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a b s t r a c t 

Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ) have long been used worldwide as front- 

line drugs for the treatment and prophylaxis of human malaria. Since the first reported cases in Wuhan, 

China, in late December 2019, humans have been under threat from coronavirus disease 2019 (COVID-19) 

caused by the novel coronavirus SARS-CoV-2 (previously known as 2019-nCoV), subsequently declared a 

pandemic. While the world is searching for expedited approval for a vaccine, which may be only pre- 

ventative and not a cure, physicians and country leaders are considering several concerted clinical trials 

suggesting that the age-old antimalarial drugs CQ/HCQ could be a potent therapeutic against COVID-19. 

Based on accumulating scientific reports, here we highlight the possible modes of action of CQ/HCQ that 

could justify its use against viral infections. Considering the global health crisis of the COVID-19 pan- 

demic, the option of repurposing old drugs, e.g. CQ/HCQ, particularly HCQ, for the treatment of SARS- 

CoV-2 infection could be a good choice. CQ/HCQ has diverse modes of action, including alteration of 

the acidic environment inside lysosomes and late endosomes, preventing endocytosis, exosome release 

and phagolysosomal fusion, and inhibition of the host cytokine storm. One or more diverse mechanisms 

might work against viral infections and reduce mortality. As there is no cure for COVID-19, clinical testing 

of HCQ is urgently required to determine its potency against SARS-CoV-2, as this is the currently available 

treatment option. There remains a need to find other innovative drug candidates as possible candidates 

to enter clinical evaluation and testing. 

© 2020 Elsevier B.V. and International Society of Chemotherapy. All rights reserved. 
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. Introduction 

Chloroquine (CQ) and its analogue hydroxychloroquine (HCQ)

ave long been used worldwide as frontline drugs for the treat-

ent and prophylaxis of all types of human malaria. They have

een used and tested against several pathophysiological conditions

uch us hepatic amoebiasis, lupus erythematosus, light-sensitive

kin eruptions and rheumatoid arthritis [1,2] . There are several in

itro and in vivo studies reporting the effect of CQ monotherapy

r combination therapy on different cancers. Intraperitoneal ad-

inistration of CQ at 60 mg/kg/day for 7 days delayed tumour

rowth in mice with epidermal growth factor receptor (EGFR)-
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ver expressing glioblastoma xenografts [3] . In another study us-

ng a human intracranial glioblastoma xenograft mouse model, in-

ratumoural injection of 5 μL of CQ (30 mM/day) for 17 days

ignificantly reduced mitotic cells with apoptotic cell number in-

reases through the p53 pathway of apoptotic induction [4,5] . To

upport their anticancer potential, several clinical studies on CQ

nd HCQ as anticancer or antitumour drugs are currently under-

ay ( https://clinicaltrials.gov ). CQ has been found to act as an

ntitumour as well as an anticancer agent [6] , further indicating

hat CQ supplementation with conventional treatments of glioblas-

oma patients might improve the mid-term survival of these pa-

ients. Another study has found that CQ diminishes intratumoural

ypoxia [7] making cancer cells more sensitive to radiotherapy

nd other oxygen-dependent therapies [8] and reducing metasta-

is. It is documented that autophagy, which occurs in cells un-

er several conditions, promotes many cancers [9] . This degrada-
rved. 

https://doi.org/10.1016/j.ijantimicag.2020.106028
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ijantimicag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ijantimicag.2020.106028&domain=pdf
mailto:MatsabisaMG@ufs.ac.za
https://clinicaltrials.gov
https://doi.org/10.1016/j.ijantimicag.2020.106028
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tive process initiates the formation of autophagosomes that retain

degraded cell components, which then fuse with lysosomes to re-

cycle these components. It is understood that autophagy is halted

by CQ by disrupting the energy source of the autophagy pathway

[10,11] . Despite inhibition of the ‘autophagic flux’ by CQ and HCQ

against cancer, another study has reported that these drugs affect

the Toll-like receptor 9 (TLR9), p53 and CXCR4-CXCL12 pathways

in cancer cells. In addition, in the tumour stroma, CQ affects the

tumour vasculature, cancer-associated fibroblasts and the immune

system [5] . 

