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ABSTRACT

Background. Non-traditional risk factors like inflammation and oxidative stress play an essential role in the increased
cardiovascular disease (CVD) risk prevalent in chronic kidney disease (CKD). Tryptophan catabolism by the kynurenine
pathway (KP) is linked to systemic inflammation and CVD in the general and dialysis population. However, the relationship
of KP to incident CVD in the CKD population is unknown.

Methods. We measured tryptophan metabolites using targeted mass spectrometry in 92 patients with a history of CVD (old
CVD); 46 patients with no history of CVD and new CVD during follow-up (no CVD); and 46 patients with no CVD history who
developed CVD in the median follow-up period of 2 years (incident CVD).

Results. The three groups are well-matched in age, gender, race, diabetes status and CKD stage, and only differed in total
cholesterol and proteinuria. Tryptophan and kynurenine levels significantly decreased in patients with ‘Incident CVD’
compared with the no CVD or old CVD groups (P¼5.2E–7; P¼0.003 respectively). Kynurenic acid, 3-hydroxykynurenine and
kynurenine are all increased with worsening CKD stage (P<0.05). An increase in tryptophan levels at baseline was associated
with 0.32-fold lower odds of incident CVD (P¼0.000014) compared with the no CVD group even after adjustment for classic CVD
risk factors. Addition of tryptophan and kynurenine levels to the receiver operating curve constructed from discriminant
analysis predicting incident CVD using baseline clinical variables increased the area under the curve from 0.76 to 0.82 (P¼0.04).

Conclusions. In summary, our study demonstrates that low tryptophan levels are associated with incident CVD in CKD.
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INTRODUCTION

Chronic kidney disease (CKD) is prevalent in 15% of the US pop-
ulation, contributing to an excess of 114 billion dollars in
Medicare expenditure in 2018 [1]. Cardiovascular disease (CVD)
remains the primary cause of mortality and morbidity in the
CKD population as the cardiovascular risk in the CKD popula-
tion is 10- to 40-fold higher than that of the general population
[2]. This CVD burden triggers increased hospitalization and
healthcare costs [3]. Mitigating the traditional risk factors in
CKD still leaves a very high residual risk of CVD, suggesting al-
ternate mechanisms are in play [4]. Nontraditional risk factors
unique to CKD like inflammation, oxidative stress, endothelial
dysfunction, uremia, bone mineral disease and volume over-
load likely contribute to the remaining risk [4, 5].

Catabolism of the essential alpha-amino acid tryptophan via
the kynurenine pathway (KP) contributes to systemic inflamma-
tion and is associated with both CVD and CKD [6]. Under normal
physiologic conditions, KP exists mainly in the liver and is re-
sponsible for �90% of overall tryptophan degradation. With im-
mune activation and inflammation, the contribution from the
extrahepatic KP increases [7]. The KP creates many active
metabolites such as neuroactive kynurenine; immunosuppres-
sive kynurenine metabolites 3-hydroxykynurenine and 3-
hydroxyanthranilic acid; and N-methyl-D-aspartate receptor
modulators quinolinic acid, kynurenic acid and anthranilic acid
that eventually produce vitamin B3, picolinic acid and redox co-
factor nicotinamide adenine dinucleotide phosphate (Figure 1)
[8]. The extrahepatic KP exists in macrophages and other im-
mune cells but does not include all enzymes of the pathway, as
a result producing different KP metabolite profiles and their cor-
responding functional changes [8].

The first rate-limiting step of the KP is the production of
kynurenine from tryptophan by the enzyme tryptophan dioxy-
genase and indoleamine dioxygenase 1 (IDO1) in the liver and
extra-hepatic tissues, respectively. The overexpression of IDO1
increases plasma kynurenine to tryptophan ratio (KTR) and is
associated with inflammation and other traditional cardiovas-
cular risk factors like dyslipidemia and obesity [9, 10]. IDO1 ex-
pression is upregulated in the macrophage-loaded core of
human atherosclerotic plaques contributing to an upregulated
KP pathway in lesions [11]. IDO1 activity (via the KTR) associates
with subclinical markers of early atherosclerosis like increased
carotid artery intimal media thickness (CIMT) [12]. In addition
to the link between early atherosclerosis and tryptophan catab-
olism, low tryptophan plasma concentration and a high KTR are
characteristic of individuals suffering from coronary heart dis-
ease [13]. Moreover, a high KTR is a sensitive indicator of future
coronary events for older individuals with no history of coro-
nary artery disease [14]. Therefore, the KP pathway activation is
linked to inflammation, dyslipidemia, subclinical atherosclero-
sis and CVD, and able to predict future critical coronary events
[15].

