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Abstract Information processing in the sensory periphery is shaped by natural stimulus statistics. 
In the periphery, a transmission bottleneck constrains performance; thus efficient coding implies 
that natural signal components with a predictably wider range should be compressed. In a different 
regime—when sampling limitations constrain performance—efficient coding implies that more 
resources should be allocated to informative features that are more variable. We propose that this 
regime is relevant for sensory cortex when it extracts complex features from limited numbers of 
sensory samples. To test this prediction, we use central visual processing as a model: we show that 
visual sensitivity for local multi-point spatial correlations, described by dozens of independently-
measured parameters, can be quantitatively predicted from the structure of natural images. This 
suggests that efficient coding applies centrally, where it extends to higher-order sensory features 
and operates in a regime in which sensitivity increases with feature variability.
DOI: 10.7554/eLife.03722.001

Introduction
Sensory receptor neurons encode signals from the environment, which are then transformed by suc-
cessive neural layers to support diverse and computationally complex cognitive tasks. A normative 
understanding of these computations begins in the periphery, where the efficient coding principle—
the notion that a sensory system is tuned to the statistics of its natural inputs—has been shown to be 
a powerful organizing framework (Barlow, 2001; Simoncelli, 2002). Perhaps the best-known example 
is that of redundancy removal via predictive coding and spatiotemporal decorrelation. In insects, this 
is carried out by neural processing (Laughlin, 1981; van Hateren, 1992b); in vertebrates, fixational 
eye movements—which precede the first step of neural processing (Srinivasan et al., 1982; Atick and 
Redlich, 1990; Atick et al., 1992)—play a major role (Kuang et al., 2012). This approach was later 
extended to describe population coding, retinal mosaic structure (Barlow, 2001; Karklin and Simoncelli, 
2001; Borghuis et al., 2008; Balasubramanian and Sterling, 2009; Liu et al., 2009; Garrigan et al., 
2010; Ratliff et al., 2010; Kuang et al., 2012), adaptation of neural responses (Brenner et al., 2000; 
Fairhall et al., 2001; Schwartz and Simoncelli, 2001), and early auditory processing (Smith and 
Lewicki, 2006). Taken together, normative theories based on efficient coding have been successful in 
explaining aspects of processing in the sensory periphery that are tuned to simple statistical features 
of the natural world.

Can we extend such theories beyond the sensory periphery to describe cortical sensitivity to com-
plex sensory features? Normative theories have been successful in predicting the response properties 
of single cells, including receptive fields in V1 (Olshausen and Field, 1996; Bell and Sejnowski, 1997; 
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van Hateren and Ruderman, 1998; van Hateren and van der Schaaf, 1998; Hyvarinen and Hoyer, 
2000; Vinje and Gallant, 2000; Karklin and Lewicki, 2009) and spectro-temporal receptive fields in 
primary auditory cortex (Carlson and DeWeese, 2002, 2012), as well as distributions of tuning curves 
across individual cells in a population (Lewicki, 2002; Ganguli and Simoncelli, 2011). Some complex 
features, however, might not be represented by the tuning properties of individual cells in any direct 
way, but rather emerge from the collective behavior of many cells. Instead of trying to predict indi-
vidual cell properties, we therefore focus on the sensitivity of the complete neural population. Is there 
an organizing principle that determines how resources within the population are allocated to repre-
senting such complex features?

When the presence of complex features is predictable (i.e., can be accurately guessed from simpler 
features along with priors about the environment), mechanisms are best devoted elsewhere (See 
Discussion, van Hateren, 1992a). In contrast, sensory features that are highly variable and not predictable 
from simpler ones can serve to determine their causes (e.g., to distinguish among materials or objects), 
a first step in guiding decisions. We will show that these ideas predict a specific organizing principle for 
aggregate sensitivities arising in cortex: the perceptual salience of complex sensory signals increases 
with the variability, or unpredictability, of the corresponding signals over the ensemble of natural stimuli.

To test this hypothesis, we focus on early stages of central visual processing. Here, early visual cor-
tex (V1 and V2) is charged with extracting edges, shapes, and other complex correlations of light 
between multiple points in space (Morrone and Burr, 1988; Oppenheim and Lim, 1981; von der 
Heydt et al., 1984). We compare the spatial variation of local patterns of light across natural images 
with human sensitivity to manipulations of the same patterns in synthetic images. This allows us to 
determine how sensitivity is distributed across many different features, rather than simply determining 
the most salient ones. (We will say that a feature is more salient if it is more easily discriminated from 
white noise.) To this end, we parametrize the space of local multi-point correlations in images in terms 
of a complete set of coordinates, and we measure the probability distribution of coordinate values 
sampled over a large ensemble of natural scenes. We then use a psychophysical discrimination task 
to measure human sensitivity to the same correlations in synthetic images, where the correlations can 
be isolated and manipulated in a mathematically rigorous fashion by varying the corresponding 
coordinates (Chubb et al., 2004; Victor et al., 2005; Victor and Conte, 2012; Victor et al., 2013). 
Comparing the measurements, we show that human sensitivity to these multi-point elements of visual 

eLife digest Our senses are constantly bombarded by sights and sounds, but the capacity of 
the brain to process all these inputs is finite. The stimuli that contain the most useful information 
must therefore be prioritized for processing by the brain to ensure that we build up as complete a 
picture as possible of the world around us. However, the strategy that the brain uses to select 
certain stimuli—or certain features of stimuli—for processing at the expense of others is unclear.

Hermundstad et al. have now provided new insights into this process by analyzing how humans 
respond to artificial stimuli that contain controllable mixtures of features that found in natural 
stimuli. To do this, Hermundstad et al. selected photographs of the natural world, and measured the 
brightness of individual pixels. After adjusting images in a way that mimics the human retina, the 
brightest 50% of the pixels in each photograph were colored white and the remaining 50% were 
colored black.

Hermundstad et al. then used statistical techniques to calculate the degree to which the color of 
pixels could be used to predict the color of their neighbors. In this way, it was possible to calculate 
the amount of variation throughout the images, and then make computer-generated images in 
which pixel colorings were more or less predictable than in the natural images.

Volunteers then performed a task in which they had to locate a computer-generated pattern 
against a background of random noise. The volunteers were able to locate this target most easily 
when it contained the same kinds of patterns and features that were meaningful about natural 
images.

While this shows that the brain is adapted to prioritize features that are more informative about 
the natural world, understanding exactly how the brain implements this strategy remains a challenge.
DOI: 10.7554/eLife.03722.002
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form is tuned to their variation in the natural world. Our result supports a broad hypothesis: cortex 
invests preferentially in mechanisms that encode unpredictable sensory features that are more vari-
able, and thus more informative about the world. Namely, variance is salience.

Results
As we recently showed, some informative local correlations of natural scenes are captured by the con-
figurations of luminances seen through a ‘glider’, that is, a window defined by a 2 × 2 square arrange-
ment of pixels (Tkačik et al., 2010). We use this observation first as a framework for analyzing the local 
statistical structure of natural scenes, then to characterize psychophysical sensitivities via a set of syn-
thetic visual texture stimuli, and finally to compare the two.

Analyzing local image statistics in natural scenes
The analysis of natural scenes is schematized in Figure 1. We collect an ensemble of image patches 
from the calibrated Penn natural image database (PIDB) (Tkačik et al., 2011). We preprocess the 
image patches as shown in Figure 1A. This involves first averaging pixel luminances over a square 
region of N × N pixels, which converts an image of size L1 × L2 pixels into an image of reduced size 
L1/N × L2/N pixels. Images are then divided into R × R square patches of these downsampled pixels 
and whitened (see ‘Materials and methods’, Image preprocessing, for further details). Since the pre-
processing depends on a choice of two parameters, the block-average factor N and patch size R, we 
report results for multiple image analyses performed using the identical preprocessing pipeline but for 
various choices of N and R. After preprocessing, we binarize each patch to have equal numbers of 
black and white pixels (black = −1, white = +1). We characterize each patch by the histogram of 16 
binary colorings (22×2) seen through a square 2 × 2 pixel glider (Figure 1B). Translation invariance 
imposes constraints on this histogram, reducing the number of degrees of freedom to 10 (Victor and 
Conte, 2012). These degrees of freedom can be mapped to a set of image statistic coordinates that 
separates correlations based on their order: (i) one first-order coordinate, γ, describes overall lumi-
nance, (ii) four second-order coordinates, |{β , β

–

, β
/
, β \

}, describe two-point correlations between 
pixels arranged vertically, horizontally, or diagonally, (iii) four third-order coordinates, {θ


, θ, θ, θ}, 

describe three-point correlations between pixels arranged into ⌞-shapes of different orientations, 
and (iv) one fourth-order coordinate, α, describes the single four-point correlation between all four 
pixels in the glider (Figure 1C). The binarization step of the preprocessing pipeline forces γ to zero, 
leaving nine coordinates. Each image patch is thus characterized by a vector of coordinate values 

{ }| -β β β β θ θ θ θ α/ \, , , , , , , ,    , that is, a point within the multidimensional space of image statistics. 
Accumulating these points across patches yields a multidimensional probability distribution that 
characterizes the local correlations in natural scenes (schematized in Figure 1D). A total of 724 images 
(up to 249780 patches, depending on the choice of N and R), was used to construct this distribution.

To summarize this distribution, we compute the degree of variation (standard deviation) along each 
coordinate axis (Figure 1E). As is shown, the degree of variation along different coordinate axes exhib-
its a characteristic rank-ordering, given by { } { } { }| / \, , , , ,β β β β α θ θ θ θ− > > >     ; that is, the most vari-
able correlations are pairwise correlations in the cardinal directions, followed by pairwise correlations 
in the oblique directions, followed by fourth-order correlations. Interestingly, third-order correlations 
are the least variable across image patches. An analogous analysis performed on white noise yields a 
flat distribution with considerably smaller standard deviation values (See ‘Materials and methods’, 
Analysis variants for Penn Natural Image Database, and Figure 1—figure supplement 3 for compar-
ison), and performing the analysis on a colored Gaussian noise (e.g. 1/

k
f  spectrum) would also yield a 

flat distribution because of the whitening stage in the image preprocessing pipeline. These (and subse-
quent) findings are preserved across different choices of image analysis parameters (shown in Figure 1E 
for block-average factors N = 2, 4 and patch sizes R = 32, 48, 64; see ‘Materials and methods’, Analysis 
variants for Penn Natural Image Database, and Figure 3—figure supplement 5A for a larger set 
of parameters) and also across other collections of natural images (see ‘Materials and methods’, 
Comparison with van Hateren Database, and Figure 3—figure supplement 5B for a parallel analysis 
of the van Hateren image dataset (van Hateren and van der Schaaf, 1998), which gives similar results).

