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Abstract: Finger vein recognition has drawn increasing attention as one of the most popular and
promising biometrics due to its high distinguishing ability, security, and non-invasive procedure.
The main idea of traditional schemes is to directly extract features from finger vein images and
then compare features to find the best match. However, the features extracted from images contain
much redundant data, while the features extracted from patterns are greatly influenced by image
segmentation methods. To tackle these problems, this paper proposes a new finger vein recognition
algorithm by generating code. The proposed method does not require an image segmentation
algorithm, is simple to calculate, and has a small amount of data. Firstly, the finger vein images were
divided into blocks to calculate the mean value. Then, the centrosymmetric coding was performed
using the matrix generated by blocking and averaging. The obtained codewords were concatenated
as the feature codewords of the image. The similarity between vein codes is measured by the
ratio of minimum Hamming distance to codeword length. Extensive experiments on two public
finger vein databases verify the effectiveness of the proposed method. The results indicate that our
method outperforms the state-of-the-art methods and has competitive potential in performing the
matching task.

Keywords: finger vein recognition; centrosymmetric coding; minimum Hamming distance; generating
code

1. Introduction

Finger vein recognition has emerged from a fairly new topic a few years ago to
significant deployed systems and has demonstrated a reasonably good recognition per-
formance [1,2]. It can capture the texture features under the blood vessels from different
viewpoints such as palm side [3], dorsal side [4], and periphery of the finger [5]. Compared
with other biometric technologies, a finger vein image has the following advantages for
personal authentication: (1) Safety: vein pattern is an internal feature and not easy to repli-
cate [6]; (2) Living body identification: only the vein in a living finger can be captured and
further used in identification [7]; (3) Non-contact: the aging and wear of the skin surface
can be ignored because finger veins are located in the subcutaneous layer of the skin.

In recent years, a variety of methods have been proposed for finger vein recognition,
which can be roughly divided into the following categories according to the different
methods of feature extraction.

1.1. Vein Pattern Methods

The method based on vein pattern is to segment vein pattern from finger vein image,
and match vein pattern by geometric shape or topological structure. Typical methods
include repeated linear tracking, RLT [8], maximum curvature, MCP [9], mean curvature,
MC [10,11], Gabor [12], etc. Recently, some improvements have been made to robust
vein pattern extraction. Yang et al. [13] proposed a finger vein code index method, and
combined it with the finger vein pattern matching method into an integrated framework
to improve accuracy and efficiency. Experimental results indicate that the integration
framework highly improves the identification efficiency with a slight improvement on the

Sensors 2022, 22, 2234. https://doi.org/10.3390/s22062234 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22062234
https://doi.org/10.3390/s22062234
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-5813-5763
https://doi.org/10.3390/s22062234
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22062234?type=check_update&version=2


Sensors 2022, 22, 2234 2 of 14

accuracy. However, due to environmental and other factors, only a small number of veins
may be captured in the finger vein images, or a large number of veins may be captured but
with irregular shadows and noise. For such images, it is difficult to avoid oversegmentation
of the vein pattern or undersegmentation of the vein pattern, which makes it a challenge to
represent finger vein images effectively. Based on this, the authors in [14] used a low-rank
representation to extract as much noise-free discriminative information from finger vein
images for more effective and robust finger vein recognition. This scheme can extract more
important information from low-quality images.

1.2. Feature Points Matching Methods

The method based on feature points matching is where matching is performed by
detecting minutiae points of the image, or other types of feature points. Minutiae includes
bifurcation points and end points. Typical methods based on minutiae include minutiae
matching based on improved Hausdorff distance matching [15] and minutiae matching
based on singular value decomposition [16]. The minutiae-based method needs to segment
the finger vein similar to in the vein-pattern-based method, and then extract the minutiae
from the texture. In finger vein image, the number of minutiae is small, which is a problem
in the application of minutiae-based method to the recognition task of finger vein image.
In [17], a zone-based minutia matching technique, which combines minutia matching
with traditional region-of-interest (ROI)-based method, was designed to deal with these
problems. The author selected the minutiae in a rational neighborhood zone for matching,
abandoning unnecessary matching, and avoiding false matching to some extent. In addition,
the SIFT [18,19] method can extract more feature points from finger vein images. However,
the fuzzy vein patterns of finger vein images can easily lead to false detection of feature
points, and the deformation of vein lines caused by finger bending or rotation is not
considered. Matsuda et al. [20] proposed a new feature-point-based matching method by
using the curvature of the image-intensity profiles to extract feature points, which is more
robust to both irregular shadows and texture distortion, and obtained higher matching
accuracy than the SIFT method. However, the scheme has high time cost and needs to
consider the normalization of image angle and scale in practical applications.