IDO1 activity is increased in CKD even as metabolites of tryp-
tophan catabolism accumulate with progressive renal disease
[16, 17]. The kynurenine metabolites are associated with
markers of oxidative stress and inflammation in patients with
CVD and end-stage renal disease (ESRD) [18]. KTR and other
kynurenine metabolites are increased in dialysis patients and
associated with subclinical markers of atherosclerosis like CIMT
[6, 18–20]. Tryptophan metabolites are also linked to the ele-
vated hypercoagulability markers, soluble adhesion molecules
and systemic inflammation in the CKD population with evi-
dence of atherosclerosis [21]. However, the role of KP and IDO1

activity and their ability to predict incident CVD in CKD patients
remains unknown. Therefore, we hypothesized that altered KP
pathway is associated with incident events in patients with no
past history of CVD in CKD patients irrespective of their altered
levels with renal dysfunction. We used three groups of CKD
patients with various degrees of CVD: patients with no history
of CVD, patients with a history of CVD and patients with no his-
tory of CVD who developed new CVD during follow-up. We
measured the metabolites of the KP pathway using state of the
art and highly sensitive liquid chromatography (LC) and mass
spectrometry (LCMS) platform at baseline. We find that trypto-
phan and its metabolite kynurenine are both decreased in CKD
patients with incident CVD when compared with patients with
no history of CVD and prior history of CVD. Reduced levels of
tryptophan associate with incident CVD when adjusted for tra-
ditional risk factors of CVD. These findings suggest a role for
low tryptophan levels and altered KP in early CVD in the CKD
population.

MATERIALS AND METHODS
Study cohort

The subjects included 184 subjects recruited between March
2009 and April 2017 into the Clinical Phenotyping Resource and
Biobank Core (CPROBE)—a prospective, multicenter, observa-
tional cohort with a well-maintained biorepository [22]. By
study design, the CPROBE patients returned for yearly visits, lab
studies and medical history updates after the initial study visit.
Median follow-up was 2 years with a range of 1–10 years.
Inclusion criteria for this study included age >18 years and
Stages 1–5 CKD [according to the CKD Epidemiology
Collaboration creatinine equation (CKD-EPI)]. CVD outcome is
defined as myocardial infarction, angina, coronary artery by-
pass grafting or angioplasty/stenting of a coronary artery,
stroke, peripheral arterial disease, congestive heart failure or ar-
rhythmia self-reported by patients and confirmed with elec-
tronic health record or by International Classification of
Diseases-9 (ICD-9) code review at CPROBE and non-CPROBE
sites. The participants were classified into three groups—no
CVD, old CVD and incident CVD. The group with no CVD was de-
fined as 46 participants without any self-reported history of
CVD at baseline and during the follow-up period. The old CVD
group included 92 patients with a positive history of CVD at
baseline. The incident CVD group consists of 46 patients with
no prior history of CVD at baseline and with new CVD reported
during the follow-up period. These three groups were a priori
matched for age, gender, race, CKD stage and diabetes status.
We used the baseline clinical data, laboratory data and plasma
samples collected at the time of enrollment for subsequent
analyses. Creatinine was measured on an ADVIAVR 2400 analyzer
using Jaffe reaction, and estimated glomerular filtration rate
(eGFR) was calculated with the CKD-EPI formula.

Quantitative tryptophan metabolite estimation with
mass spectrometry

We quantified the downstream metabolites of the KP: trypto-
phan, kynurenine, 3-hydroxykynurenine, kynurenic acid, an-
thranilic acid, 3-hydroxyanthranilic acid and quinolinic acid
using a targeted LCMS platform. Tryptophan 15N2, kynurenic
acid D5 and anthranilic acid 13C6 and all authentic standards
were purchased from Sigma Aldrich. Plasma (50 lL) was
extracted with 200 mL chilled acetonitrile spiked with internal
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standards, vortexed and centrifuged. The supernatant was
transferred to glass vials that were dried under nitrogen. The
dried samples were reconstituted in 50 mL of water with 0.1%
formic acid (FA). The samples are then analyzed with Agilent
6490 QQQ mass spectrometer with a 1290 Agilent LC machine
attached. LC parameters included Waters Acuity HSS T3 col-
umn, 2.1 mm � 50 mm; mobile phase A: water with 0.1% FA and
mobile phase B: acetonitrile with 0.1% FA; gradient: 0 min, 100%
A; 12 min, 60% A, 17 min, 5% A, 17.1–19 min, 100% A, flow rate:
0.375 mL/min. Mass spectrometry parameters include electron
spray ionization in positive mode, 275�C, N2 collision gas, dwell
25 V and fragmentor 380 V. The following Multiple Reaction
Monitoring transitions were followed: Tryptophan m/z 205.1 to
m/z 118 and 146; kynurenine m/z 209.1 to m/z 192.1; 3-hydroxy-
kynurenine m/z 225.1 to m/z 161.9; kynurenic acid m/z 190.1 to
m/z 144.1; anthranilic acid m/z 138.1 to m/z 120; 3-hydroxyan-
thranilic acid m/z 154.1 to m/z 80; quinolinic acid m/z 168 to m/z
78; internal standards—Tryptophan15N2 m/z 207.1 to m/z 147;
119; kynurenic acid D5 m/z 195 to m/z 149.1; and anthranilic acid
13C6 m/z 144.1 to m/z 126.1. The coefficients of variation of
metabolites—tryptophan, kynurenine, kynurenine acid, 3-hy-
droxyl kynurenine, anthranilic acid, 3-hydroxyl anthranilic acid
and quinolinic acid—were 4.3, 7.7, 5.5, 1.5, 9.2, 3.8 and 1.6%,
respectively.