Characterizing visual sensitivity to local image statistics
To characterize perceptual sensitivity to different statistics, we isolated them in synthetic visual images 
and used a figure/ground segmentation task (Figure 2B). We used a four-alternative forced-choice 
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Figure 1. Extracting image statistics from natural scenes. (A) We first block-average each image over N × N pixel 
squares, then divide it into patches of size R × R pixels, then whiten the ensemble of patches by removing the 
average pairwise structure, and finally binarize each patch about its median intensity value (see ‘Materials and 
methods’, Image preprocessing). (B) From each binary patch, we measure the occurrence probability of the  
16 possible colorings as seen through a two-by-two pixel glider (red). Translation invariance imposes constraints 
between the probabilities that reduce the number of degrees of freedom to 10. (C) A convenient coordinate 
basis for these 10° of freedom can be described in terms of correlations between pixels as seen through the 
glider. These consist of one first-order coordinate (γ), four second-order coordinates (

–

β β β β/ \, , ,| ), four third-order 
coordinates (    θ θ θ θ, , , ), and one fourth-order coordinate (α). Since the images are binary, with black = −1 and 
white = +1, these correlations are sums and differences of the 16 probabilities that form the histogram in panel B 
(Victor and Conte, 2012). (D) Each patch is assigned a vector of coordinate values that describes the histogram 
shown in (B). This coordinate vector defines a specific location in the multidimensional space of image statistics. 
The ensemble of patches is then described by the probability distribution of coordinate values. We compute the 
degree of variation (standard deviation) along different directions within this distribution (inset). (E) Along single 

coordinate axes, we find that the degree of variation is rank-ordered as { } { } { }| – / \, > , > > , , ,   β β β β α θ θ θ θ , shown 

separately for different choices of the block-average factor N and patch size R used during image preprocessing.
DOI: 10.7554/eLife.03722.003
The following figure supplements are available for figure 1:

Figure supplement 1. Two-component decomposition of natural image distribution. 
DOI: 10.7554/eLife.03722.004

Figure supplement 2. Filtering via defocus or motion blur reassigns sharp image patches to the ‘blurry’ 
component. 
DOI: 10.7554/eLife.03722.005

Figure supplement 3. Image statistics along single coordinate axes for white-noise patches. 
DOI: 10.7554/eLife.03722.006
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task in which stimuli consisted of a textured target and a binary noise background (or vice-versa). Each 
stimulus was presented for 120ms and was followed by a noise mask. Subjects were then asked to 
identify the spatial location (top, bottom, left, or right) of the target. Experiments were carried out for 
synthetic stimuli in which the target or background was defined by first varying image statistic coordi-
nates independently (Figure 2A shows examples of gamuts from which stimuli are built). Along each 
coordinate axis, threshold (1/sensitivity) was defined as the coordinate value required to support a 
criterion level of performance (Figure 2C, inset). We then performed further experiments in which the 
target or background was defined by simultaneously varying pairs of coordinates. For measurements 
involving each coordinate pair (to which we will refer as a ‘coordinate plane’), we traced out an isodis-
crimination contour (Figure 2C) that describes the threshold values not only along the cardinal direc-
tions, but also along oblique directions. Measurements were collected for four individual subjects in 
each of 11 distinct coordinate planes (representing all distinct coordinate pairs up to 4-fold rotational 
symmetry; see ‘Materials and methods’, Psychophysical methods, for further details). Each subject 
performed 4320 judgements per plane, for a total of 47,520 trials per subject.

Figure 2D shows perceptual sensitivities measured along each coordinate axis. For each of four 
subjects, a similar pattern emerges for sensitivities as was observed for variation in natural image sta-
tistics: sensitivities are rank-ordered as { } { } { }| / \, , , , ,β β β β α θ θ θ θ− > > >     .

Note that the difference between the sensitivities in the horizontal and vertical directions (β− and |β ) 
vs the diagonal directions (

\
β  and /

β ) is not simply an ‘oblique effect’, that is, a greater sensitivity to 
cardinally- vs obliquely-oriented contours (Campbell et al., 1966). Horizontal and vertical pairwise 
correlations differ from the diagonal pairwise correlations in more than just orientation: pixels involved 
in horizontal and vertical pairwise correlations share an edge, while pixels involved in diagonal pairwise 
correlations only share a corner. Correspondingly, the difference in sensitivities for horizontal and ver-
tical correlations vs diagonal correlations is approximately 50%, which is much larger than the size of 
the classical oblique effect (10–20%) (Campbell et al., 1966).

Natural scenes predict human sensitivity along single coordinates
Figures 1E and 2D show a rank-order correspondence between natural image statistics and percep-
tual sensitivities. This qualitative comparison can be converted to a quantitative one (Figure 3A), as a 
single scaling parameter aligns the standard deviation of natural image statistics with the corre-
sponding perceptual sensitivities. In this procedure, each of the six image analyses is scaled by a single 
multiplicative factor that minimizes the squared error between the set of standard deviations and 
the set of subject-averaged sensitivities (see ‘Materials and methods’, Image preprocessing, and 
Figure 3—figure supplement 1 for additional details regarding scaling). The agreement is very good, 
with the mismatch between image analyses and human psychophysics comparable to the variability 
from one image analysis to another, or from one human subject to another.

We quantify the correspondence between image analyses and psychophysical analyses by com-
puting the scalar product between the normalized vector of standard deviations (extracted separately 
from each image analysis) and the normalized vector of subject-averaged sensitivities (extracted 
from the set of psychophysical analyses). A value of 1 indicates perfect correspondence, and 0 indi-
cates no correspondence. This value ranges from 0.987 to 0.999 across image analyses and is consist-
ently larger than the value measured under the null hypothesis that the apparent correspondence 
between statistics and sensitivities is chance (p ≤ .0003 for each image analysis; see Tables 1–2 and 
‘Materials and methods’, Permutation tests, for details regarding statistical tests).

These findings support our hypothesis that human perceptual sensitivity measured along single 
coordinate axes (assessed using synthetic binary textures) is predicted by the degree of variation along 
the same coordinate axes in natural scenes.

Natural scenes predict human sensitivity to joint variations of all pairs 
of coordinates
The correspondence shown in Figure 3A considers each image statistic coordinate in isolation. 
However, it is known that image statistics covary substantially in natural images (as diagrammed in 
Figure 1D) and also that they interact perceptually (as diagrammed in Figure 2C). When pairs of 
natural image statistics covary, thus sampling oblique directions not aligned with the coordinate axes 
in the space of image statistics, our hypothesis predicts that human perceptual sensitivity is matched 
to both the degree and the direction of that covariation (we are referring here to the orientation of a 

http://dx.doi.org/10.7554/eLife.03722
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distribution in the coordinate plane of a pair of image statistics, and not to an orientation in physical 
space). To test this idea, we proceeded as follows.

First, we fit the distribution of image statistics with a multidimensional Gaussian. When pro-
jected into pairwise coordinate planes, the isoprobability contours of this Gaussian capture the 
in-plane shape and orientation of the covariation of the distribution. Along single coordinate axes, 
the variation in natural image statistics predicts human perceptual sensitivities, as we have shown 
(Figure 3A). More generally, we would predict that sensitivity should be be high along directions in 
which the distribution of natural image statistics has high standard deviation, because in those direc-
tions, the position of a sample cannot be guessed. Within coordinate planes, the quantitative state-
ment of this idea is that the inverse covariance matrix, or precision matrix, predicts perceptual 
isodiscrimination contours. Sensitivity is expected to be low (and therefore threshold high) along 

Figure 2. Measuring human sensitivity to image statistics. (A) Synthetic binary images can be created that contain 
specified values of individual image statistic coordinates (as shown here) or specified values of pairs of coordinates 
(Victor and Conte, 2012). (B) To measure human sensitivity to image statistics, we generate synthetic textures with 
prescribed coordinate values but no additional statistical structure, and we use these synthetic textures in a figure/
ground segmentation task (See Victor and Conte, 2012 and ‘Materials and methods’, Psychophysical methods). 
(C) For measurements along coordinate axes, test stimuli are built out of homogeneous samples drawn from the 
gamuts shown in A (e.g. the target shown in B was generated from the portion of the gamut indicated by the red 
arrow in A; See ‘Materials and methods’, Psychophysical methods, and Victor et al., 2005; Victor and Conte, 
2012; Victor et al., 2013). We assess the discriminability of these stimuli from white noise by measuring the 
threshold value of a coordinate required to achieve performance halfway between chance and perfect (inset).  
A similar approach is used to measure sensitivity in oblique directions; here, two coordinate values are specified  
to create the test stimuli. The threshold values along the axes and in oblique directions define an isodiscrimination 
contour (red dashed ellipse, main panel) in pairwise coordinate planes. (D) Along individual coordinate axes, we 

find that sensitivities (1/thresholds) are rank-ordered as { } { } { }   β β β β α θ θ θ θ| – / \, > , > > , , , , shown separately for 

four individual subjects. A single set of perceptual sensitivities is shown for ( )β β| –, , ( )β β
/ \
, , and ( )   θ θ θ θ, , , , since 

human subjects are equally sensitive to rotationally-equivalent pairs of second-order coordinates and to all 
third-order coordinates (Victor et al., 2013).
DOI: 10.7554/eLife.03722.007
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Figure 3. Variation in natural images predicts human perceptual sensitivity. (A) Scaled degree of variation (standard 
deviation) in natural image statistics along second- (β), third- (θ), and fourth-order (α) coordinate axes (blue circular 
markers) are shown in comparison to human perceptual sensitivities measured along the same coordinate axes 
(red square markers). Degree of variation in natural image statistics is separately shown for different choices of the 
block-average factor (N) and patch size (R) used during image preprocessing. Perceptual sensitivities are separately 
shown for four individual subjects. As in Figure 2C,A single set of perceptual sensitivities is shown for ( )β β| –, , 

( )β β
/ \
, , and ( )   θ θ θ θ, , , . (B) For each pair of coordinates, we compare the precision matrix (blue ellipses) extracted 

from natural scenes (using N = 2, R = 32) to human perceptual isodiscrimination contours (red ellipses). Coordinate 
planes are organized into a grid. The set of ellipses in each pairwise plane is scaled to maximally fill each portion of 
the grid; agreement between the variation along single coordinate axes and the corresponding human sensitivities 
(shown in A) guarantees that no information is lost by scaling. Across all 36 coordinate planes, there is a correspond-
ence in the shape, size, and orientation of precision matrix contours and perceptual isodiscrimination contours. 
(C) Quantitative comparison of a single image analysis (N = 2, R = 32) with the subject-averaged psychophysical 
data. For single coordinates depicted in A, we report the standard deviation in natural image statistics (upper row) 
and perceptual sensitivities (middle row). For sets of coordinate planes depicted in (B), we report the (average 
eccentricity, angular tilt) of precision matrix contours from natural scenes (upper row) and isodiscrimination 
contours from psychophysical measurements (middle row). The degree of correspondence between predictions 
derived from natural image data and the psychophysical measurements can be conveniently summarized as a scalar 
product (see text), where 1 indicates a perfect match. In all cases, the correspondence is very high (0.938–0.999) 
and is highly statistically significant (p ≤ 0.0003 for both single coordinates and pairwise coordinate planes; see 
‘Materials and methods’, Permutation tests, for details).
DOI: 10.7554/eLife.03722.008
The following figure supplements are available for figure 3:

Figure supplement 1. Scaling of natural image analyses. 
DOI: 10.7554/eLife.03722.009

Figure supplement 2. Covariation in natural image statistics predicts human isodiscrimination contours. 
DOI: 10.7554/eLife.03722.010

Figure supplement 3. Principal axes of variation in natural images predict principal axes of perceptual sensitivity. 
DOI: 10.7554/eLife.03722.011

Figure supplement 4. Mapping ellipse shapes to the quarter unit sphere. 
DOI: 10.7554/eLife.03722.012

Figure supplement 5. Single coordinate axes: variation in natural images predicts human perceptual sensitivities. 
DOI: 10.7554/eLife.03722.013
Figure 3. Continued on next page

http://dx.doi.org/10.7554/eLife.03722
http://dx.doi.org/10.7554/eLife.03722.008
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http://dx.doi.org/10.7554/eLife.03722.010
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directions in which the precision matrix has a high value and the position of a sample can be guessed 
a priori.

Results in each coordinate plane are shown in Figure 3B. Across all subjects and all coordinate 
planes, we find that the shape and orientation of perceptual isodiscrimination contours (red ellipses) 
are predicted by the distribution of image statistics extracted from natural scenes (blue ellipses). As 
in Figure 3A, the correspondence is very good, with mismatch that is comparable to the variability 
observed across image analyses and across subjects.

To quantify the correspondence between natural image and psychophysical analyses, we describe 
each ellipse by a single vector ω  that combines information about shape (eccentricity) and orientation 
(angular tilt), and we compute the scalar product between the image analysis vector 

NI
ω  and the sub-

ject-averaged psychophysical vector 
PP
ω . This value, averaged across coordinate planes, ranges from 

0.953 to 0.977 across image analyses. We compared this correspondence to that obtained under the 
null hypotheses that (i) the apparent correspondence between image statistic covariances and isodis-
crimination contours is chance, or (ii) the apparent covariances in image statistics are due to chance. 
The observed correspondence is much greater than the value measured under either null hypothesis 
(p ≤.0003 for each image analysis under both hypotheses; see ‘Materials and methods’, Analysis of 
image statistics in pairwise coordinate planes, and Figure 3—figure supplement 2 for comparisons of 
eccentricity and tilt, and Tables 1–3 and ‘Materials and methods’, Permutation tests, for statistical tests).