CQ displays wide-ranging properties against bacterial, fungal,

protozoal, parasitic and viral infections. Newman et al. showed that

CQ boosts human macrophages to suppress the growth of yeast by

limiting the availability of iron in macrophages [12] . CQ induces

human mononuclear phagocytes to kill Cryptococcus neoformans ,

most commonly found in immunodeficient patients [12–14] . In ad-

dition to such immune modulation, CQ has shown promising ef-

fects in combination therapy against drug-resistant Candida albi-

cans by inhibiting biofilm formation at low concentrations [15] . 

The coronavirus disease 2019 (COVID-19) pandemic caused by

an outbreak of the novel coronavirus named severe acute respi-

ratory syndrome coronavirus 2 (SARS-CoV-2; previously known as

2019-nCoV) [16] , first reported in Wuhan, China, in late December

2019 [17] , is a serious global threat to human health. As of 24 April

2020, approximately 2 620 0 0 0 people have been reported as con-

firmed cases of COVID-19, with over 181 0 0 0 deaths [18] . COVID-

19 is an acute resolving disease that can be deadly if not immedi-

ately and properly managed. The severity of the disease is due to

massive alveolar damage, with respiratory failure and subsequent

death [17] . However, the pathology has not been clearly reported

owing to barely accessible autopsy or biopsy reports of affected

patients [17] . Countries worldwide are exhaustively trying to dis-

cover a cure or preventative measures against the virus. At present,

all treatments are supportive in order to treat symptoms. Despite

the fact that anti-inflammatory and antiviral treatments have been

employed, no specific antiviral drugs have been confirmed to be

effective. 

Given that the development of a vaccine is time-dependent,

physicians and scientists are trying to find quick but effective treat-

ments for COVID-19. Currently available scientific reports of several

clinical trials suggest that the age-old antimalarial drugs CQ and

HCQ could be potent therapeutic agents against COVID-19. Accu-

mulating scientific reports have proposed and highlighted the pos-

sible different modes of action of CQ/HCQ, particularly against viral

infections. 

2. History of chloroquine and development of its analogues 

CQ (chloroquine phosphate), a 4-amino-quinoline, was synthe-

sised in 1934 by Hans Andersag and co-workers at Bayer Laborato-

ries and was introduced in 1945 to prevent and treat malaria. It is

a weak base that exists in protonated and unprotonated forms. Be-

fore the synthesis of CQ, the natural compound quinine from cin-

chona tree bark was used as an antimalarial agent. In 1891, Paul

Ehrlich’s group discovered methylene blue, a dye that can selec-

tively kill malaria parasites. Using chemistry and structure–activity

relationships, by changing the basic methyl group resulted in a

more effective antimalarial agent, pamaquine. Subsequent attach-

ment of the basic side chain of pamaquine to several different het-

erocyclic ring systems resulted in synthesis of the acridine deriva-

tive quinacrine, which has an extra benzene ring. Further research

resulted in the discovery of two CQ analogues, sontoquine and

primaquine, which were improved and better antimalarial drugs

[19] . Studies on these compounds then led to the discovery of

Resochin 

R ©. During World War II, investigations on Resochin 

R © led

to the synthesis of CQ. Hydroxychloroquine (HCQ) sulfate, a deriva-
ive of CQ, was first synthesised in 1946 by introducing a hydroxyl

roup onto CQ and was demonstrated to be much less (~40%) toxic

han CQ in animals [2,20] ( Fig. 1 ). It is also believed that HCQ has

ess blood–retinal barrier permeability and is less toxic to retinal

ells than CQ [21,22] . 