Statistical analysis

Normal distribution of continuous variables was verified using
the univariate Kolmogorov–Smirnov test. All normally distrib-
uted variables were represented as mean 6 standard deviation
(SD), and the rest were represented as median and interquartile
range and log-transformed before parametric tests were ap-
plied. We used analysis of variance (ANOVA) with the Dunnett
correction for multiple comparisons to compare the means of
normally distributed baseline continuous clinical variables with
a reference category in three groups. To test the association of
categorical variables by the CVD group or by CKD stages, we
used Chi-square analysis. To identify whether the concentra-
tion of a metabolite differed significantly by study groups and
CKD stages, we used ANOVA with post hoc Bonferroni correction
with a significance threshold of P< 0.00714 (0.05/7). To test the
correlation between urine protein creatinine ratio and KP
metabolites, we use both Pearson and Spearman correlations.

We applied multinomial logistic regression models aimed at
evaluating the independence of the top differentially regulated
metabolites and estimating the risk associated with their varying
levels. We applied different models with varying degrees of
adjustments, including unadjusted top differentially regulated
metabolites—tryptophan (Model 1) and kynurenine (Model 2)—
adjusted by metabolites that have passed the statistical threshold
(Model 3), adjusted by components of Model 3 plus clinical varia-
bles that differed between the three groups: urine protein creati-
nine ratio, total cholesterol and use of diuretics and Y-blockers
(Model 4), and fully adjusted Model 5 comprised of components of
Model 4 plus age, gender, race, smoking status, diabetes, systolic
blood pressure, use of statins, serum albumin, C-reactive protein
and eGFR. We applied the z-score standardized values of the dif-
ferentially regulated metabolites in the logistic regression models.

We then calculated probabilities of CVD group membership
by discriminant analysis [23] using models consisting of the
baseline clinical variables with and without the top differen-
tially regulated metabolites. The baseline clinical variables in-
cluded age, gender, race, smoking status, diabetes, systolic
blood pressure, serum albumin, C-reactive protein, total

cholesterol, log-transformed urine protein creatinine ratio and
use of statins, diuretics and Y-blockers. We then constructed the
Receiver Operator Characteristics (ROC) curves and compared
the c-statistics using the scores of the probabilistic models
made above. The P-value difference between the two ROC
curves was calculated using the DeLong method [24]. SPSS ver-
sion 25 (Armonk, NY, USA), GraphPad Prism (San Diego, CA,
USA) and STATA version 10 (College Station, TX, USA) were ap-
plied for the analysis and generation of the figures.

RESULTS
Baseline characteristics of the three CVD groups

We examined the distribution of baseline demographic charac-
teristics, medications and comorbidities in the three groups
(Table 1). The three groups of CVD patients were matched by
age, gender, race, diabetes status and CKD stage by design. The
patients also did not differ in body weight, blood pressure, high-
density lipoprotein and triglycerides. Distribution of total cho-
lesterol, serum albumin, C-reactive protein, urine protein creati-
nine and use of diuretic and Y-blocker was different by CVD
group (P< 0.05), indicating that the incident CVD group had
higher mean cholesterol, C-reactive protein, proteinuria and
percentage of diuretic and Y-blocker use compared with other
groups. Meanwhile, the incident CVD group had lower serum al-
bumin at baseline.