These findings confirm that the shape and orientation of human isodiscrimination contours, meas-
ured across all pairwise combinations of coordinates, can be quantitatively predicted from the covari-
ation of image statistics extracted from natural scenes. The observed correspondence is maintained 
within the full 9-dimensional coordinate space (see ‘Materials and methods’, Analysis of the full 
9-dimensional distribution of image statistics, and Figure 3—figure supplement 3 for principal com-
ponent analyses, and Tables 1–3 and ‘Materials and methods‘, Permutation tests, for statistical tests), 
confirming that our hypothesis describes human sensitivity in the full 9-dimensional space of local 
image statistics extracted from natural scenes.

Discussion
How should neural mechanisms be distributed to represent a diverse set of informative sensory fea-
tures? We argued that, when performance requires inferences limited by sampling of the statistics of 
input features, resources should be devoted in proportion to feature variability. A basic idea here is 
that features that take a wider range of possible values are less predictable, and will better distinguish 
between contexts in the face of input noise. We used this hypothesis to successfully predict human 
sensitivity to elements of visual form arising from spatial multi-point correlations in images. This result 
is notable for several reasons. First, we successfully predicted dozens of independent parameters that 
describe human perceptual sensitivity. The only free parameter was a scale that converted between 
perceptual sensitivities and natural image statistics. Moreover, predictions about the rank ordering of 
sensitivities (Figure 3A) and the shape and orientation of isodiscrimination contours (Figure 3B) do 
not even require a scale factor. Second, the theoretical predictions and their psychophysical test were 
derived from two very different sources. Psychophysical stimuli consisted of mathematically-defined 
synthetic binary textures with precisely-controlled correlational structure that is unlikely to occur out-
side of the laboratory. In contrast, the efficient coding predictions were derived from calibrated 

Figure supplement 6. Pairwise coordinate planes in Penn Natural Image Database: covariation in natural images 
predicts human isodiscrimination contours. 
DOI: 10.7554/eLife.03722.014

Figure supplement 7. Pairwise coordinate planes in van Hateren Image Database: covariation in natural images 
predicts human isodiscrimination contours. 
DOI: 10.7554/eLife.03722.015

Figure supplement 8. Principal axes of variation across natural images predict principal axes of human perceptual 
sensitivity in the full coordinate space. 
DOI: 10.7554/eLife.03722.016

Figure supplement 9. Asymmetries in natural image statistics. 
DOI: 10.7554/eLife.03722.017

Figure 3. Continued
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photographs of natural scenes in which many types of correlations are simultaneously present. Third, 
predictions refer to multi-point (and not just pairwise) correlations, which are critical for defining local 
features such as lines and edges (Oppenheim and Lim, 1981; Morrone and Burr, 1988). In contrast, 
previous normative theories have have mainly focused on explaining the linear receptive fields of neu-
rons in primary visual (Olshausen and Field, 1996; Bell and Sejnowski, 1997; van Hateren and 
Ruderman, 1998; van Hateren and van der Schaaf, 1998; Hyvarinen and Hoyer, 2000; Vinje and 
Gallant, 2000; Karklin and Lewicki, 2009) and auditory cortex (Carlson and DeWeese, 2002, 2012), 
or on deriving symmetry- and coverage-based mesoscopic models of cortical map formation in V1 
(Wolf and Geisel, 1998; Swindale et al., 2000; Kaschube et al., 2011). Finally, the efficient coding 
prediction of greater sensitivity to more variable multipoint correlations is closely tied to the statistical 
structure of natural visual images. Specifically, this regime applies to highly variable multipoint correla-
tions that cannot be predicted from simpler ones. Some other multipoint correlations (defined on 
configurations other than a 2 × 2 glider) are also highly variable, but they are predictable from simpler 
correlations. For these multipoint correlations, visual sensitivity is very low (Tkačik et al., 2010), and 
efficient coding is not applicable in the form proposed here.

In sum, the surprising predictive power and the high statistical significance of our results provide 
strong support for the proposed application of the efficient coding hypothesis to cortical processing 
of complex sensory features.

Perceptual salience of multi-point correlations likely arises in cortex
Although we did not record cortical responses directly, several lines of evidence indicate that that the 
perceptual thresholds we measured are determined by cortical processes. First, the stimuli had high 
contrast (100%) and consisted of pixels that were readily visible (14 arcmin), so retinal limitations of 
contrast sensitivity and resolution were eliminated. Second, the task requires pooling of information 
over wide areas (100–200 pixels, that is, a region whose diameter is 10–15 times the width of an image 
element; see Figure 7 in Victor and Conte, 2005). Retinal receptive fields are unlikely to do this, as 
the ratio of their spatial extent (surround size) to their resolution (center size) is typically no more than 
4:1 (Croner and Kaplan, 1995; Kremers et al., 1995). Third, to account for the specificity of sensitivity 
to three- and four-point correlations, a cascade of two linear-nonlinear stages is required (Victor and 
Conte, 1991); retinal responses are quite well-captured by a single nonlinear stage (Nirenberg and 
Pandarinath, 2012), and cat retinal populations show no sensitivity to the four-point correlations stud-
ied used here (Victor, 1986) while simultaneous cortical field potentials do. Conversely, macaque 
visual cortical neurons (Purpura et al., 1994), especially those in V2, manifest responses to three- and 
four-point correlations (Yu et al., 2013).

Cortex faces a different class of challenges than the sensory periphery
Successive stages of sensory processing share the same broad goals: invest resources in encoding 
stimulus features that are sufficiently informative, and suppress less-informative ones. In the periphery, 
this is exemplified by the well-known suppression of very low spatial frequencies; in cortex, this is 
exemplified by insensitivity to high-order correlations that are predictable from lower-order ones. 
Previous work has shown that such higher-order correlations can be separated into two groups—
informative and uninformative—and only the informative ones are encoded (Tkačik et al., 2010). We 
used this finding to select an informative subspace for the present study, and we asked how resources 
should be efficiently allocated amongst features within this informative subspace.

A simple model of efficient coding by neural populations is shown in Figure 4A (details in ‘Materials 
ans methods’, Two regimes of efficient coding). Here, to enable analytical calculations, we used linear 
filters of variable gain and subject to Gaussian noise to model a population of neural channels encod-
ing different features. The optimal allocation of resources to maximize information transmitted by the 
population depends on the amount of input noise, the amount of output noise, the input signal varia-
bility, and the total resources available to the system, here quantified as a constraint on the total out-
put power (i.e., sum of response variances) in the neural population. The constrained output power 
and the output noise together determine the ‘bandwidth’ of the system—that is, the expressive 
capacity of its outputs. Consider a neural population with input noise, output noise, and a fixed amount 
of output power. We find that when input signal variability is sufficiently large compared to the input 
noise, the gain of neurons should decrease with the variance of the input (regions to the right of the 
peaks in the right-hand panel of Figure 4A). This is a regime where the output bandwidth is low 

http://dx.doi.org/10.7554/eLife.03722
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Figure 4. Regimes of efficient coding. (A) To analyze different regimes of efficient coding, we consider a set of channels, where the th
k  channel carries an 

input signal with variability 
k
s . Gaussian noise is added to the input. The result is passed through a linear filter with gain | |

k
L , and then Gaussian noise is 

added to the filter output. We impose a constraint on the total power output of all channels, that is, a constraint on its total resources. With these 
assumptions, the set of gains that maximizes the transmitted information can be determined (see ‘Materials and methods’, Two regimes of efficient 
coding, and (van Hateren, 1992a; Doi and Lewicki, 2011; Doi and Lewicki, 2014)). This set of gains depends on the relative strengths of input and 
output noise and on the severity of the power constraint, quantified here by the dimensionless parameter Λ  (right-hand panel). As Λ  decreases from  
1 to 0, the system moves from a regime in which output noise is limiting to one in which input noise is limiting. (B) The efficient coding model applied to 
the sensory periphery. Raw luminances from natural images are corrupted with noise (e.g. shot noise resulting from photon incidence) and passed 
through a linear filter. The resulting signal is carried by the optic nerve, which imposes a strong constraint on output capacity. In the bandwidth limited 
case where output noise dominates over input noise (e.g., under high light conditions when photon noise is not limiting), the optimal gain decreases as 
signal variability increases. Since channel input and channel gain vary reciprocally, channel outputs are approximately equalized, resulting in a ‘whiten-
ing’, or decorrelation. (C) The efficient coding model applied to cortical processing. Informative image features resulting from early cortical processing, 
caricatured by our preprocessing pipeline as applied to the retinal output, are sampled from a spatial region of the image. This sampling acts as a kind 
of input noise, because it only provides limited count-based estimates for the true statistical properties of the image source. When this input noise is 
limiting, the optimal gain increases as signal variability increases. Rather than whiten, the output signals preserve the correlational structure of the input. 
Note that in both regimes (B) and (C), there is a range of signals that are not encoded at all. These are the signals that are not sufficiently informative to 
warrant an allocation of resources.
DOI: 10.7554/eLife.03722.018
The following figure supplements are available for figure 4:

Figure supplement 1. Schematic representation of channel optimization problem. 
DOI: 10.7554/eLife.03722.019

Figure supplement 2. Optimal coding regimes. 
DOI: 10.7554/eLife.03722.020

Figure supplement 3. Noise-dependent transition between efficient coding regimes. 
DOI: 10.7554/eLife.03722.021

Figure supplement 4. Optimal filter shape and orientation. 
DOI: 10.7554/eLife.03722.022
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compared to the input range, and efficient coding predicts that signals should be ‘whitened’ by equal-
izing the variance in different channels. Conversely, consider input signals with a smaller range, which 
are thus more disrupted by input noise. In this case, the gain of neurons should increase with the var-
iance of the input (regions to the left of the peaks in the right-hand panel of Figure 4A). This is a 
regime where the input noise dominates, and efficient coding predicts that the system should invest 
more resources in more variable, and hence more easily detectable, input signals. The relative sizes of 
input and output noise (controlled by Λ in Figure 4A) determines the input ranges over which the two 
qualitatively different regimes of efficient coding apply.

To make these abstract considerations concrete, we first considered coding in the sensory periphery. 
A common strategy employed in the periphery is ‘whitening’, where relatively fewer resources are 
devoted (yielding lower gain) to features with more variation (Olshausen and Field, 1996). As an 
example, within the spatial frequency range that the retina captures well, sensitivity is greater for high 
spatial frequencies than for low ones, that is, sensitivity is inversely related to the degree of variation 
in natural scenes (the well-known 2

1/ f  power spectrum [Olshausen and Field, 1996]). Figure 4B illus-
trates how this strategy can emerge from the simple efficient coding scheme discussed above as applied 
to peripheral sensory processing. Spatiotemporal correlations of light undergo filtering before passing 
through the optic nerve bottleneck (a constraint on bandwidth). Such a constraint on bandwidth is 
equivalently understood as a regime where output noise is relatively large compared to input noise. 
In this limit, where output noise dominates over input noise, the optimal strategy is whitening (See 
Srinivasan et al., 1982 and Figure 4A). Of course, real neural systems contend with both input and 
output noise; indeed recent work has shown that simply whitening to deal with output noise underes-
timates the optimal performance that the sensory periphery can achieve (Doi and Lewicki, 2014).