1.3. Statistical Characteristic Analysis Methods

The basic principle of statistical-characteristics-analysis-based schemes, such as princi-
pal component analysis (PCA) [21,22], linear discriminant analysis (LDA) [23], and sparse
representation (SR) [24], does not need to extract finger vein lines, but uses all image
information (including vein region and non-vein region) for identification. Wang et al. [21]
used PCA to reduce the dimensionality of the image to obtain the main components of the
finger vein image. However, this method does not consider the supervision information,
and when the sample size is large, the time complexity is high. On the basis of PCA dimen-
sion reduction, Wu and Liu [23] proposed LDA to further reduce dimension and extract
distinguishing features. This method takes into account the supervision information, but
it is difficult to calculate when the amount of data is large and the dimensionality is too
high. Xin et al. [24] successfully applied SR to finger vein recognition tasks. Furthermore,
Li et al. [25] used sparse feature descriptors to adaptively project directional difference
vectors into a feature space with discriminative binary codes to better represent the di-
rectional features of finger vein images, increasing the distance of inter-instance samples
while reducing the distance of intra-instance samples. The above methods can reduce the
preprocessing steps and have small space occupation of feature vectors. However, these
methods take the whole image as data, learn the overall structure of all images, and cannot
sufficiently consider the local detail features of the image, which has a detrimental influence
on the accuracy of finger vein recognition.
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1.4. Local Features Methods

The method based on local features, which also does not need to segment the image,
is widely used in finger vein recognition [26,27]. These methods include local binary
mode (LBP) [28] and local derivative mode (LDP) [29]. Many LBP variants have also
been proposed [30]. Zhang et al. [31] presented directional binary code, which is a new
LBP variant. Yang et al. [32] suggested to use LBP-based personalized best bit mapping.
Experimental results show that the method not only has better accuracy, but also has
higher reliability and robustness. Recently, Petpon et al. [33] came up with a new LBP
variant called local line binary pattern (LLBP), and soon Rossi et al. [34] applied it in
finger vein recognition. Its accuracy was better than that of LBP and LDP, and it was
applied to near-infrared face recognition. The traditional local binary feature extraction
method extracts features from each pixel point in the image, which has a large number
of features and contains redundant information, and the overextraction process does not
perform the dimensionality reduction operation. For the LBP dimensionality problem,
Li et al. [35] proposed the partitioned local binary pattern (PLBP) algorithm for dorsal hand
vein recognition, and the choice of partition size has a great impact on the recognition
rate. The higher the number of partitions, the higher the recognition rate. When the
number reaches a certain level, the recognition rate does not decrease. Liao et al. [36] used
multi-scale block local binary pattern (MB-LBP) for face recognition. The MB-LBP operator
encodes not only the microstructure of the image pattern but also the macrostructure,
providing a more complete image representation than the basic LBP operator. In addition,
the centrosymmetric local binary pattern (CS-LBP) was proposed in [37], which has only
1/8 of the feature dimension of LBP and is also faster to process than LBP. However, CS-
LBP analyzes texture features from a microscopic perspective, ignoring the larger texture
structure features, and few studies use CS-LBP directly.