Examining the three CVD groups based on their CKD stage in
three groups—CKD Stages 1 and 2, CKD Stage 3, and CKD Stages
4 and 5, the groups did not differ in demographics and lab char-
acteristics (Table 2). The three groups differ only in the use of
statins, calcium channel blockers and Y-blockers. The three CVD
groups are well represented across the three CKD groups.

Tryptophan metabolites differ between the three CVD
and CKD groups

When comparing the metabolites by CVD status, both trypto-
phan and kynurenine levels were significantly lower in patients
with incident CVD compared with patients with no history of
CVD and history of CVD (Table 1 and Figure 2). Kynurenic acid,
3-hydroxykynurenine, kynurenine and KTR are all increased with
worsening CKD stage (Table 2 and Figure 3). The other metabo-
lites anthranilic acid and 3-hydroxyanthranilic acid showed
similar trends of increase with worsening renal function though
the alterations did not reach the statistical threshold.

Tryptophan metabolites associate with new CVD events

When multinominal logistic regression models were con-
structed with tryptophan as the independent variable, each 1
SD increase in tryptophan was associated with 0.32-fold lower
odds of incident CVD [95% confidence interval (CI) 0.20–0.54;
P¼ 0.000014] compared with the no CVD group (Figure 4).
Increasing the level of adjustment from minimally adjustment
in Model 3 to full adjustment in Model 5 (included age, gender,
race, diabetes, smoking status, use of statin, diuretic and
Y-blocker, total cholesterol, serum albumin, C-reactive protein,
eGFR and proteinuria) did not alter the direction or significance
of tryptophan. However, after adjusting for tryptophan, kynure-
nine was not independently associated with incident CVD. The
c-statistic from the ROC curves constructed by the baseline clin-
ical variables had an area under the curve of 0.766, compared
with 0.823 when tryptophan and kynurenine were added
(P¼ 0.0482; Figure 5). The addition of KP metabolites—
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tryptophan and kynurenine—to base clinical variables im-
proved the ability to predict incident CVD. The ability of eGFR
and proteinuria to independently predict incident CVD and the
correlation of KP metabolites and urine protein to creatinine ra-
tio are represented in Supplementary data, Tables S1 and S2,
respectively.

DISCUSSION

Our study is the first to delineate the role of the KP pathway in
incident CVD in a CKD cohort. We used a highly sensitive and
specific targeted LCMS platform to comprehensively capture
the entire metabolome of tryptophan catabolism via the KP. Our

data demonstrate that despite impaired clearance in CKD, inci-
dent CVD is associated with low tryptophan and kynurenine
levels. The decreased tryptophan levels at baseline were able to
predict incident CVD after adjustment for traditional clinical
risk factors, suggesting a role for tryptophan catabolism in the
development of early CVD in CKD.

Recent studies have emphasized the role of inflammation in
atherosclerotic disease independent of other traditional risk
factors [25]. Extensive epidemiological studies with long follow-
ups report a strong correlation between tryptophan, kynurenine
and 3-hydroxykynurenine and cardiovascular mortality in the
general population [26]. Increased KTR is related to CIMT and
classic risk factors of atherosclerosis, suggesting a role for

Table 1. Baseline demographics and lab characteristics of the three CVD groups

Variables No CVD Old CVD Incident CVD P-value

n 46 92 46
Age, years 55.3 6 12.1 57.1 6 12.8 54.2 6 12.5 0.421
Female, % 31 (32.6) 63 (31.5) 31 (32.6) 0.988
Race, % 0.735

Black 10 (21.7) 27 (29.4) 10 (21.7)
White 31 (67.4) 58 (63.0) 33 (71.8)
Others 5 (10.9) 7 (7.6) 3 (6.5)

Diabetes 16 (34.8) 34 (37.0) 16 (34.8) 0.954
Weight, kg 90.0 6 25.2 90.4 6 25.4 64.6 6 25.4 0.599
BMI, kg/m2 32.5 6 8.3 32.0 6 8.4 33.4 6 7.6 0.652
Systolic BP, mmHg 132 6 18 139 6 23 134 6 19 0.19
Diastolic BP, mmHg 72 6 12 75 6 12 75 6 14 0.302
Total cholesterol, mg/dL 185 6 38 168 6 51 197 6 58 0.005
HDL, mg/dL 48 6 13 45 6 15 45 6 13 0.365
Triglycerides, mg/dL 193 6 124 171 6 123 216 6 127 0.134
Current smokers, % 5 (10.9) 16 (17.4) 7 (15.2) 0.603
Serum albumin, g/dL 4.03 6 0.5 3.68 6 0.7 3.92 6 0.5 0.012
C-reactive protein, mg/dLa 0.32 (0.08–0.62) 0.45 (0.15–1.30) 0.41 (0.20–0.94) 0.017
Serum creatinine, mg/dL 1.57 6 0.77 1.57 6 0.75 1.75 6 0.90 0.438
eGFR, mL/min 54 6 29 52 6 26 53 6 32 0.945
UPC, g/g creatinine 0.39 (0.16–1.09) 0.4 (0.1–1.85) 2.69 (0.4–5.64) 0.003
Medications(%)