An alternative regime arises when input noise limits performance. In this regime, relatively more 
resources are devoted to features with more variation. This regime was discussed in early work of 
van Hateren, (1992a) and was also recognized in (Doi and Lewicki, 2011, 2014), although it has 
received much less attention than the ‘whitening’ regime. Our results suggest that this is the regime is 
relevant to cortex, where it predicts the relative allocation of resources to higher-order image statis-
tics. Figure 4C illustrates the simple efficient coding scheme in this context. We use our image pre-
processing pipeline to mimic early visual processing, and we consider the downstream coding of 
higher-order image features. Because these features must be sampled from a finite patch of an 
image, they are subject to input noise arising from fluctuations in statistical estimation. When such 
input noise is limiting, the ability to detect a signal from noise increases with the variability of that 
signal. In this limit, efficient coding predicts that resources should be allocated in proportion to fea-
ture variability (Figure 4C). This captures the intuition that when signal reliability is in question, more 
reliable signals warrant more resources. Furthermore, if two or more channels have covarying sig-
nals, resources should be devoted in relation to the direction and degree of maximum covariance 
(see ‘Materials and methods’, Two regimes of efficient coding, Figure 4—figure supplement 3, and 
Figure 4—figure supplement 4).

The difference between these two efficient coding regimes is a consequence of the form of noise—
output vs input noise—that is limiting. Our finding that cortex operates in a different regime than the 
well-known peripheral whitening reflects the fact that different stages and kinds of processing can 
face different constraints. While information transmission by the visual periphery is limited by a bottle-
neck in the optic nerve, cortex faces no such transmission constraint. Furthermore, while faithful 
encoding may be an immediate goal of early visual processing, cortical circuits have to interpret image 
features from a complex and crowded visual scene and perform statistical inference. For example, to 
discriminate between various textures, the cortex cannot perform pixel-by-pixel comparisons, but must 
rely on the estimation of local correlations (image statistics) instead. Because these correlations must be 
sampled from a finite patch of the visual scene, any estimate will be limited by sampling fluctuations.

Sampling constraints vs resource constraints
Sampling fluctuations constitute a source of input noise, the magnitude of which depends on the size 
of the sampled region. For natural images, this gives rise to a tradeoff: small regions lead to large 
fluctuations in the estimated statistics, while large regions blur over local details. This blurring may 
obscure the boundaries between objects with different surface properties. While the brain must imple-
ment such sampling, the size, scale, and potentially dynamic nature of the sampling region is not 
known. Interestingly, our predictions of human sensitivities do not change substantially over a wide 
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range of spatial scales and image patch sizes, perhaps reflecting a scaling property of natural images 
(Stephens et al., 2013). An avenue for future research is to determine whether there is an optimal 
region size, and if so, whether it could be estimated from images themselves.

Sampling limitations alone do not suffice to account for the observed differential sensitivity of the 
brain to local image statistics. Were sampling limitations the only consideration, perceptual sensitivity 
would be the same along each coordinate axis, and perceptual isodiscrimination contours would be 
circular in each coordinate plane. This follows from an ideal observer calculation (See Appendix B of 
Victor and Conte, 2012). In contrast, we find that human observers have a severalfold variability in 
sensitivity along different coordinate axes (Figure 3A) and have isodiscrimination contours that are 
elongated in oblique directions (Figure 3B). The efficient coding principle can account for these find-
ings by taking into consideration the fact that a real observer has finite processing resources. In this 
context (finite resources and substantial input noise), the efficient coding principle predicts that 
resources are invested in relation to the range of signal values that are typically present (van Hateren, 
1992a), as we find. Interestingly, resource limitations seem to play an important role in the cortex 
despite the vast expansion in the number of neurons compared to the optic nerve. Presumably, this 
reflects the large number of complex features that could be computed and the corresponding need 
for a large overrepresentation of the stimulus space (Olshausen and Field, 1997).

Clues to neural mechanisms
While we find a close match between the variation in natural image statistics and human psychophys-
ical performance, some aspects of the distribution of natural image statistics do not match psycho-
physical data.

These differences are not readily apparent when we examine the variances and covariances 
(Figure 3) of the distribution of natural image statistics but emerge only when one considers its 
detailed shape (see ‘Materials and methods’, Asymmetries in distributions of natural image statistics). 
For example, the distribution of α-coordinate values has a longer tail in the positive vs negative direc-
tion (see Figure 3—figure supplement 9 and (Tkačik et al., 2010)). In contrast, human perceptual 
sensitivity is symmetric, or very nearly so (within 20%∼ ), for positive vs negative values of α (Victor 
et al., 2005; Victor and Conte, 2012; Victor et al., 2013). This suggests that limitations imposed by 
‘neural hardware’ force the system to use heuristics instead of matching the natural image distribu-
tion exactly. For example, an opponent mechanism responsible for detecting variations along, exam-
ple, the α coordinate, might be a useful and easy (although imperfect) way to process the asymmetric 
distribution of four-point correlations found in natural scenes. Such a mechanism could be matched to 
the variance of the natural image distribution along the α coordinate, but not to its skew or other odd 
moments. An opponent mechanism would necessarily give rise to equal sensitivities to positive vs 
negative values of α, as observed in psychophysical results. Further study of deviations from a per-
fect match to the distribution of natural image statistics might provide additional insight into these or 
other possible neural mechanisms, and into the goals of the computations. Independently, our results 
also raise an interesting theoretical question about the optimal representation of non-gaussian, multi-
dimensional signals under resource-limited conditions.

Outlook
Looking forward, we hypothesize that the principle of efficient coding might apply to cortical pro-
cessing at higher levels. For example, more complex image features, such as shapes, are represented 
as conjunctions of contour fragments (Brincat and Connor, 2004), where each contour fragment is a 
local image object defined by particular multi-point correlations. We might speculate that the joint 
statistics of contour fragments in natural scenes can predict, through appropriate formulation of the 
same efficient coding principle used here, the properties of neurons in area IT (Hung et al., 2012; 
Yau et al., 2012) or the associated perceptual sensitivities of human observers.

Finally, although we have focused on perception of image statistics, we do this with the premise 
that this process is in the service of inferring the materials and objects that created an image and 
ultimately, guiding action. Thus, it is notable that we found a tight correspondence between visual 
perception and natural scene statistics without considering a specific task or behavioral set. Indeed, 
the emergence of higher-order percepts without explicit task specification was the original hope of 
the efficient coding framework as first put forward by Barlow and Attneave (Attneave, 1954; 
Barlow, 1959, 1961). Doubtless, these ‘top-down’ factors also influence the visual computations 
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that underlie perception, and the nature and site of this influence are an important focus of future 
research.

Materials and methods
Image preprocessing
UPenn Natural Image Database
A database of images was collected in the Okavango Delta, a savannah habitat of Botswana (Tkačik 
et al., 2011). Panoramic, eye-level shots were taken with a Nikon D70 camera during the dry season 
in midday illumination. Trichromatic images were then converted to equivalent log-luminance images. 
From this database, we selected a set of 924 images with minimal amounts of sky (see following 
paragraph).

Image selection
Natural images were taken from two different databases: the UPenn Natural Image Database (shown 
Figures 1 and 3) and the van Hateren Natural Image Dataset (shown in ‘Materials and methods’, 
Comparison with van Hateren Database). Images from the UPenn Natural Image Database were 
selected by hand to ensure that they contained no man-made objects. We required that images con-
tained minimal (less that one-third of the total image area) amounts of sky, as the contribution of 
sky to the overall power spectrum of natural images is well-documented (Torralba and Oliva, 2003) 
and is not the focus of the present study. Images from the van Hateren Natural Image Dataset were 
chosen subject to the additional constraint that scenery which was clearly the result of human land-
scaping (e.g. trees all in a line) be excluded. The analyses presented here were performed using the 
logarithms of the pixel intensities, a standard procedure in the study of natural images (Ruderman 
and Bialek, 1994). However, the results were unchanged if absolute pixel intensities were used 
instead. For more details about the construction of the images from these sources, see (Tkačik et al., 
2011) (UPenn dataset) and http://www.kyb.tuebingen.mpg.de/?id=227 (van Hateren dataset).

Block averaging
Images of size L1 × L2 are block-averaged by a factor of N, which involves averaging the intensities 
of pixels arranged into contiguous N × N squares. The resulting image is of size L1/N × L2/N. To the 
extent that natural images are scale invariant (a well-supported hypothesis (Field, 1987; Ruderman, 
1997; Stephens et al., 2013)), this procedure leaves the underlying statistics invariant. In our analy-
ses, we block average images by at least a factor of two (thereby eliminating the Nyquist frequen-
cies) in order to avoid sampling artifacts imposed by the camera matrix during image acquisition. In 
Figures 1 and 3, we presented two values of N: N = 2, 4. In ‘Materials and methods’, Analysis variants 
for Penn Natural Image Database, we show that our results are consistent when N is extended to 
include N = 8, 12, 16, 20.

Fourier whitening
We divide each block-averaged image into square R × R patches. In Figures 1 and 3, we presented results 
using three values of R: R = 32, 48, 64. In ‘Materials and methods’, Analysis variants for Penn Natural 
Image Database, we show that our results are consistent when R is extended to include R = 80, 128.

To remove global correlations in natural images, we whiten the set of image patches by flattening 
the Fourier power spectrum of the image patch ensemble. This procedure removes expected ensem-
ble-average (and thus predictable) pairwise correlations, but non-zero pairwise correlations may still 
exist within individual patches; such correlations are the subject of this study. To carry out this proce-
dure, the whitening filter is the inverse square-root of the ensemble-averaged Fourier power spec-
trum. For the natural image analyses presented here, the filter has a center-surround structure similar 
to that observed in the retina.

Following the whitening procedure, we binarize each image patch about its median pixel intensity. 
This creates image patches with equal numbers of black and white pixels.

Removal of blurry images
In any image database, there will be blurring due to camera motion and focus artifacts. Because we 
are interested in the statistics computed from in-focus image patches, we use a mixture of compo-
nents (MOC) method to separate blurred from in-focus image patches.

http://dx.doi.org/10.7554/eLife.03722
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To perform this separation, we first examined the 9-dimensional distribution of natural image sta-
tistics (see Figure 1—figure supplement 1A for the projection of the distribution onto the (α, β−) 
plane). When projected onto various coordinate planes, the structure of the distribution suggested 
that the distribution could be well-described by a weighted sum of two components. We explored this 
two-component description by running a standard maximum likelihood MOC inference that described 
each component by a Gaussian distribution. This inference method returned the mean, covariance, 
and relative weighting of each putative Gaussian component. In this process, each image patch was 
assigned to one of the two components (Figure 1—figure supplement 1B; note that the two compo-
nents are separated in the 9-dimensional space, although they appear overlapping in this particular 
projection). After inspecting the clustering of patches into each of the two components, we observed 
that one of the components contained image patches that are sharp (Figure 1—figure supple-
ment 1C), while the other contained patches that are blurry (Figure 1—figure supplement 1D–E).

We performed several controls to show that this separation is precise and effective. We first con-
firmed, based on visual inspection of a large number of images, that this method reliably separates 
blurred from in-focus patches. For example, images that were uniformly composed of patches 
assigned to the ‘blurry’ component were fully blurred due, example, to camera motion (Figure 1—
figure supplement 1E). Similarly, images in which a large percentage of patches were assigned to 
the ‘blurry’ component contained large regions that were blurred due to motion or camera focus 
artifacts (Figure 1—figure supplement 1D). Furthermore, the spatial boundary between blurred and 
in-focus regions in the original image matched the boundary between patches assigned to the 
‘blurry’ vs ‘in-focus’ component.

We additionally tested this method by incrementally removing images that were significantly 
blurred and then re-running the MOC method. After the removal of each subsequent image, the MOC 
method returned a mixture of components that was incrementally more strongly weighted toward 
the ‘in-focus’ component.

Finally, we tested this method by applying motion and Gaussian blur filters to sharp images 
(Figure 1—figure supplement 2B). With a sufficiently strong blurring transformation, all of the 
patches within a sharp image changed assignment from the ‘in-focus’ to the ‘blurry’ component. 
Successive block averaging removes the effects of small blur, such that a larger blurring transformation 
is required to change the assignment of patches from the ‘in-focus’ to the ‘blurred’ component. 
Furthermore, the application of motion and blur filters altered the spatial distribution of natural image 
statistics in a manner consistent with the statistics observed in image patches assigned to the ‘blurry’ 
component via the MOC method (Figure 1—figure supplement 2A). Both types of blurring increased 
the values of second- and fourth-order statistics, but they did so in different manners. Camera motion 
strongly increased both the fourth-order statistic and the second-order statistic aligned parallel to the 
direction of motion. In comparison, camera focus artifacts (arising, e.g., from variations in field of 
depth) more uniformly increased all second- and fourth-order statistics.

