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In this study, we developed a new prognostic model for glio-
blastoma (GBM) based on an integrated machine learning al-
gorithm.We used univariate Cox regression analysis to identify
prognostic genes by combining six GBM cohorts. Based on the
prognostic genes, 10 machine learning algorithms were inte-
grated into 117 algorithm combinations, and the artificial in-
telligence prognostic signature (AIPS) with the greatest average
C-index was chosen. The AIPS was compared with 10 previ-
ously published models by univariate Cox analysis and the
C-index. We compared the differences in prognosis, tumor im-
mune microenvironment (TIME), and immunotherapy sensi-
tivity between the high and low AIPS score groups. The AIPS
based on the random survival forest algorithm with the highest
average C-index (0.868) was selected. Compared with the previ-
ous 10 prognostic models, our AIPS has the highest C-index.
The AIPS was closely linked to the clinical features of GBM.
We discovered that patients in the low score group had
improved prognoses, a more active TIME, and were more sen-
sitive to immunotherapy. Finally, we verified the expression of
several key genes by western blotting and immunohistochem-
istry. We identified an ideal prognostic signature for GBM,
which might provide new insights into stratified treatment ap-
proaches for GBM patients.

INTRODUCTION
Glioblastoma (GBM) is the most prevalent and deadly primary intra-
cranial malignancy and is characterized by significant invasion and
heterogeneity.1 The incidence of GBM is 5–8 per 100,000 people,
and the median survival time from diagnosis is 15 months.2,3 The
treatment of GBM consists of surgical resection combined with radio-
therapy and temozolomide (TMZ) chemotherapy, which was devel-
oped 18 years ago.4 Immunotherapy has recently become the stan-
dard treatment for a growing number of solid tumors.5 However,
the immune landscape of GBM is complicated, and GBM patients
are likely to have an immunosuppressive tumor immune microenvi-
ronment (TIME), which explains why programmed cell death protein
1 (PD-1)/protein cell death ligand 1 (PD-L1) immunotherapy trials
involving GBM patients were unsuccessful.6 In addition, the failure
of targeted therapy in GBM suggests that GBM might not rely solely
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on targeted therapy driven by a single pathway.7 Thus, it is necessary
to investigate novel personalized management and multitarget ther-
apy techniques.

Presently, the World Health Organization’s (WHO’s) categorization
of tumors of the central nervous system is still used in the decision-
making and care of GBM patients.8 Due to the heterogeneity of
GBM and its very complicated TIME, the treatment response and
prognosis of GBM patients are fairly diverse. With the development
of bioinformatics technology and evidence-based medicine, many
predictive gene signatures have been discovered.9–11 However, owing
to improper machine learning techniques and a lack of thorough vali-
dation across many cohorts, the clinical use of multigenic prognostic
signatures is often difficult.12,13 Furthermore, this information may
not be fully useful since these multigenic prognostic signatures are
based on the expression of genes involved in specific pathways,
including those related to metabolism, hypoxia, and programmed
cell death.14,15

To develop a perfect signature, we constructed and validated a
79-gene artificial intelligence prognostic signature (AIPS) by
combining 117 machine learning algorithms. In six multicenter co-
horts and the combined cohort, the AIPS was a reliable prognostic in-
dicator of overall survival (OS). Our AIPS with the highest C-index
showed excellent and comprehensive predictive performance when
compared with 10 previously published GBM/glioma models in all
cohorts. Furthermore, patients in the low AIPS score group had
improved prognoses, a more active TIME, and were more sensitive
herapy: Oncology Vol. 32 September 2024 ª 2024 The Author(s).
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to immunotherapy. Finally, we verified the expression of several key
genes in GBM by immunohistochemistry (IHC) and western blot-
ting (WB).

RESULTS
Identification of OS-related genes in GBM and functional

enrichment analysis

Principal-component analysis (PCA) was used to evaluate the
removal of batch effects. Before the merger, the six datasets were
discrete, with almost no intersection (Figure 1A). After the six da-
tasets were merged, the differences between the datasets were
reduced (Figure 1B). After all the data were fused, we obtained
data for a total of 1,036 GBM patients, of which 984 had complete
survival information. A total of 79 eligible OS-related genes were
identified in the six cohorts by univariate Cox regression analysis.
We used forest maps to visualize the OS-related genes in each
cohort (Figure 1C). Subsequently, functional enrichment analysis
was performed based on protective prognostic genes (n = 31)
and prognostic risk genes (n = 48). Gene ontology (GO) analysis
suggested that protective genes were mainly enriched in small
molecule catabolic process, small molecule catabolic process,
C21-steroid hormone metabolic process, cell projection membrane,
focal adhesion, cell-substrate junction, testosterone dehydrogenase
[NAD(P)] activity, steroid dehydrogenase activity, monocarboxylic
acid binding, etc. (Figures S1A–S1C). According to the Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis, these
protective genes were enriched in carbon metabolism, the sphingo-
lipid signaling pathway, glioma, epidermal growth factor receptor
tyrosine kinase inhibitor resistance, and choline metabolism in
cancer pathways (Figure S1D). The results of the GO and
KEGG analyses of the prognostic risk genes are shown in
(Figures S1E–S1H).