Statin 26 (56.5) 53 (57.6) 18 (39.1) 0.102
Diuretic 16 (34.8) 54 (58.7) 29 (63.0) 0.01
Calcium channel blocker 18 (39.1) 30 (32.6) 16 (34.8) 0.75
Y-blockers 15 (32.6) 53 (57.6) 19 (41.3) 0.014
ACEI/ARB/RB 33 (71.7) 55 (59.8) 32 (69.6) 0.295
Other BP medication 8 (17.4) 29 (31.5) 9 (19.6) 0.121

CKD stage, % 0.111
Stage 1 9(19.6) 11 (12.0) 9 (19.6)
Stage 2 6 (13.0) 15 (16.3) 7 (15.2)
Stage 3 21 (45.7) 48 (52.2) 12 (26.1)
Stage 4 9 (19.6) 17 (18.5) 15 (32.6)
Stage 5 1 (2.2) 1 (1.1) 3 (6.5)

Tryptophan metabolites, lM
Tryptophan 76.2 6 25.8 74.6 6 24.7 51.5 6 24.1b 5.20E-07
Kynurenine 5.2 6 2.5 5.1 6 2.2 3.8 6 2.1b 0.003
Quinolinic acida 0.24 (0.21–0.26) 0.22 (0.21–0.25) 0.23 (0.21–0.26) 0.33

Kynurenine to tryptophan ratio 0.07 6 0.04 0.08 6 0.04 0.07 6 0.04 0.356
Hydroxykynurenine, nM 95.7 6 30.4 104.1 6 37.2 101.2 6 40.2 0.458
Kynurenic acid, nMa 0.8 (0.3–1.7) 0.8 (0.4–1.8) 0.7 (0.2–1.8) 0.77
Anthranilic acid, lM 0.27 6 0.02 0.28 6 0.03 0.27 6 0.02 0.791
3-hydroxyanthranilic acid, nM 67.0 6 75.6 73.9 6 69.0 67.6 6 60.5 0.808

Values are mean and SD or counts and relative frequency.
aUPC, C-reactive protein, quinolinic acid and kynureninc acid are presented as median and interquartile range.
bCompared with other CVD groups.

BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein; UPC, urine protein creatinine ratio; ACEI, angiotensin-converting enzyme inhibitor; ARB, an-

giotensin receptor blocker; RB, renin blocker.
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immune regulation in early atherosclerosis [10, 12]. Smaller
studies on patients with confirmed coronary artery disease con-
firm the inflammation and immune activation associated with
the upregulation of the KP compared with healthy controls [13].
In patients with stable coronary disease, increased urinary and
circulating KTR were both associated with mortality and signifi-
cant coronary event at follow-up [15, 27, 28]. In addition to fu-
ture events, high KTR is also related to initial stroke severity at
admission and subsequent long-term stroke outcomes [29].
Therefore, high KTR and upregulation of KP are related to early,
atherosclerotic disease in addition to its ability to predict future
CVD outcomes and mortality.

IDO1 is a heme enzyme that plays an immunomodulatory
role in macrophages, T cells, epithelial cells and dendritic cells
[8]. Cytokine interferon-c (IFN-c) induces IDO1 both by signal

transducer and activator of transcription 1a and interferon regu-
latory factor-1 [30], whereas lipopolysaccharide induces IDO1 in
a non-IFN-c-dependent manner by Nuclear Factor Kappa-light-
chain-enhancer of activated B cells and Mitogen-activated pro-
tein kinase pathways [31]. Human atherosclerotic lesions show
marked upregulation of IDO1 protein and gene expression, and
upregulation of IDO1-related genes and gene-enriched path-
ways [11]. Increased KP activation in human coronary plaques
also associates with tissue factor expression in activated macro-
phages in patients with unstable angina [32]. IDO1 deficiency in
mouse atherosclerosis models causes an increase in serum lip-
ids, especially triglycerides [33]. Cole et al. demonstrated that
whole-body IDO1 deficiency and IDO1 inhibition with methyl
tryptophan both increased atherosclerosis, vascular inflamma-
tion and plaque vulnerability in ApoE knock-out mice [34, 35],