Scaling image analyses
To compare between natural image and psychophysical analyses, we scale the set of 9 standard 
deviations extracted from a given image analysis by a multiplicative factor that minimizes the squared 
error between the set of nine standard deviations and the set of nine psychophysical sensitivities. 
Figure 3—figure supplement 1 shows the value of the scale factor for different choices of the block-
average factor N and patch size R. This scaling places the greatest weight on the match between 
statistics with high variation/sensitivity (i.e. |β  and β−). Note that a different choice of scaling factor can 
shift this weight to different statistics; for example, a scaling factor that minimizes the least squares 
error between inverse standard deviation and thresholds will place larger weight on the match between 
statistics with low variation/sensitivity (i.e. θ components).

Psychophysical methods
We determined perceptual sensitivity to local image statistics via a texture segmentation para-
digm adapted from (Chubb et al., 2004), and in standard use in our lab (Victor et al., 2005; 
Victor and Conte, 2012; Victor et al., 2013); we describe it briefly here. These measurements were 
carried out in parallel with the natural scene analysis described above. Some of the psychophysical 
results have been previously reported (Victor and Conte, 2012; Victor et al., 2013); see ‘Subjects’ 
below.
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Stimuli
The basic stimulus consisted of a 64 × 64 black-and-white array of square image elements (‘checks’), 
in which a target 16 × 64 rectangle of checks was embedded, positioned eight checks from one of the 
four edges of the array. The target was distinguished from the rest of the array by its local statistical 
structure (see Victor and Conte, 2012 for details on the synthesis of these images), which was varied 
as described below.

Individual experimental sessions consisted of threshold measurements for each of a pair of image 
statistic coordinates (i.e., two choices from { }| \ /, , , , , , , ,β β β β θ θ θ θ α−     ), and their pairwise interac-
tions. For the trials used to determine the sensitivity along a coordinate axis, the coordinate was set to 
one of five equally spaced values; lower-order coordinates were set to 0, and higher-order coordinates 
were set to their maximum-entropy values (0 for all cases except the ( ),β α  pair; see (Victor and 
Conte, 2012) for further details on this point). The highest coordinate value tested was determined 
from pilot experiments, and was set at 0.45 for |β  and β−, 0.75 for 

\
β  and 

/
β , 1.0 for the θ's, and 0.85 

for α. For the trials used to determine the sensitivity to pairwise combinations of coordinates, each 
coordinate was given a nonzero value; all sign combinations were used. The ratio of the coordinate 
magnitudes was fixed, and chosen in approximate proportion to the above maximum values. Two 
values for each sign combination were studied.

To ensure that the response was driven by figure/ground segmentation (rather than, say, a texture 
gradient), two kinds of trials were randomly intermixed: (1) trials in which the target contained the 
nonzero value(s) of the coordinates and the background was random (i.e., all coordinates set to 0), and 
(2) trials in which the background had the nonzero values, and the target was random. Targets were 
equally likely to appear in any of the four possible locations. All trials were intermixed. This amounted 
to a total of 288 trials per block along eight rays. We collected 15 such blocks per subject (4320 trials) 
for each coordinate pair, and tested 11 pairs, for a total of 47,520 trials per subject: ( )|,β β− , ( )\,β β− , 
( )\ /,β β , ( ),β θ− 

, ( )\ ,β θ , ( )/ ,β θ , ( ),θ θ
 

, ( ),θ θ  , ( ),β α− , ( )\ ,β α , ( ),θ α


. These pairs encompass all the 
distinct coordinate pairs, up to 4-fold rotational symmetry. Since there was no detectable depend-
ence on the orientation of pairwise or third-order correlations related by rotational symmetry in pilot 
experiments, measurements along coordinate axes and coordinate planes related by rotation are 
pooled in Figure 3 and in Figure 3—figure supplements 5–8.

Stimuli were presented on a mean-gray background, followed by a random mask. The display was 
an LCD monitor with control signals provided by a Cambridge Research ViSaGe system; mean lumi-
nance of 23 cd/m2 and refresh rate was 100 Hz. The stimulus size was 15° × 15° (check size of 14 min), 
contrast was 1.0, and viewing distance was 1m. Presentation time was 120 ms.

Subjects
Four normal subjects (2 male, 2 female), ages 23 to 54 participated. One subject (MC) was a very 
experienced observer (several thousand hours); the other three had modest viewing experience 
(10–100 hr) prior to the experiment. JD and DF were naive to the purposes of the experiment. All 
subjects had visual acuities (corrected if necessary) of 20/20 or better. For subjects MC and DT, data 
from all coordinate planes other than the ( )\ ,β α -plane were previously reported (Victor and Conte, 
2012; Victor et al., 2013). For subjects JD and DF, data from the seven pairs of coordinates not con-
taining α were previously reported (Victor et al., 2013).

Procedure
Subjects were asked to indicate the position of the target (4-alternative forced choice), by pressing 
one of four buttons. They were informed that the target was equally likely to appear in any of four 
locations (top, right, bottom, left), and were shown examples of stimuli of both types (target structured/
background random and target random/background structured) prior to the experiment. Subjects 
were instructed to fixate centrally and not scan the stimulus. During training but not data collection, 
auditory feedback for incorrect responses was given. After performance stabilized (approx. 3 hrs for a 
new subject), data collection began. Within blocks, trial order was random. Block order was counter-
balanced across subjects.

Determination of sensitivity
To summarize the psychophysical performance, we fit Weibull functions to the fraction correct (FC) 
for each subject and each kind of block (i.e., each pair of coordinates). In the first step of the analysis 
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of each dataset, maximum-likelihood fits were obtained separately for each of its eight rays r (the 
rays consisted of the positive and negative values for the two coordinates, and the four diagonal 
directions):

( ) ( )( )– /1 3
FC = + 1– 2 ,

4 4

br
rx a

x
	

(0.1)

where x is the Euclidean distance from the coordinate vector to the origin, ar is the distance at which 
FC = 0.625 (halfway between chance and perfect), and 

r
b  is a shape parameter, controlling the 

slope of the psychophysical curve. Since the shape parameter br was usually in the range 2.2–2.7 for 
each pairwise coordinate plane, we then fit the entire dataset within each plane by a set of Weibull 
functions constrained to share a common exponent b, but allowing the parameter ar to vary across 
rays. For each on-axis ray, we averaged the value of 1/

r
a  obtained from all planes that included the 

ray (these were mutually consistent (Victor et al., 2013)) to obtain a final value for the perceptual 
sensitivity.

Determination of isodiscrimination ellipsoids
To determine the isodiscrimination ellipsoids, we first parameterized them by a quadratic 

,

ij i ji j
Q c c∑ , 

where ci and cj each represent one of the local coordinates { }| \ /, , , , , , , ,β β β β θ θ θ θ α−     , and Qij is the 

symmetric matrix for which criterion performance (FC = 0.625) is reached at =∑ ,
1ij i ji j

Q c c . The values 
of Qij were obtained by minimizing:

( ) ( )
2

,

= – 1 ,ij i r j r

r i j

F Q c T c T
          
∑ ∑

	

(0.2)

where Tr is the texture along the ray r at which criterion performance is reached (i.e., the texture at a 
distance ar from the origin, where ar is the sensitivity along the ray r, as determined above), and ( )ijc T  
is the value of the ith coordinate for the texture Tr. This minimization is a linear least-squares procedure 
in the Qij. Deviation of the fitted values of ( ) ( )

,

ij i r j ri j
Q c T c T∑  from unity, which corresponds to devia-

tion of the fitted ellipsoidal surface from the measured points of criterion performance, ranged from 
7–10% (root-mean-squared) across subjects. The ellipses shown in Figure 3B, Figure 3—figure sup-
plement 6, and Figure 3—figure supplement 7 correspond to loci at which 

,

ij i ji j
Q c c∑  is constant, 

and the eigenvectors described in Figure 3—figure supplements 3 and 8 are the eigenvectors of Q.

Analysis of image statistics in pairwise coordinate planes
In pairwise coordinate planes, our hypothesis predicts that the inverse covariance matrix, or precision 
matrix, matches human isodiscrimination contours. A precision matrix is represented by the contour 
lines of its inverse (the covariance matrix M); these are the points (x, y) at which 2 2

2xx xy yyM x M xy M y+ + = 

constant. A short distance of this contour from the origin thus indicates a large value of M and a small 
value of the precision matrix. This in turn denotes a direction in which prior knowledge of the image 
statistic is imprecise.

Figure 3B shows a correspondence between contours of the precision matrix (extracted from nat-
ural images) and human isodiscrimination contours. This is shown again here in Figure 3—figure 
supplement 2A for subject-specific (lower half grid) and subject-averaged (upper half grid) isodis-
crimination contours. This correspondence can be made quantitative by computing the angular tilt 
(Figure 3—figure supplement 2B) and eccentricity (Figure 3—figure supplement 2C) of each ellipse. 
Across all 36 pairwise coordinate planes, we find a detailed quantitative match between the shape 
and orientation of precision matrix contours and human isodiscrimination contours.

Analysis of the full 9-dimensional distribution of image statistics
Principal component decomposition
Here, we verify our hypothesis within the full 9-dimensional space of image statistics using an 
approach that does not single out coordinate axes, either individually or in pairs. Just as the projec-
tions of the natural image distribution can be fit by a bivariate Gaussian in each coordinate plane, 
the entire distribution can be fit by a multivariate Gaussian in the full 9-dimensional space. Similarly, 
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the full set of perceptual isodiscrimination contours can be fit by a single 9-dimensional ellipsoid. 
Our hypothesis predicts that these two 9-dimensional ellipsoids have the corresponding shape and 
orientation.

To test this, we compare the principal axes { }NI
ξ


 of variation in natural scenes with the principal axes 

{ }PP
ξ


 of human sensitivity inferred from the ellipsoidal isodiscrimination surface (Victor et al., 2013). 

To aid in this comparison, we first align the two sets of principal axes based on eigenvalue rank and 
symmetry considerations (discussed below). We then compute the fractional contribution f of sets of 
coordinates to each principal axis ( )iξ



, therein grouping coordinates with similar ranges of variation. 
Figures 3—figure supplement 3A–D respectively show the fractional contributions { }| ,

f β β−
, { }\ /,

f β β , 

{ }, , ,

f θ θ θ θ   
, and fα  to { }NI

ξ


 (blue bars) vs { }PP
ξ


 (red bars).

We find that the principal axes of variation in natural scenes match the principal axes of human 
sensitivity. As observed in Figure 3, the correspondence is within the range of variability observed 
across image analyses and human subjects.

We quantify the overlap between each image analysis and the set of psychophysical analyses by 

computing the scalar product between each principal component vector ( )
NI

i
f


 extracted from natural 

images and the corresponding subject-averaged psychophysical vector ( )
PP

i
f


, where 
| \ /

{ , ,f f f fβ β θ−
=


, }fα . 

This overlap, averaged across principal components, ranges from 0.991 to 0.996 across image analy-
ses and is consistently larger than the overlap measured under null hypotheses in which patch labels 
and coordinate labels are independently shuffled (p ≤.0004 for each image analysis under both hypoth-
eses; see Appendix 4 for details).