1.5. Deep Learning Methods

In the field of finger vein verification, the deep-learning (DL)-based approach has been
successfully applied in recent years [38]. It consists of a deep neural network (DNN), which
can provide powerful image processing capabilities without any prior knowledge [39],
and has good adaptive performance in noise image processing and feature representation
learning [40]. For example, a deep convolutional neural network (CNN) with five convo-
lution layers and two fully-connected layers was proposed to design a new finger vein
recognition method, which is able to achieve better performance than traditional algo-
rithm [41]. The multi-receptive field bilinear convolutional neural network (MRFBCNN)
network designed in [42] can obtain the second-order features of finger veins and better dis-
tinguish finger veins with small differences between classifications. Moreover, a lightweight
neural network is used to reduce the network parameters and computational complexity.
Fairuz et al. [43] developed a finger vein identification system using transfer learning of
alexnet model and tested it with receiver operating characteristic curve (ROC) curves to
analyze the outcomes of the experiments, with satisfactory results. Convolutional neural
networks have been proven to have strong feature representation ability. However, they
often require large training samples and high computation that are infeasible for real-time
finger vein verification. To address this limitation, Fang et al. [44] proposed a lightweight
DL framework for finger vein verification, and proved that the two-channel network can
be trained by increasing the training sample through an exquisite topological structure.
However, the proposed system is not yet perfect. For example, since the number of training
samples is not sufficient to train a deep network for learning better invariant features, a
better preprocessing method that can reduce finger vein rotation and displacement may
improve the system.

1.6. Contribution

In summary, vein pattern-based methods and feature point matching methods need
to segment the vein pattern and are affected by the image quality. Most of the methods
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based on the principle of statistical feature analysis ignore the local detail information of
the image, and the DL approach relies on a large dataset and computational power. In
addition, the finger vein recognition methods based on local binary features mostly use
manually designed local features, which have weak differentiation ability and cannot reflect
the essential features of the data. Moreover, the dimensionality is too high, the algorithm is
complicated, and the processing speed is slow.

To solve the LBP dimensionality problem, inspired by the work of MB-LBP and CS-
LBP, we propose a new operator BACS-LBP to encode images for recognition, as shown in
Figure 1. Our main contributions are as follows:

1. CS-LBP analyzes texture features from a microscopic perspective, which will ignore
large texture structures by direct use for finger vein recognition, and the block mean
matrix in [36] emphasizes the local macro features. Therefore, we add the block
averaging idea to the CS-LBP, which can take into account local macro and micro
information and make up for the shortage of CS-LBP. The experimental results show
that our method has good recognition rate.

2. Our method combines local macroscopic features and microscopic features, which
can describe image features more comprehensively. Moreover, the characteristic
dimension of BACS-LBP is only 1/8 of that of LBP. Consequently, our method has less
dimension and less data redundancy.

3. Our method is computationally simple, with no need for segmentation of the im-
age and complex preprocessing process, so we reduce the time cost compared to
traditional methods.

4. In the matching process, the minimum Hamming distance is used for matching: save
multiple templates instead of one during registration, compare the samples with
all templates during verification, and take the ratio of the minimum value to the
codeword length as the matching score.
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Figure 1. Overall framework of the proposed method.

The rest of the paper is organized as follows. In Section 2, we discuss the proposed
method. Experimental results are presented and the analysis of our approach is presented
in Section 3. Finally, Section 4 concludes the paper.

2. Proposed Approach

In this section, our proposed approach is discussed concretely, and Figure 1 shows
the overview of the proposed approach. The following sections detail the different tasks
involved in our approach.

2.1. Calculating the Matrix after Blocking and Averaging

The first step of BACS-LBP needs to calculate the block and average matrix. To achieve
this, we first divide the finger vein image into a certain number of blocks. The local features
of each region of the image usually differ greatly. If the entire image is processed directly,
the local differences information will be lost. The block method can enhance the robustness
of the image to noise and improve the coarse-grained grasp of the overall information.
Theoretically, smaller and more refined blocks can bring better local description capabilities,
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but they can also produce higher-dimensional composite features, increasing the time
complexity of calculations, and too-small blocks will lose statistical significance, cause
overfitting phenomenon, and reduce the recognition rate. In this paper, the optimal number
of blocks is selected in the experiment to balance the contradiction between the recognition
time and the recognition accuracy, which is described in detail in the experimental analysis.