. Pharmacokinetic properties of hydroxychloroquine 

The pharmacokinetic properties of HCQ are similar to those of

Q, but it is reported that HCQ is less active than CQ against resis-

ant malaria parasites, leaving CQ as the only age-old drug against

alaria until the emergence of CQ-resistant malaria parasites. The

olubility of the drug and/or its analogues in water and its absorp-

ion occurs almost entirely in the digestive tract. The plasma level

f the drug and its analogues has been found to reach a peak 4–

2 h after the initial dose. The half-lives of CQ and HCQ are long,

anging from 40–50 days. CQ analogues have strong affinities to

lood constituents and are highly protein-bound, particularly to

hrombocytes and granulocytes, which reduces its plasma concen-

ration. In addition, a major fraction of CQ analogues in plasma is

ound to plasma proteins, primarily albumin [23–25] . 

. Antiviral activities of chloroquine 

Since the last decades, humans have been confronted with sev-

ral emerging and re-emerging viruses such as dengue [26–28] ,

bola [29,30] , avian influenza, severe acute respiratory syndrome

SARS) [31,32] , Middle East respiratory syndrome (MERS) [33] , hep-

titis C, chikungunya virus (CHIKV) [34,35] and human immunod-

ficiency virus (HIV) [36–39] , etc. An in vitro study revealed that

Q is effective both at entry and post-entry stages of SARS-CoV-2

nfection in Vero E6 cells [40] . 

Currently, there are no specific therapeutic strategies available

or SARS-CoV-2 infection, which causes COVID-19. Physicians, re-

earchers and scientists are involved in several clinical trials of CQ

nd/or HCQ at different stages ( Table 1 ) in search for a treatment

o curb the menace of the COVID-19 pandemic. 

. Modes of action of chloroquine/hydroxychloroquine 

CQ in its unprotonated form can easily diffuse across cell mem-

ranes to acidic vesicles in the cytoplasm [lysosomes, late endo-

omes, trans-Golgi network (TGN) vesicles] and becomes trapped

n the vesicles after being protonated. Protonated CQ is unable

o diffuse out of lysosome or endosomes, being retained in the

ellular compartments with hydrolases. As CQ and its analogues

re diprotic weak bases and its unprotonated form can selectively

nter lysosomes and become protonated in a manner inversely

roportional to pH (according to the Henderson–Hasselbalch law)

41,42] , they are known as lysosomotropic agents [43] . 

The optimal activity of hydrolases is maintained in lysosomes

nd/or the TGN with the help of H 

+ -ATPase (proton pump) activ-

ty, which maintains a pH of 5.0 inside these compartments [44] .

he lysosomal H 

+ -ATPase influxes H 

+ ions through ATP-dependent

umps, resulting in irreversible drug accumulation inside the lyso-

ome ( Fig. 2 ) from the cytoplasm because of the difference in pH.

he drug alters the acidic environment in the lysosome and, as a

esult, the cell cannot proceed systematically with endocytosis, ex-

some release or phagolysosomal fusion [45] . In addition, An et al.

46] have reported that CQ/HCQ can also hamper the interaction

etween cytosolic DNA and the nucleic acid sensor cyclic GMP-

MP synthase (cGAS) when in the cytosol [47] . 

Elevation of the lysosomal pH by CQ/HCQ hinders antigen pre-

entation, chemotaxis and proteolysis by the cell. The reduction

f antigen presentation owing to the elevation of pH by CQ/HCQ

ecreases the antigen–major histocompatibility complex (MHC),
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Fig. 1. Development of chloroquine and its analogues. 

Table 1 

Ongoing trials with chloroquine (CQ) and hydroxychloroquine (HCQ) for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection/COVID-19 as of 19 April 

2020. 