Alignment of principal components
As described in the previous subsection, we use principal component analysis for the multivariate 
comparison of natural image statistics and perceptual sensitivities. In addition to the standard 
approach of ordering components by percentage of variance explained within each dataset, fol-
lowed by comparing components of corresponding rank, we use an additional tool: the symmetries in 
the definitions of the image statistic coordinates. As detailed below, we use these symmetries to 
group principal components into symmetry classes, and we then rank-order the components within 
each class. By matching components based on both symmetry and rank order of explained variance, 
we avoid ambiguities that would otherwise occur if only explained variance was considered. The four 
symmetry classes are defined as follows:

1. 4-D subspace in which statistics are invariant under 90° rotations in the plane (here, designated 
‘SYM’). This is spanned by:
 

(i) |β β−= , all else 0 
1 1

, ,0,0,0,0,0,0,0
2 2

        

(ii) 
\ /
β β= , all else 0 

1 1
0,0, , ,0,0,0,0,0

2 2

        

(iii) θ θ θ θ= = =   , all else 0 
1 1 1 1

0,0,0,0, , , , ,0
2 2 2 2

        
(iv) 0α ≠ , all else 0 ([0,0,0,0,0,0,0,0,1])

 
2. 2-D subspace in which coordinate values are negated after a horizontal or vertical mirror (here, 

designated ‘HVI’). This is spanned by:
 

(i) \ /
β β= − , all else 0 

1 1
0,0, , ,0,0,0,0,0

2 2

   −     

(ii) θ θ θ θ= − = = −   , all else 0 
1 1 1 1

0,0,0,0, , , , ,0
2 2 2 2

   − −      

3. 2-D subspace spanned by two vectors 
1

v  and 
2

v  for which a 90° rotation transforms 
1

v  to 
2

v  and 
2

v  
to 

1
v−  (here, designated ‘ROT’). This is spanned by:

 

(i) θ θ= − , all else 0 
1 1

0,0,0,0, ,0, ,0,0
2 2

   −     

(ii) θ θ= − , all else 0 
1 1

0,0,0,0,0, ,0, ,0
2 2

   −      
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4. 1-D subspace in which a diagonal mirror negates coordinates (here, designated “DII”). This is 
spanned by:
 

(i) |β β−= − , all else 0 
1 1

, ,0,0,0,0,0,0,0
2 2

   −      

We compute the normalized principal axes { }NI
ξ


 of variability in natural image statistics and princi-

pal axes { }PP
ξ


 of human perceptual sensitivity. We then assign each set of components to the above 

symmetry classes by maximizing the total overlap between { }ξ  and the above classes. This is accom-

plished by computing the size of the projection of each individual component ( )iξ


 into each of the 
above subspaces, and then assigning the component into the subspace that contains the largest pro-
jection. In one case where two components with nearly degenerate eigenvalues could not clearly be 
assigned to symmetry classes (analysis N = 20, R = 32 in the PIDB, shown in Figure 3—figure supple-
ment 8A–D below), we force symmetry by performing a 45° rotation in the plane spanned by the 
degenerate components.

Once all components have been assigned to symmetry classes, we rank-order components within 
each class. This resulted in unambiguous pairing between natural image dataset and psychophysics in 
all but one pair of components in three image analyses (out of a total of 9 components for each of 31 
separate image analyses). In those analyses (image analyses N = 2, R = 48, 64, 128 in the van Hateren 
database), there were two nearly-degenerate SYM components in the image dataset; we paired these 
components with the psychophysics data by maximizing their overlap.

To compare between natural image and psychophysics analyses, we compute the fractional contri-
bution ( ) ( ) ( ) ( ) ( )

| \ /
[ , , , ]i i i i i

f f f f fβ β θ α−
=



 of sets of coordinates to each principal component, where the components 
of ( )i

f


 are given by:

( ) ( )( ) ( )( )
|– | –

2 2

= +i i i
fβ β βξ ξ

	
(0.3)

( ) ( )( ) ( )( )
\ / \ /

2 2

= +
i i i

fβ β βξ ξ
	

(0.4)

( ) ( )( ) ( )( ) ( )( ) ( )( )2 2 2 2

= + + +
i i i i i

fθ θ θ θ θξ ξ ξ ξ
    	

(0.5)

( ) ( )( )2

=
i i

fα αξ 	
(0.6)

and ( ) ( ) ( ) ( )
| \ /

1i i i i
f f f fβ β θ α−

+ + + =  for each normalized component ( )iξ


.
The principal components shown in Figure 3—figure supplement 3 are rank-ordered within each 

symmetry class, where the four classes were ordered as follows: SYM ( ( ) ( )1 4ξ ξ−
 

), HVI ( ( )5ξ


, ( )6ξ


), ROT 

( ( )7ξ


, ( )8ξ


), DII ( ( )9ξ


). Note that while the comparisons between psychophysics and natural images are 
based on the squares of the principal components coordinates (equations 0.3–0.6) and is insensitive 
to their signs, the classification of principal components by symmetry classes guarantees that we are 
only comparing psychophysical and natural-image components for which the signs within each coordi-

nate set ({ }| ,β β− , { }\ /,β β , and { }, , ,θ θ θ θ    ) covary in the same fashion.

Permutation tests
Our results, shown in Figure 3 for single coordinates and pairwise coordinate planes, and extended 
to the full 9-dimensional distribution in Figure 3—figure supplement 3, show a consistent match 
between the variation in natural image statistics and psychophysical sensitivities. We quantify this 
match by first assigning vectors to the quantities shown in Figure 3 and Figure 3—figure supple-
ment 3, and then computing the overlap between natural image vectors and the corresponding 
psychophysical vectors. We consider the following vector quantities:
 
1.	 Single coordinates: We describe the range of variation in natural image statistics by the normalized 

9-component vector of standard deviations 
NI NI

/σ σ 

, where v



 denotes the L2 norm 2

1

1 N

ii
v

N =∑  

of a vector v



. Similarly, we describe the set of perceptual sensitivities by the normalized vector 
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PP PP
/s s

 

. In both cases, the vector components are measured with respect to the coordinates 

{ }| \ /, , , , , , , ,β β β β θ θ θ θ α−     .

2.	 Pairwise coordinate planes: We describe each ellipse by the unit vector ω  that is a com-
bined measure of eccentricity (∈) and tilt (δ). We define ω  on one quarter of the unit sphere: 

sin cos  sin sin  cos  ˆ ˆ ˆx y zω α δ α δ α= + +


, where sinα=ε  and cosδ  are defined on the interval [0,1] (the 
second follows from the 180° rotational symmetry of ellipses). Note that this definition of ω  cap-
tures the ellipse property that when sin 0α= =ε  (circular ellipses), δ is not defined. See Figure 3—
figure supplement 4 for a schematic of this representation.

3.	 Principal components: We consider two related measures for describing principal components. 

As shown in Figure 3—figure supplement 3, we describe each principal component ( ){ }iξ


 by the 

normalized vector ( ) ( )
/

i i
f f
 

, which measures the fractional contribution of sets of statistics to the 

principal components ( )iξ


. For a more detailed comparison, we can similarly describe each principal 

component by the normalized vector ( ) ( )
/

i i
F F
 

, where ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
| \ /

[ , , , , , , , , ]i i i i i i i i i i
F f f f f f f f f fβ β β β θ θ θ θ α−

=


   
. This 

measures the fractional contribution of individual statistics (rather than sets of statistics) to the 
principal components ( )iξ



.
 

For each vector quantity (σ , ω , f


, and F


), we compute the scalar product between a given image 
analysis vector and the subject-averaged psychophysical vector. We then report the overlap values 
(scalar products) measured for the six image analyses considered Figures 1 and 3 (N = 2, 4 and  
R = 32, 48, 64). In computing the scalar product between 

NI
ω  and 

PP
ω , we report the overlap averaged 

over all 36 pairwise coordinate planes. Similarly, in computing the overlap between 
NI

f


 and 
PP

f


 and 

between 
NI

F


 and 
PP

F


, we report the overlap averaged over all 9 principal components. Note that, for 

each vector σ , ω , f


, and F


, the maximum overlap is 1.
We find that natural image analyses show consistently high overlap with the set of psychophysical 

results (see Tables 1–3). The overlap, as measured across image analyses, ranges from 0.988 to 0.999 
for single coordinates (σ ), from 0.953 to 0.977 for pairwise coordinate planes (ω ), from 0.987 to 0.993 
for fractional principal axes (f



), and from 0.829 to 0.917 for the full principal axes (F


). We test the sig-
nificance of this overlap by comparing our results to the following two null models:
 

1A. Shuffled coordinate labels: sets of coordinates. This model (and model 1b) tests the null hypo-
thesis that the apparent correspondence between image statistic covariances and isodiscrimina-

tion contours is chance. We examine the 23 permutations of the sets of coordinates { }| \ /, , ,β β θ α− . 

We apply these permutations to the psychophysical data, as human subjects are equally sensitive 

to coordinates within each set ({ }| ,β β− , { }\ /
,β β  and all θ's). This shuffling creates a new set of sub-

jects whose second-order cardinal, second-order oblique, third-order, and fourth-order coordinate 
values are randomly permuted (transforming the original vector | \ /[ , , , ]β β θ α−  into, example, the 

shuffled vector \ / |[ , , , ]β θ β α− ). If the correspondence between quantities derived from image anal-

ysis and psychophysics is statistically significant, we expect that the shuffled vectors σ , ω , f


, and F


 
will show less overlap with the image analysis vectors than do the original psychophysical vectors 
(note that the limited number of permutations restricts the minimum p-value to be 0.04).
1B. Shuffled coordinate labels: individual coordinates. Here, we expand the test described in 1a to 
randomly shuffle the full set of coordinate labels | \{ , , ,β β β−  / , , , , , }β θ θ θ θ α    . In an analogous 

manner to that described in 2A, we expect that the shuffled vectors σ , ω , f


, and F


 will show less 
overlap with the image analysis vectors than do the original psychophysical vectors if the corre-
spondence between quantities derived from image analysis and psychophysics is statistically 
significant.
2. Shuffled patch labels. This model tests the null hypothesis that the apparent covariances in 
image statistics are due to chance. For each coordinate, we randomly shuffle image patch labels. 
This shuffling creates a new set of null patches whose second-, third-, and fourth-order coordinate 
values are randomly drawn from a subset of the original image patches (e.g. a given null patch can 
be described by a 

/
β -value measured from patch m but an α value measured from patch n). This 

shuffling destroys correlations between coordinate values measured within individual patches. 
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Note that this shuffling does not alter the range of variation measured along single coordinate axes 
and will therefore not alter the values of precision matrix ellipses measured along coordinate axes. 
As a result, this test is not applicable to σ , which measures natural image variation and human 
sensitivities along individual coordinate axes. However, shuffling will destroy correlations along 
oblique directions in coordinate planes, thereby aligning each ellipse along a single coordinate 
axis. Note that the eccentricity of each ellipse (in, e.g., the A-B plane) is then trivially related to the 

ratio of variances 2σ  measured along the corresponding coordinate axes: 2 2
1 /

A B
σ σ= −ε . We 

therefore expect that this shuffling will most strongly affect the tilt and eccentricity in pairwise 
planes in which ellipses are oriented along oblique directions ( |β β−, 

\ /
β β , and θθ  planes). Finally, in 

destroying correlations between pairs of coordinates, this shuffling creates a diagonal covariance 
matrix, such that principal components are aligned with single coordinate axes. If the correspond-
ence between quantities derived from image analysis and psychophysics is statistically significant, 
we expect that the shuffled vectors ω , f



, and F


 will show less overlap with the psychophysical vec-
tors than do the original image analysis vectors.

 
Each null model is constructed by randomly selecting permuted indices that independently shuffle 

coordinate labels for subject-averaged psychophysical data (Null Model 1) and independently 
shuffle image patch labels for a given statistic (Null Model 2). For null model 1a, we perform the full 
set of 23 non-identity permutations. For models 1B and 2, we perform 10,000 permutations.

For each permutation, we compute a set of shuffled vectors { }, , ,f Fσ ω
 

 

, and we measure the overlap 

(defined as the scalar product ( ) ( )
NI PP

* *⋅
 

) between each shuffled vector and the corresponding subject-

averaged psychophysical vector. Note that, when assigning shuffled principal components to sym-
metry classes, no hand-tuning was performed. However, as described previously, such hand-tuning 
was only applied to a very small fraction of components for select image analyses.

