples,wherenatural duplicates
may bemore abundant than artificial ones.

� Using NR data sets saves significant database search time in
metagenome annotation.However, conservative clustering par-
ameters need to be used to ensure the clusters are homoge-
neous according to the annotation goal.

� Clustering analysis is effective in finding novel gene families that
might be overlooked using only reference-based annotation.
Multi-step hierarchical clustering using ultra-fast methods can
rapidly produce protein families fromvery large data sets.
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