ClinicalTrials.gov ID a Title No. of participants Phase 

NCT04351724 Austrian CoronaVirus Adaptive Clinical Trial (COVID-19) 500 3 

NCT04321278 Safety and efficacy of hydroxychloroquine associated with 

azithromycin in SARS-CoV2 virus (Coalition Covid-19 Brasil II) 

440 3 

NCT04303299 Various combination of protease inhibitors, oseltamivir, favipiravir, 

and hydroxychloroquine for treatment of COVID-19: a randomized 

control trial 

320 3 

NCT04325893 Hydroxychloroquine versus placebo in COVID-19 patients at risk for 

severe disease 

1300 3 

NCT04316377 Norwegian coronavirus disease 2019 study 202 4 

NCT04330144 Hydroxychloroquine as post exposure prophylaxis for SARS-CoV-2 

(HOPE Trial) 

2486 3 

NCT04342221 Hydroxychloroquine for COVID-19 220 3 

NCT04340544 Hydroxychloroquine for the treatment of mild COVID-19 disease 2700 3 

NCT04346329 Immune monitoring of prophylactic effect of hydroxychloroquine in 

healthcare providers highly exposed to COVID-19 

86 3 

NCT04341727 Hydroxychloroquine, hydroxychloroquine, azithromycin in the 

treatment of SARS CoV-2 infection 

500 3 

NCT04346667 Post-exposure prophylaxis for asymptomatic SARS-CoV-2 COVID-19 

patients with chloroquine compounds 

400 4 

NCT04351191 Prophylaxis of exposed COVID-19 individuals with mild symptoms 

using chloroquine compounds 

400 4 

NCT04333732 CROWN CORONATION: chloroquine repurposing to health workers for 

novel coronavirus mitigation 

55 000 3 

a At ClinicalTrials.gov ( https://www.clinicaltrials.gov/ ). 
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a  
s autoantigenic peptides have low affinity for self-MHC. The re-

uced amount of self-peptide–MHC on antigen-presenting cells re-

ults in subordinate activity of other target cells as well as release

f cytokines by immune cells such as T-cells and other antigen-

resenting cells [48] . 

Moreover, CQ/HCQ causes a sporadic obligation between Toll-

ike receptor 7 (TLR7) and TLR9 and their RNA/DNA ligands ow-

ng to changing of pH towards the basic in the cellular endosomal

nvironment, which suppresses TLR signalling [47,49,50] . The im-

ending cGAS-STING (stimulator of interferon genes) pathway re-

ults in attenuation of pro-inflammatory cytokines such as tumour

ecrosis factor (TNF), interleukin-6 (IL-6) and IL-1 ( Fig. 3 ) [47,51] . 

On the other hand, enveloped viruses are trapped within the

ndoplasmic and TGN vesicles for post-translational modification

f their envelope glycoproteins. This process involves proteases and

lycosyltransferases, some of which require a low-pH environment.

y neutralising the acidic pH, CQ/HCQ is responsible for the deac-

ivation of several enzymes in the vesicles, such as glycosyltrans-

erases, which in turn is responsible for inhibition of glycosylation.

nhibition of glycosylation results in the host developing an adap-

ive immune response against the infection [48,52] and impairs
he cellular receptor angiotensin-converting enzyme 2 (ACE2) for

ARS-CoV-1 binding and blocks fusion with the host cell [22,53] . It

s believed that SARS-CoV-2 also employs the ACE2 receptor to en-

er the host cell [53–55] . Colson et al. [55] reported that the spike

S) protein of SARS-CoV-2 is cleaved in the autophagosome by host

ell proteases such as cathepsins, which can be inhibited owing to

he increased pH in the lysosome as a result of CQ accumulation. 

In addition, several studies have shown that many human

iruses, e.g. influenza virus [56] and coronavirus [57,58] , that af-

ect the respiratory tract enter cells with the help of sialic acid-

inked gangliosides [59] . In addition to the sialic acid receptor

58] and ACE2 [60] , the transmembrane serine protease 2 (TM-

RSS2) [61,62] and extracellular matrix metalloproteinase inducer

D147 (also known as basigin) [63] are under investigation regard-

ng the entry of SARS-CoV into human cells ( Fig. 4 ). 