When repeated for many permutations, this procedure yields a distribution of shuffled overlap 
values against which we measure the significance of the true (observed) overlap. Significance values 
(p-values) are estimated by computing the fraction of permutations for which the shuffled overlap 
exceeds the true overlap.

We find that the original image analyses show significantly higher overlap with psychophysical 
data than do the analyses produced by either of the null models. Results are significant for each 
measure of overlap and for each of the six analyses presented in Figures 1 and 3 (p <0.0005, or as 
small as possible given the number of possible permutations, in all cases); see Tables 1–3 for full 
results.

Analysis variants for Penn Natural Image Database
In Figures 1 and 3, we reported results using image analyses with varying values of the block-average 
factor N (N = 2, 4) and patch size R (R = 32, 48, 64). In Figure 1—figure supplement 3, we show that 
the relative variation in different image statistics (first shown in Figure 1E) is not an artifact of our 
image analysis pipeline, as the pattern of variation is destroyed if white-noise image patches are 
instead used. In Figures 3–figure supplement 5-3–figure supplement 8, we show that the comparison 
between natural image and psychophysical analyses is consistent across a wider range of image pre-
processing parameters: N = 2, 4, 8, 12, 16, 20 and R = 32, 48, 64, 80, 128. Note that sampling limita-
tions restrict some combinations of N and R (e.g. for sufficiently large N, we must choose sufficiently 
small R to have a statistically significant number of image patches).

Comparison with van Hateren Database
All analyses reported in Results and shown in Figures 1 and 3 were performed on a set of images from 
the UPenn Natural Image Database (Tkačik et al., 2011). Here, we extend our analyses to a set of 
2300 images from the van Hateren image database (van Hateren and van der Schaaf, 1998), using 
the same set of parameters used to analyze images from the UPenn database, with block-average fac-
tors N = 2, 4, 8, 12, 16, 20 and patch sizes R = 32, 48, 64, 80, 128. Note that we are able to perform a 
larger number of analyses (specific combinations of N and R) than was performed using the Penn 
database, as we have a larger selection of images and therefore do not face the same sampling limi-
tations. Figures 3—figure supplement 5-3–figure supplement 8 confirm that our results are consistent 
across image databases.
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Table 1. Permutation tests for null model 1a: shuffled coordinate labels

Measures of overlap Image analysis Observed overlap

Shuffled overlap Values

SignificanceMean std min max

Range/Sensitivity 
 σ

NI PP
·s

N = 2

R = 32 0.999 0.859 0.9 × 10−1 0.704 0.983 <0.04

R = 48 0.993 0.832 1.1 × 10−1 0.651 0.978 <0.04

R = 64 0.987 0.809 1.1 × 10−1 0.614 0.974 <0.04

N = 4

R = 32 0.998 0.825 1.1 × 10−1 0.638 0.969 <0.04

R = 48 0.994 0.812 1.1 × 10−1 0.646 0.990 <0.04

R = 64 0.991 0.794 1.1 × 10−1 0.617 0.985 <0.04

Inverse Range/Threshold  
〈 〉
 ω ω

NI PP
·

N = 2

R = 32 0.971 0.709 1.5 × 10−1 0.508 0.924 <0.04

R = 48 0.969 0.692 1.6 × 10−1 0.469 0.924 <0.04

R = 64 0.953 0.685 1.7 × 10−1 0.450 0.913 <0.04

N = 4

R = 32 0.967 0.679 1.7 × 10−1 0.447 0.908 <0.04

R = 48 0.975 0.632 1.5 × 10−1 0.400 0.880 <0.04

R = 64 0.977 0.648 1.6 × 10−1 0.411 0.894 <0.04

Fractional Principal  

Components   
 

NI PP
·f f

N = 2

R = 32 0.994 0.382 1.5 × 10−1 0.160 0.657 <0.04

R = 48 0.995 0.485 1.2 × 10−1 0.287 0.727 <0.04

R = 64 0.991 0.487 0.7 × 10−1 0.372 0.632 <0.04

N = 4

R = 32 0.995 0.459 1.4 × 10−1 0.238 0.732 <0.04

R = 48 0.996 0.444 1.0 × 10−1 0.277 0.601 <0.04

R = 64 0.996 0.450 1.1 × 10−1 0.279 0.614 <0.04

Full Principal Components  

〈 〉
 

NI PP
·F F

N = 2

R = 32 0.917 0.316 1.3 × 10−1 0.123 0.578 <0.04

R = 48 0.828 0.401 1.0 × 10−1 0.228 0.611 <0.04

R = 64 0.911 0.363 0.7 × 10−1 0.282 0.532 <0.04

N = 4

R = 32 0.882 0.376 1.2 × 10−1 0.180 0.618 <0.04

R = 48 0.917 0.362 1.0 × 10−1 0.201 0.520 <0.04

R = 64 0.919 0.357 1.0 × 10−1 0.196 0.522 <0.04

We separately permute the sets of coordinate labels { }|– \ /, , ,β β θ α . We apply these permutations to the psychophysical data, therein examining all  
23 non-identity permutations of the four labels. This shuffling significantly decreases the overlap between image analyses and psychophysical data. Results 
are significant across all six analyses considered in Figures 1 and 3 (N = 2, 4 and R = 32, 48, 64). p-values, estimated as the fraction of permutations for 
which the shuffled overlap exceeds the true overlap, are less than 0.04 (the minimum value given 23 permutations) for each image analysis.
DOI: 10.7554/eLife.03722.023

Asymmetries in distributions of natural image statistics
We find systematic asymmetries in the distributions of natural image statistics when examined beyond 
their second moments. Figure 3—figure supplement 9 shows the distributions of single coordinates 
for the image analysis N = 2, R = 32. All distributions are shifted toward positive coordinate values, and 
there is larger variation in positive vs negative coordinate values. We assess this asymmetry in natural 
image analyses by computing the ratio of the standard deviations measured along positive vs negative 
coordinate axes. We similarly assess asymmetry in psychophysical analyses by computing the ratio of 
human sensitivities to positive vs negative deviations of coordinate values. This comparison is shown 
in Figure 3—figure supplement 9. The mismatch provides potential clues for the neural mechanisms 
responsible for processing local image statistics (See Discussion).

Two regimes of efficient coding
In this section, we illustrate how two contrasting regimes emerge from the efficient coding princi-
ple: (i) the well-known transmission-limited regime, in which ‘whitening’ is optimal, and (ii) the 
sampling-limited regime, which is the focus of this paper. To enable exact calculations of optimal 
behavior, we consider a simplified scenario, in which all signals and noises are Gaussian, and all filters 
are linear.

http://dx.doi.org/10.7554/eLife.03722
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Table 2. Permutation Tests for null model 1b: shuffled coordinate labels

Measures of overlap Image analysis
Observed  
overlap

Shuffled overlap Values

SignificanceMean std min max

Range/Sensitivity 
 σ

NI PP
·s

N = 2

R = 32 0.999 0.806 6.8 × 10−2 0.659 0.999 0.0003

R = 48 0.993 0.775 7.7 × 10−2 0.610 0.993 <0.0001

R = 64 0.987 0.762 8.0 × 10−2 0.579 0.987 <0.0001

N = 4

R = 32 0.998 0.828 6.0 × 10−2 0.707 0.998 <0.0001

R = 48 0.994 0.798 7.1 × 10−2 0.660 0.994 0.0002

R = 64 0.991 0.780 7.6 × 10−2 0.630 0.991 <0.0001

Inverse Range/Threshold 〈 〉
 ω ω

NI PP
·

N = 2

R = 32 0.971 0.693 8.1 × 10−2 0.499 0.972 0.0002

R = 48 0.969 0.682 8.4 × 10−2 0.476 0.969 0.0003

R = 64 0.953 0.671 8.5 × 10−2 0.446 0.954 0.0002

N = 4

R = 32 0.967 0.696 7.6 × 10−2 0.521 0.964 <0.0001

R = 48 0.975 0.692 8.0 × 10−2 0.509 0.976 0.0002

R = 64 0.977 0.689 8.2 × 10−2 0.493 0.978 0.0003

Fractional Principal Components 〈 〉
 

NI PP
·f f

N = 2

R = 32 0.994 0.592 1.2 × 10−1 0.271 0.995 0.0003

R = 48 0.995 0.604 1.3 × 10−1 0.281 0.995 0.0004

R = 64 0.991 0.591 1.2 × 10−1 0.278 0.991 0.0003

N = 4

R = 32 0.995 0.590 1.2 × 10−1 0.218 0.995 0.0001

R = 48 0.996 0.577 1.2 × 10−1 0.251 0.996 0.0002

R = 64 0.996 0.581 1.2 × 10−1 0.266 0.996 0.0004

Full Principal Components 〈 〉
 

NI PP
·F F

N = 2

R = 32 0.917 0.391 1.2 × 10−1 0.100 0.927 0.0002

R = 48 0.828 0.391 1.2 × 10−1 0.086 0.856 0.0008

R = 64 0.911 0.396 1.2 × 10−1 0.120 0.953 0.0003

N = 4

R = 32 0.882 0.381 1.2 × 10−1 0.066 0.989 0.0003

R = 48 0.917 0.380 1.2 × 10−1 0.090 0.902 <0.0001

R = 64 0.919 0.387 1.2 × 10−1 0.095 0.937 0.0004

We separately permute all nine coordinate labels | – \{ , , ,β β β  / , , , , , }β θ θ θ θ α    . This shuffling, applied to the psychophysical data, significantly decreases 
the overlap between image analyses and psychophysical data. Results are significant across all six analyses considered in Figures 1 and 3 (N = 2, 4 and 
R = 32, 48, 64). p-values, estimated as the fraction of permutations for which the shuffled overlap exceeds the true overlap, are less than 0.0005 for all 
image analyses.
DOI: 10.7554/eLife.03722.024

We consider a set of channels dedicated to processing independent signals of varying sizes. The 
channels, which are indexed by k, are abstract and general. For example, each k can represent a dif-
ferent spatial or temporal frequency in the input, as in the traditional analysis of visual coding in the 
periphery. Here, we take the signal on each channel k to represent a complex image feature, that is 
the result of a specific local nonlinear transformation applied to the input image.

Figure 4—figure supplement 1 shows the setup of a single channel dedicated to processing the 
signal 

k
s . Sampling noise, which is assumed to be identical for each channel, is added to this signal; 

without loss of generality, we can take its value to be unity. Note that for the parametrization of local 
image statistics used here, sampling noise is in fact identical for each parameter at the origin of the 
parameter space (see Equations B19-B20 in Victor and Conte, 2012).

The result is passed through a linear filter 
k

L , characterized by a gain | |
k

L . The output of 
k

L  then has 
intrinsic channel noise added, and the total dynamic range of all channels is constrained. All channels 
are assumed to have the same intrinsic noise. Again, without loss of generality, we take this value to 
be unity (as any scale associated with this noise can be absorbed into an overall multiplier for the filters 

k
L  and the constraint on total dynamic range of the channels).

We seek to find the optimal set of gains { }| |
k

L  that maximize the mutual information 
kk

H∑  between 
the signals { }k

s  and the channel input, subject to a constraint Q on total output power. Using a 

http://dx.doi.org/10.7554/eLife.03722
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Lagrange multiplier Λ for the constraint, the problems translates into extremizing Λ
kk

P H Q= +∑  by 
setting / 0

k
P L∂ ∂ = .

The solution can be found in Equation 8 of van Hateren, (1992a), noting the following correspond-
ences between the setup of Figure 4—figure supplement 1 and the scenario considered in that 
paper. Referring to the notation in (van Hateren, 1992a), the input and channel noises, Np and Nc, 
respectively correspond here to the sampling and channel noises (both taken to be unity). The prefil-
tered stimulus power Sp corresponds here to signal variance 2

k
s . The power transfer function pn of the 

neural filter corresponds here to the filter power 2| |
k

L . Finally, the negative Lagrange multiplier λ−  
corresponds here to the positive Lagrange multiplier Λ+ . With these correspondences, the optimal 
filter for channel k has a gain | |

k
L  given by:

( )
( )

Λ
2 4 2

2

2

– 2 + + + 4 /
| | =

2 1+

k k k

k

k

s s s
L

s
	

(0.7)

provided that the above quantity is non-negative, and has a gain of zero otherwise. The range of val-
ues of 

k
s  for which the above quantity is 0≤  corresponds to signals that are not worthwhile to code, 

because the signal-to-noise is too small given the constraint on the channel dynamic range. More 

specifically, the above quantity is positive (and hence | |
k

L  is nonzero) provided that ( )Λ Λ/ 1
k

s > − . 