Table 2. Baseline demographics and lab characteristics by CKD status

Variables CKD 1–2 CKD 3 CKD 4–5 P-value

n 57 81 46
Age, years 48.2 6 11.9 58.9 6 11.2 60.1 6 11.6 <0.001
Female, % 41 (71.9) 54 (66.7) 30 (65.2) 0.729
Race, %

Black 13 (22.8) 23 (28.4) 11 (23.9) 0.878
White 38 (66.7) 52 (64.2) 32 (69.6)
Others 6 (10.5) 6 (7.4) 3 (6.5)

Diabetes, % 12 (21.1) 33 (40.7) 21 (45.7) 0.017
Weight, kg 90.0 6 24.4 92.9 6 24.8 90.0 6 27.6 0.749
BMI, kg/m2 32.1 6 8.0 33.2 6 8.1 31.8 6 8.6 0.587
Systolic BP, mmHg 132 6 19 139 6 23 136 6 20 0.139
Diastolic, mmHg 77 6 15 74 6 10 72 6 13 0.153
Total cholesterol, mg/dL 189 6 48 179 6 55 166 6 46 0.068
HDL, mg/dL 47 6 12 46 6 15 44 6 15 0.511
Triglycerides, mg/dL 214 6 163 186 6 113 159 6 78 0.081
Current smokers, % 7 (12.3) 12 (14.8) 9 (19.6) 0.587
Serum albumin, g/dL 3.79 6 0.7 3.93 6 0.6 3.92 6 0.5 0.345
C-reactive protein, mg/dLa 0.40 (0.2–1.1) 0.44 (0.2–0.96) 0.29 (0.1–0.7) 0.244
Serum creatinine, mg/dL 0.88 6 0.20 1.52 6 0.29 2.69 6 0.69 <0.001
eGFR, mL/min 89 6 18 44 6 8 23 6 5 <0.001
UPC, g/g creatininea 1.05 (0.15–2.87) 0.40 (0.10–1.69) 0.87 (0.28–2.92) 0.155
Medications, %

Statin 19 (33.3) 50 (61.7) 28 (60.9) 0.002
Diuretic 25 (43.9) 48 (59.3) 26 (56.5) 0.185
Calcium channel blocker 7 (12.3) 38 (46.9) 19 (41.3) <0.001
Y-blockers 9 (15.8) 49 (60.5) 29 (63.0) <0.001
ACEI/ARB/RB 39 (68.4) 55 (67.9) 26 (56.5) 0.359
Other BP medication 9 (15.8) 26 (32.1) 11 (23.9) 0.091

CVD group
Never 15 (26.3) 21 (25.9) 10 (21.7) 0.037
New 16 (28.1) 12 (14.8) 18 (39.1)
Old 14 (45.6) 21 (59.3) 11 (39.1)

Tryptophan metabolites
Kynurenic acid, nMa 0.27 (0.03–0.44) 0.88 (0.49–1.60) 1.92 (1.36–3.05) 1E-17
Kynurenine to tryptophan ratio 0.06 6 0.03 0.08 6 0.03 0.09 6 0.04 5E-08
Hydroxykynurenine, nM 86.0 6 31.0 98.9 6 35.9 124.2 6 36.0b 4E-07
Kynurenine, lM 3.9 6 2.1 5.1 6 2.1b 5.6 6 2.3 b 1E-05
Anthranilic acid, lM 0.27 6 0.02 0.27 6 0.02 0.29 6 0.02b 0.001
3-hydroxyanthranilic acid, nM 57.2 6 45.6 70.5 6 70.7 87.5 6 84.3 0.081
Quinolic acid, lMa 0.21 (0.21–0.25) 0.23 (0.21–0.26) 0.23 (0.21–0.26) 0.055
Tryptophan, lM 69.5 6 27.3 71.4 6 27.6 65.2 6 24.5 0.455

Values are a mean and SD or counts and relative frequency.
aUPC, C-reactive protein, kynurenic acid and quinolinic acid are presented as median and interquartile range.
bCompared with other CVD groups.

BMI, body mass index; BP, blood pressure; HDL, high-density lipoprotein; UPC, urine protein creatinine ratio; ACEI, angiotensin-converting enzyme inhibitor; ARB, an-

giotensin receptor blocker; RB, renin blocker.

Tryptophan associates with CVD risk in CKD | 1101



whereas administration of the anti-inflammatory and anti-
oxidative tryptophan catabolite 3-hydroxy-anthranilic acid in
these models facilitated a significant decrease in aortic lesions
and overall plasma cholesterol and triglyceride levels [36].
However, IDO1-dependent interleukin (IL)-10 inhibition via KP

exacerbates atherosclerosis in mice [37]. In addition to the dem-
onstrated effects on atherosclerosis, kynurenine and KTR are
related to vascular tone, as kynurenine is a known vasodilator
[38]. Therefore, modulation of IDO1 activity and KP pathway di-
rectly affects the lipid profile and atherosclerotic lesions in ani-
mal models.