The block method is as follows: let I be the finger vein image, and then divide I into a
number of small blocks each of size a× b pixels, where a, b� A, B, A× B being the size of
I. Specifically, I can be denoted as a p× q matrix of all blocks, as follows.

I =


I11 I12 · · · I1q
I21 I22 · · · I2q
...

...
. . .

...
Ip1 Ip2 · · · Ipq

, (1)

where Iij is the (i, j)-block of I. Note that the blocks, which are on the boundary, may not
be of equal size, so we add element 0 to make it equal.

After dividing into blocks, we will calculate the average value of each small block,
and the resulting matrix will be used as the input part of the encoding. The whole process
of calculating the block and average matrix is shown in Figure 2.
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Figure 2. Process of BACS-LBP algorithm.

2.2. Generating Code

The second step of the BACS-LBP algorithm is to carry out centrosymmetric coding.
Specifically, we divide the matrix obtained from the appeal into 3× 3 small matrices (0
is used to supplement when the boundary is insufficient). The idea of CS-LBP encoding
is adopted, that is, the small matrix is encoded according to Equation (2) to obtain the
binary sequence xi. All binary sequences xi are connected to form the vein codeword X.
The process can be expressed by the following Equation (3) or Figure 2:

xi,j =

{
1, nj ≥ nj+4;
0, nj < nj+4.

(2)

x = {x1||x2|| · · · ||xm}, (3)

where j = 1, 2, 3, 4, xi,j is the j-th element in xi, and xi is the binary sequence of each small
matrix, and x is the binary code generated by the whole graph. The pixel value of a point,
in the field of any point in the image, is marked as nj, j = 1, 2, · · · , 8. In Figure 3, we show
how nj is obtained from the small matrix [mi,j]

3
i,j=1.
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Figure 3. Example of matrix [mi,j]
3
i,j=1 to nj.

In the process of obtaining the biological feature binary codes through appeal, we
only used simple “comparison” and “connection” operations without complicated calcu-
lations. Therefore, the proposed method has low computational complexity and faster
coding speed.

2.3. From Code to Matching

The minimum Hamming distance was proposed to judge the similarity of the enrolled
code and the sample code. The proposed method is different from other methods that use
Hamming distance matching. In the registration stage, we select binary codes of N images
for registration as template, i.e., there are multiple templates {x(n)}N

n=1 saved instead of
one, where x(n) is obtained from the n-th image by Equation (3). In the matching stage,
we calculate the Hamming distance between the sample code and all the enrolled codes,
and take the minimum Hamming distance value. The ratio of this value to the length of
the codeword is taken as the matching score between the sample code and all the enrolled
subjects. This method of measuring similarity can reduce the intra-instance distance and
increase the inter-instance distance, thereby increasing the recognition rate.

Concretely, the matching score definition of the proposed method and the entire
encoding process can be summarized by Algorithm 1, and ⊕ denotes the XOR operator,
which is used to highlight the differences and similarities between two binary sequences.

Algorithm 1 The calculation of the proposed method.
Input: Image I
Output: The matching score (Smatching)
1: I = Blocking(I)
2: for i = 1→ p do
3: for j = 1→ q do
4: I′(i, j) = mean(Iij)
5: end for
6: end for
7: Divide I′ into m blocks of 3× 3 matrix, i.e I′1, ..., I′m
8: Calculate xi = CS-LBP(I′i)
9: Set x = (x1||x2|| · · · ||xm)

10: The enrolled binary codes: {x(n) : n = 1, 2, · · · , N}
11: for n = 1→ N do
12: Sn = sum(x(n) ⊕ x)
13: end for
14: Smatching =

min
n

Sn

Length(x)
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3. Experiments and Experimental Results
3.1. Databases

Two open finger vein databases are used to evaluate the performance of our proposed
approach. As some databases only include six images of each finger, we ignore the fingers
with six images and only use the fingers with 12 images to ensure the consistency of all
databases. The details of these databases are given below.

(1) HKPU Database [12]: The available database of Hong Kong Polytechnic University
(HKPU) has 3132 images from 312 fingers; all the images are in bitmap format with
a resolution of 513× 256 pixels. The finger images were acquired in two separate
sessions. Each of the fingers provided six image samples in each session, resulting in a
total of 12 images of finger obtained, but in the database version we used, only the
first 210 fingers had 12 pictures, and others each has six images.