Note that this critical value becomes infinite as Λ approaches one from below, indicating that Λ near 
one is the transmission-limited regime. Conversely, the critical value of 

k
s  approaches zero as Λ 

approaches zero from above, indicating that this is the sampling-limited regime. We further discuss 
these regimes below.

Table 3. Permutation tests for null model 2: shuffled patch labels

Comparisons Image analysis
Observed  
overlap

Shuffled overlap Values

SignificanceMean std min max

Inverse Range/Threshold 〈 〉
 ω ω

NI PP
·

N = 2

R = 32 0.971 0.924 0.70 × 10−3 0.921 0.926 <0.0001

R = 48 0.969 0.921 1.1 × 10−3 0.917 0.925 <0.0001

R = 64 0.953 0.912 1.3 × 10−3 0.908 0.917 <0.0001

N = 4

R = 32 0.967 0.919 1.7 × 10−3 0.914 0.926 <0.0001

R = 48 0.975 0.922 1.9 × 10−3 0.916 0.930 <0.0001

R = 64 0.977 0.924 2.8 × 10−3 0.916 0.935 <0.0001

Fractional Principal Components 〈 〉
 

NI PP
·f f

N = 2

R = 32 0.994 0.806 9.1 × 10−6 0.806 0.806 <0.0001

R = 48 0.995 0.806 8.3 × 10−6 0.806 0.806 <0.0001

R = 64 0.991 0.806 3.7 × 10−6 0.806 0.806 <0.0001

N = 4

R = 32 0.995 0.807 2.5 × 10−4 0.806 0.809 <0.0001

R = 48 0.996 0.807 4.1 × 10−4 0.806 0.810 <0.0001

R = 64 0.996 0.807 3.5 × 10−4 0.806 0.810 <0.0001

Full Principal Components 〈 〉
 

NI PP
·F F

N = 2

R = 32 0.917 0.448 5.8 × 10−2 0.406 0.596 <0.0001

R = 48 0.828 0.502 5.9 × 10−2 0.408 0.675 <0.0001

R = 64 0.911 0.458 4.8 × 10−2 0.407 0.591 <0.0001

N = 4

R = 32 0.881 0.489 4.9 × 10−2 0.409 0.638 <0.0001

R = 48 0.917 0.454 3.0 × 10−2 0.408 0.637 <0.0001

R = 64 0.919 0.492 4.2 × 10−2 0.411 0.648 <0.0001

Within each image analyses, we separately permute image patch labels along individual coordinate axes. This shuffling does not alter the range of 

variation observed along individual coordinates; as a result, this test only applies to ω
→

 , f
→

 and 
→
F . We find that this shuffling significantly decreases the 

overlap between image analyses and psychophysical data. Results are significant across all six analyses considered in Figures 1 and 3 (N = 2, 4 and  
R = 32, 48, 64). p-values, estimated as the fraction of permutations for which the shuffled overlap exceeds the true overlap, are less than 0.0001 for  
each image analysis.
DOI: 10.7554/eLife.03722.025
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Transmission-limited regime
As mentioned, the transmission-limited regime corresponds to the limit of Λ 1→  from below. For sig-

nals below the critical level of ( )Λ Λ/ 1− , the optimal gain is zero, and signals are not encoded. For 
signals that are large compared to this cutoff, the main limitation is output power. In this regime, the 
optimal gain is inversely proportional to the signal strength (Figure 4—figure supplement 2A), as the 
asymptotic behavior of Equation 0.7 in the limit of large signal strength 

k
s  is:

Λ2

2

1/ – 1
| |

1+
k

k

L
s

∼
	

(0.8)

This is the classic ‘whitening’ regime, namely small signals are enhanced so that output power is 
equalized across channels: | | 1/

k k
L s∼  for large 

k
s .

Note that when Λ is close to 1, there is an abrupt transition between signals that are encoded in 
inverse proportion to their size, and signals that are too small to be encoded at all (Figure 4—figure 
supplement 2A).

Sampling-limited regime
When Λ 0→  from above, the transition between signals that are not encoded at all, and signals that 
are encoded in inverse proportion to their size, undergoes a broadening. This results in a regime in 
which the optimal gain increases with signal strength (Figure 4—figure supplement 2B). This regime 

covers signals that are only modestly above the critical level of ( )Λ Λ/ 1− , that is signals for which 
sampling noise (rather than output capacity) is the dominant constraint. The extent of this regime 
increases as the relative importance of the output constraint Λ decreases toward 0.

We determine the limiting dependence of | |
k

L  on k
s  from the asymptotic behavior of Equation 0.7 

in the limit of small Λ:

Λ

2

2

1
| |

1+
k

k

k

s
L

s
∼

	
(0.9)

For signals that are small compared to the sampling noise ( Λ 1
k

s< < ), the optimal filter is propor-

tional to the square root of the signal strength, Λ
1/ 2 1/ 4| |

k k
L s

−∼ .

Correspondence with perceptual sensitivity to local image statistics
We interpret the gain | |

k
L  as representing the amount of resources devoted to a given signal 

k
s . Since 

it is a direct measure of signal-to-noise for a unit-size input, it therefore corresponds to perceptual 
sensitivity.

In the psychophysical experiments here, we measure sensitivity for each of the image statistic coor-

dinates { }| / \, , , , , , , ,β β β β θ θ θ θ α−     , using a highly artificial set of stimuli. As predicted from the sam-

pling-limited regime, we find that gains | |
k

L  are larger for the channels in which the natural environment 
provides larger values of the signal 

k
s .

While this analysis provides a rigorous identification of a regime in which gain increases with signal 
strength, we caution that it is an asymptotic analysis of a simplified model of feature coding. It there-
fore stops short of making the quantitative prediction that gain (sensitivity) is proportional to the 
square root of the signal strength of each image statistic.

On the other hand, the analysis does translate into a quantitative prediction about perceptual axes 
(i.e., about the orientations of the isodiscrimination contours). As shown in Figure 3 (blue contours), 

the image statistic coordinates { }, , , , , , , ,
| / \
β β β β θ θ θ θ α−      have substantial covariances. A rotation 

of the coordinates will thus yield a new set of coordinates with zero covariance and independent 
sampling errors. If these new coordinates are independently coded, then the perceptual axes will 
share the same axes as the image statistics which is what we find (Figure 3B).

Numerical optimization in two dimensions
Here, we numerically show that in the 2-dimensional case, the axes of the optimal encoder will be 
aligned with the principal axes of the input statistics. As shown in Figure 4—figure supplement 1, the 
response r is given by:

http://dx.doi.org/10.7554/eLife.03722
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( ) ,= s+ +r L ξ η 	 (0.10)

where ξ is the sampling noise, η is the intrinsic channel noise, and s is a d-dimensional signal from 
natural scenes (each dimension corresponds to one of our image statistic coordinates; for simplicity, 
let d = 2, that is, we examine one pairwise plane). L is the linear transformation that we are looking for: 
this is essentially a ‘gain’ plus ‘rotation’ transformation. The axes of perceptual isodiscrimination con-
tours should then be given by the eigenvalues of T

LL . The covariance of the stimuli is T=〈 〉S ss . Noise 
is assumed IID, given by Ξ

Tξξ〈 〉= I at the input and Σ
Tηη〈 〉= I at the output, where I is a 2 × 2 identity 

matrix and Ξ and Σ are noise magnitudes. With this notation, the total noise covariance matrix of the 
output is given by:

Ξ= + .
T

N I LLΣ 	 (0.11)

The total variance at the output is:

Ξ
2

= + Tr + Tr .
T T

dr LL LSLΣ 	 (0.12)

By analogy to the van Hateren derivation, we fix the output power. Without loss of generality, we 
choose its value to be unity, which sets the unit for all power measures in the system. The information 
for a Gaussian multivariate channel in a standard form, η= ′ +r L s  is:

1 1

2 2
1

= logdet + ,
2

T
I

  ′ ′   
I S L L S

	
(0.13)

but this is only valid when the noise η is IID unit variance. In the present study, this is not the case: first, 
the noise, N, is correlated in the two channels, because the sampling noise is mixed by L; second, the 
variances are not the same in the two channels. We can, however, make a change of variables, r′ = Or, 
such that the noise for the new output r′ is IID unit variance. To do this, we decompose T

N VDV=  into 

its eigensystem, make 
1

2 T
O D V

−
= , and identify 

1

2 T
L OL D V L

−
′ = = , so that we can use the standard 

result given in Equation (0.13). The optimal linear filter is given by:

2

1 1
* 2 2

, =1

1
= argmax logdet +

2
T

  ′ ′   L r

L I S L L S
	

(0.14)

Since the output power is limited to 1 and channel noise Σ feeds directly into the output power, 
there is no solution for L for Σ 0.5>  (since d = 2 and Σ is the noise in each of the channels, the total 
output power is taken up by channel noise at Σ 0.5= ). The magnitude of the sampling noise can be 
unbounded, since one can always select the gain in L to be low enough so that the constraint on total 
output power is satisfied. Because the gain rescales the input, we can fix the total power of the input 
signal (the trace of S) to be unity. With this choice, the remaining parameters of the problem are the 
magnitude of the channel noise (Σ) and the magnitude of the sampling noise relative to the input 
power (i.e. 1/SNR at the input).

Given these two parameters that determine the sampling and channel noise magnitudes, we gen-
erate input signal covariances S with total power of unity but with randomly selected ‘tilts’ (angles of 

the leading eigenvector of S measured relative to the horizontal) and ‘eccentricities’ ( 2 2

min max
1 /g g= − , 

where g are the eigenvalues of S); these quantities can be directly estimated from natural scenes. We 
then use constrained optimization to numerically identify the optimal transformation *

L . For each such 
solution for *

L , we compute the eigensystem of * *T
L L , extract its eccentricity and tilt as describe above, 

and compare these values to the eccentricity and tilt of the input signal.
We identify the following efficient coding regimes that depend the total noise and on the relative 

magnitudes of sampling and channel noises (Figure 4—figure supplement 3):

Transmission-limited regime (total noise <0.5)
Ξ≤ ≪ Σ0  (dominating channel noise). The optimal strategy is decorrelation by whitening (Figure 4—

figure supplement 4A); the tilt of the filter relative to the signal is / 2π , and the eccentricities are 
equal (i.e., the small eigenvalue of * *T

L L  is proportional to the inverse of the large eigenvalue of S and 
vice versa, indicating that the gain scales as the inverse of the input power).

http://dx.doi.org/10.7554/eLife.03722
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Ξ≪ Σ0 < 1, = 0 (zero channel noise, small sampling noise). The optimal strategy is still decorrelation 
(Figure 4—figure supplement 4B) with signal components of higher power being suppressed by the 
gain, but the suppression does not follow the inverse law as above.

Sampling-limited regime (total noise >0.5)
Ξ Σ1, 0≥ =  (zero channel noise, large sampling noise). The tilt of the filter matches the tilt of the signal, 
and the gain scales with input power. For high sampling noise and zero channel noise, the gain scales 
as the square-root of the input power (Figure 4—figure supplement 4C).
Ξ 0Σ> >  (dominating sampling noise). In a broad regime of noise strengths where sampling noise 

dominates over non-zero channel noise, the tilt of the gain matches the tilt of the signal, and the gain 
roughly scales with the input power (Figure 4—figure supplement 4D). This regime is consistent with 
the correspondence that we observe between the natural scenes statistics and the psychophysical 
measurements.
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