Hyperuricemia increases circulating tryptophan metabo-
lites by hampering renal tubular transporters multidrug resis-
tance protein-4, breast cancer resistance protein and organic
anion transporter-1 [39, 40]. Kynurenine and KTR were all in-
creased in CKD patients when compared with controls and
also associate with CKD severity [17]. Dialysis does not remove
these metabolites altogether and does not alter IDO1 activity
[16]. However, plasma levels of tryptophan were lower in ESRD
patients compared with healthy controls and inversely associ-
ated with worsening CKD stages, while the other KP metabo-
lites increased with renal dysfunction [18, 41]. In uremic rats,
tryptophan levels are decreased, and other KP metabolites
were increased after nephrectomy [42], whereas IDO1 activity
remains unchanged in the kidney [42, 43]. Worsening renal
function is characterized by increased cytokines like IL-6,
tumor necrosis factor-a (TNF-a), IL-1Y and C-reactive protein.
IDO1 activity correlates with markers of systemic
inflammation—neopterin levels, TNF-a, TNF-a receptor-1, IL-6
and C-reactive protein—in CKD and dialysis patients [41, 44].
Similarly, fibrinogen and KP metabolites are associated with
hypercoagulability in dialyzed patients [45].

Inflammatory markers—C-reactive protein, TNF-a, IL-6, se-
rum albumin and soluble TNF-a receptor 1—and oxidative
stress markers like copper/zinc superoxide dismutase, malon-
dialdehyde and total peroxide were all positively associated
with KP metabolites and CVD in CKD and ESRD [16, 18, 20, 46].
Furthermore, many markers of endothelial dysfunction such as
von Willebrand factor, thrombomodulin and soluble adhesion
molecules—soluble intercellular adhesion molecule-1, soluble
vascular adhesion molecule-1, soluble E-selectin and soluble P-
selectin—are similarly associated with the kynurenines and
CVD in CKD patients [6, 21]. 3-Hydroxyanthranilic acid levels in
CKD are associated with the CC-chemokine family, which are
markers of macrophage inflammation in atherosclerotic lesions
like monocyte chemoattractant protein 1 or Chemokine (C-C
motif) ligand 2, macrophage inflammatory protein-1 a and beta
(CCL3 and 4) [47]. More specifically, quinolinic acid and 3-
hydroxykynurenine levels are both associated with increased
CIMT in ESRD and CKD [6, 18, 20]. Our study confirms these find-
ings by demonstrating evidence of KP activation in patients

FIGURE 1: Tryptophan metabolites are altered in early CVD in CKD. Tryptophan

catabolism to kynurenine and other downstream metabolites represented in

oval shapes; enzymes in this pathway: tryptamine dioxygenase (TDO); IDO1,

kynureninase (Kyn); kynurenine aminotransferase (KAT); kynurenine monooxy-

genase (KMO); 3-hydroxyanthranilic acid dioxygenase (3-HAA dioxygenase);

metabolites that are decreased in the new-onset CVD are represented in green

ovals and enzymes that potentially altered are represented in red boxes.

(Adapted from Figure 1 in Badawy et al. [7].)

FIGURE 2: Tryptophan metabolites by cardiovascular groups. Tryptophan

metabolites that are altered by the cardiovascular group are represented as box

plots that represent median and interquartile range. The error bars represent

the 5–95% range. (A) Tryptophan and (B) kynurenine.

FIGURE 3: Tryptophan metabolites altered by CKD stage. Tryptophan metabolites that are elevated with increasing CKD stage are represented as bar plots that repre-

sent median and interquartile range. The error bars represent the 5–95% range. (A) Kynurenic acid, (B) hydroxykynurenine and (C) kynurenine.
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with no history of CVD who develop CVD shortly into follow-up.
This KP flux is not present in established CVD or in perhaps
patients with more quiescent disease.