(2) USM Database [45]: The database of Universiti Sains Malaysia (USM) consists of
492 fingers, and every finger provided 12 images. The spatial resolution of the captured
finger images was 640× 480. This database also provides the extracted ROI images
for finger vein recognition using their proposed algorithm described in [45].

Table 1 gives the detailed information of the two databases we used.

Table 1. The details of databases.

DB Finger
Number

Number per
Finger

Size of Raw
Image ROI Image

HKPU 312 6/12 513× 256 Using the method of [12]
USM 492 12 640× 480 From DB

3.2. Experimental Protocols

Two experiments are designed here. In the first one, we evaluated the parameters (i.e.,
the template number and decision threshold (DT)) that affect the recognition performance,
and selected the most appropriate value for the following experiments. In the second
experiment, we compared the proposed method with some typical recognition methods
and some state-of-the-art finger vein recognition methods to prove the potential of our
method in the recognition task.

The database setup of the recognition task in the experiment is given. For the open
database HKPU, we only consider the fingers with 12 pictures. There are 210 finger samples
in total. The USM database has 12 images of all fingers, and the images in the whole
database are used for the experiment. It is observed that values of the size of the block
matrix have a very small impact on the performance of the algorithms, and there are
differences in image size between the two databases. Therefore, the effect of block size on
the recognition rate is not listed in the result. In the experiment, we select the appropriate
block size directly; for HKPU and USM data, the block size is 3× 8 and 5× 5, respectively.
Equal error rate (EER) and recognition rate are employed to assess recognition performance.
The EER means the value whereby the false acceptance rate (FAR) is equal to the false
rejection rate (FRR). We use the intra-instance (1:1) and inter-instance (1:N) as the main
indicators to measure the test identification.

3.3. Selection of Parameter Value

In this experiment, we discuss the performance of the proposed method with distinct
parameter values, which contain the number of template and decision threshold (DT). This
experiment is implemented on the most popular HKPU database and USM database. We
fix the DT when considering the influence of different template numbers on the recognition
rate, and vary the template number from 2 to 8, with 2 as the interval. When the number
of templates is N, the first N images of the database are selected as the template, and the
remaining images are used as the test samples. The recognition performance are listed in
Table 2, and Figure 4 shows the ROC curves of two databases under different templates.
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Table 2. The recognition performance under different number of templates.

DB The Template
Number 2 4 6 8

HKPU EER (%) 6.88 5.52 2.86 2.91
USM EER (%) 2.35 2.08 1.16 0.92
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Figure 4. ROC curves with different templates on two databases: (a) on HKPU database; (b) on
USM database.

It can be distinctly found from the above results that the recognition performance
enhances by increasing the number of templates. Plainly, larger number of templates can
more effectively extract details of finger vein patterns, which contributes to recognition
performance. Furthermore, the results also show that, when the number of templates
varies from six to eight, to improve recognition performance is not significant. Consider-
ing the convenience of image collection in practical application, we use six templates in
following experiments.

Next, we fix the template number at six and change the number of matching score
from 0.18 to 0.21, with 0.01 as the interval to obtain the DT. The recognition rate of DT
under different values is presented in Table 3.

Table 3. The recognition rate under different DT values.

DB The Decision
Threshold Intra-Instance (1:1) Inter-Instance (1:n)

DT Value Total
Times

False
Times

Recognition
Rate (%)

Total
Times

False
Times

Recognition
Rate (%)

HKPU

0.18 1260 55 95.6 263,340 2465 99.1
0.19 1260 43 96.6 263,340 5228 99.0
0.20 1260 34 97.3 263,340 9899 96.2
0.21 1260 29 97.7 263,340 16911 93.6

USM

0.18 2952 83 97.1 1,449,432 2000 99.7
0.19 2952 57 98.1 1,449,432 5127 99.6
0.20 2952 39 98.7 1,449,432 11263 99.2
0.21 2952 32 98.9 1,449,432 20730 98.7