CQ inhibits human coronavirus HCoV-O43 and orthomyx-

viruses by inhibiting sialic acid biosynthesis through inhibiting

uinine reductase-2. The viruses use sialic acid moieties as re-

eptors [23] . Considering the higher transmissibility of SARS-CoV-

, Fantini et al. have observed sialic acid-containing glycoproteins

nd gangliosides as a cell surface attachment factor by a molec-

https://www.clinicaltrials.gov/


4 S. Tripathy, B. Dassarma and S. Roy et al. / International Journal of Antimicrobial Agents 56 (2020) 106028 

Fig. 2. Schematic diagram of the role of chloroquine (CQ) and hydroxychloroquine (HCQ) in the intracellular space. The drugs increase the pH of endosomes and lysosomes. 

As a result, activation of T-cells and other cytokines is repressed. 

Fig. 3. Chloroquine (CQ) and hydroxychloroquine (HCQ) suppress DNA sensing by the cGAS-STING pathway and Toll-like receptor (TLR) signalling. 
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ular modelling study [64] . The results support that CQ and HCQ

bind readily to sialic acids with high affinity [58] and also bind to

sialic-acid containing gangliosides [64] . 

In view of the ACE2 receptor as a regulator of the contagious-

ness both for SARS-CoV [65] and SARS-CoV-2 [60] , CQ may inter-

fere with effective binding of the spike protein to the host cell by

reducing glycosylation of ACE2 [66] . 
. Clinical efficacy of chloroquine/hydroxychloroquine against 

ARS-CoV-2 

As infections and deaths due to the SARS-CoV-2 pandemic have

verwhelmed the globe faster than science can respond, hospitals

nd doctors are prescribing CQ/HCQ as a treatment for COVID-19.

he proposed use of HCQ for treating COVD-19 is based on prelim-
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Fig. 4. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) entry occurs via the angiotensin-converting enzyme 2 (ACE2), the sialic acid receptor, the transmem- 

brane serine protease 2 (TMPRSS2) and CD147. The viral spike protein binds to receptor(s) present on the cell surface of host cells and enters the cell. CQ, chloroquine. 
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(  
nary preclinical in vitro evidence where this drug showed antivi-

al properties against SARS-CoV-2 [67,68] . In these studies, CQ/HCQ

ppears to work by interfering with entry of the virus into human

ells and inhibition of virus replication. There are different views

eld by clinicians on the safety and efficacy of HCQ for treating

OVID-19. CQ/HCQ causes a multitude of serious complications in-

luding retinopathy, cardiomyopathy, neuromyopathy and myopa-

hy [2] . Use of CQ and HCQ has not been reported in acute pre-

ention, thus their efficacy is unknown, but they are indicated for

herapeutic use. 

The beneficial impact of HCQ (200 mg three times a day for

0 days) or HCQ plus azithromycin (AZM) (500 mg on Day 1 fol-

owed by 250 mg/day for the next 4 days) on viral negativity at

ay 6 was reported in a non-randomised open-label clinical trial

n France enrolling COVID-19 patients treated with HCQ (20 pa-

ients) or untreated controls (16 patients) [69] . In another study,

autret et al. reported that at Day 6 post-inclusion, 70% of pa-

ients were cured with 600 mg HCQ (200 mg three times a day

or 10 days) compared with 12.5% with patients in the control

roup ( P = 0.001) [70] . Recently, two trials in China have released

heir findings, namely NCT04261517 ( www.ClinicalTrials.gov ) (HCQ

00 mg/day for 5 days) and ChiCTR20 0 0 029559 (Chinese Clinical

rials Registry; http://www.chictr.org.cn/enindex.aspx ) (HCQ 200

g twice daily). Based on details from a Chinese clinical trial

ChiCTR20 0 0 029741), 50% efficacy of CQ phosphate (5 days) was

bserved in COVID-19 compared with 20% efficacy of combination

opinavir/ritonavir (5 days) in Chinese patients with pneumonia

71] . In a clinical study, Huang et al. found that CQ-treated patients

500 mg orally twice daily for 10 days) do better than patients

reated with lopinavir/ritonavir [72] . Consequently, CQ-treated pa-

ients have already been released from hospital. Another clinical

rial conducted with 100 Chinese patients with COVID-19 infec-

ion reported that CQ phosphate showed remarkable results both

n terms of clinical outcome and viral clearance compared with

he control group [73] . Gao et al. also reported that the drug was

ffective in inhibiting the exacerbation of pneumonia, improving

ung imaging findings, promoting virus negativity and shortening

he disease course of COVID-19 [73] . They recommended addition

t  
f the drug to guidelines for the prevention, diagnosis and treat-

ent of pneumonia caused by COVID-19 [74] . 