Static metabolite pools are a combination of generation,
downstream enzyme activity and excretion. KTR and kynure-
nine metabolites are elevated with increasing CKD stage in ex-
perimental CKD models as a result of both increased synthesis
and impaired clearance [42]. Ninety percent of tryptophan in-
take not used in protein synthesis is metabolized by the KP, 1–
2% is synthesized to serotonin, and only about 4–6% of trypto-
phan is consumed by microbiota to produce tryptamine and
various indole derivatives like indoxyl sulfate [48]. Indoxyl sul-
fate and Indole-3-acetic acid are both independently linked to
CVD in CKD patients, and multiple factors, including protein in-
take, tryptophan levels and inflammation, influence indoxyl
sulfate levels [49]. We are limited by the lack of simultaneous
measurement of indole derivatives, but increased microbial
tryptophan consumption to produce indole metabolite could be
one possible explanation for the association of decreased tryp-
tophan levels to incident CVD in the CKD population. In our
study, the low levels of tryptophan and kynurenine in the inci-
dent CVD group despite similar renal function compared to the
other CVD groups could indicate altered downstream flux into
the KP pathway. The real dynamic metabolite flux and source of
these metabolites in plasma can only be delineated by labeled
tracer in vivo flux in experimental models.

Our study has several limitations, including the small size
and the absence of cytokine and indole derivative profiling. We
also lack cardiovascular testing suggesting subclinical disease
that could have confirmed the role of altered KP metabolism in
early pathogenesis of atherosclerotic disease in CKD. All the
CVD outcomes in our study are self-reported and confirmed
with review of electronic records and ICD-9 codes. The three
CVD groups differed in levels of serum albumin, C-reactive pro-
tein, baseline proteinuria and total cholesterol. However, these
variables were adjusted for in the regression models. KP metab-
olites and CVD risk increase with worsening renal function, but
in our study within CVD groups of comparable renal function,
low tryptophan levels are associated with incident CVD in CKD
patients. This could be explained by unaccounted for subclinical
comorbidities in the regression models, increased tryptophan
consumption either to create indole derivatives that are directly
linked to CVD in CKD patients or increased flux into the down-
stream KP metabolites in the incident CVD group. Urine excre-
tion of these metabolites and specific information about the
extrahepatic KP flux in the atherosclerotic lesions would have
added more information on the systemic flux of these products.
Mechanistic evidence of the role of the KP in the development
of atherosclerotic lesions, leading to coronary artery disease,
needs to be tested in animal models. A more extensive follow-
up study of CKD patients without CVD at baseline but that de-
velop CVD during a more extended follow-up period accompa-
nied by yearly sampling will shed light on the predictive ability
of these biomarkers of early atherosclerotic disease.

In conclusion, this study is the first to systematically study
the association of KP with cardiovascular outcomes in CKD,
thus providing insight into the tryptophan catabolism preced-
ing CVD in this high-risk population. Clinically, as evidenced by
the regression models and the ROC curves in our study, altered
tryptophan and kynurenine levels associate with incident CVD
events. Larger cohorts will be able to confirm the biomarker po-
tential of these metabolites to identify at-risk CKD patients with
active CVD. Currently, these findings are associative, and we
need to confirm the contribution of this pathway in CKD-associ-
ated CVD pathogenesis. Therefore, the KP metabolites have the
potential to direct therapy to patients at risk for CVD, and if
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FIGURE 5: ROC curve prediction of new CVD in CKD patients. ROC curve using

probabilities of group membership in incident cardiovascular group using dis-

criminant analysis controlling for base clinical model including age, gender,

race, smoking status, body mass index, systolic blood pressure, serum albumin,

serum C-reactive protein, eGFR, total cholesterol, urine protein creatinine ratio

and use of statins, Y-blockers and diuretics results in an area under the curve

(AUC) of 0.766 and addition of tryptophan (TRYP) and kynurenine (KYN) to the

base clinical model increases the AUC to 0.823 (P ¼ 0.0482).

FIGURE 4: Forest plot representing the relative risk of CVD. Forest plot describes

multinomial logistic regression models with dots representing the odds ratio and

the error bars representing 95% CI. The odds ratios of incident and old CVD groups

compared with the no CVD group (reference) are represented for each model.

Model 1 includes unadjusted tryptophan; Model 2 includes unadjusted kynure-

nine; Model 3 is tryptophan adjusted by kynurenine (kynure); Model 4 includes

tryptophan adjusted by kynurenine, total cholesterol, urine protein creatinine ratio

and the use of Y-blockers and diuretic use; Model 5 includes the tryptophan fully

adjusted for kynurenine, age, gender, race, smoking status, body mass index, sys-

tolic blood pressure, total cholesterol, serum albumin, serum C-reactive protein,

eGFR, urine protein creatinine ratio and use of statins, Y-blockers and diuretics.
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their causative role is confirmed, could open up therapeutic tar-
gets to modulate CVD in CKD patients.

SUPPLEMENTARY DATA

Supplementary data are available at ckj online.
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