From the results, we can see that there is a critical DT value. If this threshold value
is exceeded, the 1:1 recognition rate rises and the 1:n recognition rate decreases. This
threshold will vary with the change of finger vein database, which means that different
finger vein databases need to adjust the corresponding threshold to obtain the best recog-
nition accuracy. For clarity, we use the equal error rate (ERR) indicator to compare the
different performances.
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3.4. Impact of Block Size on Performance

In our previous study [30], we found that for a given image size, the higher the
number of blocks, the higher the recognition rate, and when the number of blocks reaches
a certain number, the recognition rate does not decrease. Based on this, we mainly explore
the effect of the number of blocks on the performance of the proposed scheme in this
section. Here, we conduct experiments on the HKPU database. First, we fix the number of
templates to six and vary the block size S to investigate the EER values under different S
(S = 3× 4, 3× 8, 9× 8, 9× 56, 27× 56). The results are shown in Table 4 (Figure 5).

Table 4. The recognition performance under different block size.

S 27 × 56 9 × 56 9 × 8 3 × 8 3 × 4

EER (%) 28.54 14.21 7.54 2.86 3.73

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
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Figure 5. Performance comparison under different block size.

From Table 4, it can be observed that the EER is slowly getting smaller as the number
of blocks increases, i.e., the S gradually decreases, but when the S decreases from 3× 8 to
3× 4, the EER shows an increasing trend again. This can be explained by the fact that a
larger number of blocks leads to insufficient texture information between different images,
and a smaller number causes local noise, which leads to a lower recognition rate. Therefore,
on the HKPU database, we set the S to 3× 8. The selected block size naturally differs due
to the differences in image sizes between databases. Our experiments on the USM database
show that a block size of 5× 5 is the most suitable, and is not listed here.

3.5. Evaluation of BACS-LBP

In this section, to verify the performance of the proposed scheme, we test LBP, MB-LBP,
CS-LBP, and BA-CSLBP operator on the HKPU database with the same parameters. The
results are shown in Figure 6, and it can be seen that our operator exhibits better perfor-
mance. This is because our operator takes into account both macroscopic and microscopic
local information and has a better representation of the image.

In addition, the time we spend to extract a sequence of images and the time con-
sumed by the proposed scheme to match each image with other schemes are given in
Table 5. The numerical results of the experiments show that our method is simpler and
less computationally intensive, which also means that it is well suited for embedded and
mobile systems.
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Figure 6. Performance comparison of LBP, MB-LBP, CS-LBP, and BACS-LBP.

Table 5. Time comparison.

Methods Feature Extraction Matching Time per
Image DB

ASAVE [2] 19.7 s 65.7 ms HKPU
CPBFL-BCL [3] - 32.5 ms USM

Wide Line Deterctor [7] 17.9 s 19.5 ms HKPU

This paper 13.4 s 3.6 ms HKPU
15.1 s 3.7 ms USM

Furthermore, we designed relevant experiments to test the sensitivity of the method,
i.e., rotate the image or add noise, and compare the performance with the original image.
The tests were performed on the HKPU database, as shown in Figure 7. We added a total
of two types of noise, i.e., Gaussian noise and pepper noise. “Gaussian noise image1”
and “Gaussian noise image2” in Figure 7 indicate the addition of Gaussian noise at a
signal-to-noise ratio of 30 dB and 40 dB, respectively. The results in the figure clearly show
that adding noise and rotation have little effect on the performance, which further confirms
the robustness of the proposed method.
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Figure 7. Robustness testing.

3.6. Compared with Previous Work

In this section, we examined the performance of the proposed method in recognition
mode by comparing with the various existing finger vein recognition methods. The compar-
ison is performed on HKPU databases and USM databases. The performance is reflected by
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the EER. Table 6 shows the EER of different methods on HKPU databases. Specific analysis
of these results is described below.

Table 6. Comparison of the recognition performance of our proposed method and existing methods
in two databases.