. Limitations of chloroquine/hydroxychloroquine against 

ARS-CoV-2 

Some preliminary non-peer-reviewed scientific reports suggest 

hat CQ/HCQ may not be beneficial for use in COVID-19. A re-

ort from Brazil warned that patients receiving high-dose CQ had

ore severe QT prolongation (heart rhythm disorder causing ar-

hythmias) and a trend towards higher mortality compared with

he low-dose CQ group [75] . At the time of their reporting, the

verall fatality rate across both arms of the study was 13.5% [75] ,

imilar to historical data from similar patients not taking CQ. In

heir study of 84 adults patients with SARS-CoV-2 treated with

CQ + AZM combination at New York University’s Langone Medical

enter, Chorin et al. found a statistically significant change in QT

rolongation from baseline; in 30% of patients the QTc increased

y > 40 ms and in 11% of patients the QTc increased to > 500

s [76] . They concluded that these patients represent a high-risk

roup for arrhythmia. They further concluded that the develop-

ent of renal failure in these patients was a cause of the extreme

T prolongation. The group is advising against the use of HCQ as a

reatment for COVID-19 [ https://www.washingtonpost.com/health/

020/05/22/hydroxychloroquine-coronavirus-study/ ]. 

Magagnoli et al. performed a retrospective analysis of data from

ARS-CoV-2-infected patients hospitalised in US Veterans Health

dministration Medical Centres in which a total of 368 patients

ere followed [77] . In this study, patients were grouped into those

eceiving HCQ alone or HCQ + AZM combination in addition to a

roup that received no treatment but standard supportive manage-

ent for COVID-19. The analysis studied two primary outcomes,

amely death and the requirement for mechanical ventilation.

he authors of this study concluded that there was no evidence

f the efficacy of HCQ alone or in combination with AZM. They

ound that mortality was higher in patients receiving HCQ alone

27.8%) and the combination of HCQ + AZM (22.1%) compared with

he group receiving no drug treatment (11.4%) [77] . According to

http://www.ClinicalTrials.gov
http://www.chictr.org.cn/enindex.aspx
https://www.washingtonpost.com/health/2020/05/22/hydroxychloroquine-coronavirus-study/


6 S. Tripathy, B. Dassarma and S. Roy et al. / International Journal of Antimicrobial Agents 56 (2020) 106028 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

the authors, they found an association with mortality in patients

treated with HCQ alone. Although these studies are small and ret-

rospective, they highlight important decision-making to not rush

into widespread recommendation of these drugs for COVID-19. 

8. Conclusion 

Considering the global health crisis of the COVID-19 pandemic,

the option of repurposing CQ and HCQ, especially HCQ, in the

treatment of SARS-CoV-2 might be a logical approach to follow.

The available scientific evidence points to the diverse mode of ac-

tions of CQ and/or HCQ that places them as a favourable choice for

COVID-19 regarding their effect both pre- and post-infection, but of

course we must pay attention to doses as well the negative effects

of CQ/HCQ on human health. However, with new evidence emerg-

ing, there is need for precautionary measures to be taken not to

rush in recommending CQ/HCQ for use in COVID-19 patients. We

must wait for results from larger prospective, randomised, dose-

determining controlled clinical trials before making clinical recom-

mendations for HCQ and indicating it for COVID-19. In the mean-

time, whilst looking for a vaccine, which may only be preventative,

in-depth but expedited responsive discovery and clinical research

is needed, including looking at traditional medicine-based thera-

pies. 
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