DB Method Algorithm EER (%)

HKPU

No segmentation

LBP [28] 4.2
MB-LBP [36] 4.1

ELBP [16] 5.59 *
CS-LBP [37] 3.97

(2D)2 PCA [22] 3.57

Need segmentation

RLT [8] 16.31 *
MC [10] 4.03
MCP [9] 18.99 *
CRS [11] 2.96

Gabor [12] 4.61 *
ASAVE [2] 2.91 *
WVI [13] 3.33 *

This paper (BACS-LBP) 2.86

USM
No segmentation BMSU-LBP [27] 1.89 **

CS-LBP [37] 6.06

This paper (BACS-LBP) 1.16
* Cited from [13]; ** Cited from [27].

First, our proposed method is compared with the algorithm without segmentation
(e.g., LBP [28], ELBP [16], MB-LBP [36], (2D)2 PCA [22], BMSU-LBP [27], CS-LBP [37]).
We can see that our method has better recognition performance. This is because these
methods only consider the local information of the image. Compared with these methods,
our method is able to represent the image information more completely, is robust to small
local variations, and has stronger noise immunity.

Second, in comparison with the algorithm with segmentation (e.g., RLT [8], MC [10],
MCP [9], ASAVE [2], WVI [13], etc.), our proposed approach achieves better performance
on the HKPU databases. The underlying reasons are that some images in the database have
limited vein patterns, low contrast between vein and non-vein regions, and segmentation
algorithms are mostly sensitive to environmental changes such as illumination and finger
pose. However, our algorithm does not need to segment them, first capturing the overall
information by block averaging, and then further refining the local features with CS-LBP
algorithm. Thus, to some extent, we are more tolerant to environmental factors.

Finally, there are some methods that have used the CNN models in recent years.
Because the CNN network is difficult to train, as per the original paper, it has a high
possibility that the result will be worse than the original paper. On the other hand, it needs
a large training set and large numbers of data to be labeled. Therefore, our data directly
cites the results of the original paper (some papers only give the correct identification rate
(CIR)). The results are shown in Table 7.
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Table 7. Comparison between the proposed method and deep learning method.

REF Method DB Performance (%)

[1] CNN
HKPU EER = 2.70

USM EER = 1.42

[38]

CNN with Triplet
similarity loss HKPU EER = 13.16

Supervised discrete
hashing with CNN HKPU EER = 9.77

[39] CNN HKPU EER = 2.33

USM EER = 0.80

[40]

CNN with original images HKPU CIR = 95.32

USM CIR = 97.53

CNN with CLAHE
enhanced images

HKPU CIR = 94.37

USM CIR = 97.05

Our proposed method (BACS-LBP)

HKPU
EER = 2.86
CIR = 98.4

USM
EER = 1.42
CIR = 98.8

From the table, it can be seen that our method is still comparable to some of the
CNN-based methods. For instance, the CIR of the proposed method on two databases is
greater than 98%, but the CIR in [40] on both databases is less than 98%. Of course, we
can still see that some of the CNN-based methods have achieve better results than the
proposed method. The CNN-based methods may have good results when a good network
is training, but it needs careful parameter fine-tuning. Moreover, the finger vein images are
very different to the natural images in terms of image qualities. Hence, much work should
be carried out to improve the CNN-based finger vein recognition methods.

4. Conclusions and Future Work

Existing finger vein recognition methods are not satisfactory regarding the recognition
performance. Algorithms that need to segment images (such as maximum curvature,
repeated linear tracking, Gabor filtering, ASAVE, etc.) have high requirements for image
quality and are not practical. The method without segmentation algorithm (such as LBP) is
computationally complex and has large data redundancy, so it is not effective to directly
use it in finger vein recognition. The proposed finger vein code generation algorithm is
simple in calculation, does not need complex segmentation algorithm, can overcome the
problem of low image quality, and has stronger robustness to image noise.

The extensive experiments on two finger vein databases were conducted for verifying
the effectiveness of the proposed method. From the experimental results, we can obviously
see that the proposed method outperforms most of the latest methods and has competitive
potential in finger vein recognition. In future work, it is hoped that finger vein databases
can be collected on a large scale: because there is no public large database to compare the
performance of finger vein recognition methods, the image differences in each database
will not be conducive to the fair evaluation of recognition performance.
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