Establishment and assessment of the AIPS for GBM

We next incorporated 79 OS-related genes into a machine learning
program to construct an AIPS. In the combined training cohort, we
built prediction models using 117 algorithms and calculated the
C-index for all the cohorts. Finally, the AIPS based on the random
survival forest (RSF) algorithm with the highest average C-index
(0.868) was selected (Figure 2A). We calculated the AIPS risk score
for each patient in all cohorts based on the genes included in the
RSF model and showed the variable importance of the AIPS genes
(Figure 2B). In the combined training cohort, the area under the curve
(AUC) values for the AIPS predicting patient 1-, 3-, and 5-year sur-
vival were very high, all greater than 0.970 (Figure 2C). In addition,
we found that the AUC value of the AIPS was greater than 0.950 at
different time points (Figure 2D). Kaplan-Meier (K-M) curve analysis
revealed that the prognosis of patients in the high AIPS score group
was significantly worse than that of patients in the low AIPS score
group (Figure 2E). Surprisingly, we observed similar results across
the six validation cohorts. In all the validation cohorts, the AUC
values for the AIPS were greater than 0.900 at any time point, and
the high AIPS score group exhibited a worse prognosis
(Figures 3A–3F).
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Comparison with published signatures in GBM

With the rapid development of bioinformatics, researchers have
widely reported prognostic features based on small molecule expres-
sion. We compared our AIPS with 10 published prognostic models in
terms of the C-index and prognostic value to further evaluate the pre-
dictive power of the AIPS. These previously published gene prog-
nostic signatures encompassed several biological functions, including
chemotherapy sensitivity, pyroptosis, cuproptosis, and immunity.
Interestingly, we found that the AIPS had a C-index of approximately
0.9 in all seven cohorts, which was much greater than that of the other
10 gene cohorts (Figures 4A–4G). We then included our AIPS, other
published signatures, and clinical features in the univariate Cox
regression analysis to compare their prognostic value. Notably, while
four published signatures (Zhao S, WangW, Xiao S, and Yang J) were
significantly associated with GBM outcomes in most cohorts (six
of seven),16–19 only our AIPS achieved statistical significance
(p < 0.001) in both the validation and training cohorts
(Figures 5A–5G). Overall, our model showed strong and robust pre-
dictive performance for GBM.We also analyzed the correlation of the
AIPS with the clinical features of the GBM patients in the training
cohort. We found that 1p19q non-codeletion and IDH wild-type pa-
tients, which both show poor prognosis, had higher AIPS scores, and
a greater proportion of patients with these two subtypes were in the
high AIPS score group (Figures 5H and 5I). Patients who died had
higher AIPS scores than those who did not, and the proportion of
cases who died was greater in the high AIPS score group (Figure 5J).
These data suggested that our AIPS correlated with the clinical fea-
tures of GBM.

Functional enrichment analysis based on the AIPS

Considering the stable prognostic value of our AIPS, we further
explored the biological functions associated with it. We analyzed
the correlation between the AIPS and all genes in the training cohort
and selected the top 50 genes with significant positive (Figure S2A)
and negative (Figure S2B) correlations. Next, GO and KEGG analyses
were performed based on these 100 significantly related genes. The
GO results showed that these genes were mainly related to the func-
tions of extracellular activities and components, and they were also
involved in regulating mechanisms such as blood vessel formation
and hypoxia (Figures S2C and S2E). According to the KEGG analysis,
these genes were significantly enriched in focal adhesion and extracel-
lular matrix (ECM)-receptor interaction, which are associated with
cell migration, and many cancer-related pathways, such as the
PI3K-Akt, HIF-1, TNF, and p53 signaling pathways, were also iden-
tified (Figure S2F). The Reactome pathway analysis by gene set
enrichment analysis (GSEA) showed significant enrichment for
collagen formation, ECM organization, and cell cycle checkpoints
in the high AIPS score group (Figure S3A). In addition, we conducted
a comprehensive gene set variation analysis (GSVA), including
HALLMARK, KEGG, Reactome, Biocarta, and WikiPathways ana-
lyses, to explore the pathways that differed between the high and
low AIPS score groups (Figures S3B–S3F). Overall, the high AIPS
score patients showed more active cancer-related features, especially
aggressive GBM features.



Figure 1. Merging of datasets and identification of prognostic genes

(A) PCA before batch effect removal. (B) PCA after batch effect removal and merging. (C) Results of univariate Cox analysis of 79 prognostic genes in each dataset.
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Figure 2. Establishment of the artificial intelligence prognostic signature (AIPS) in GBM

(A) A total of 117 different models were constructed using a combination of machine learning, and their C-indices were evaluated across all cohorts. (B) Error rate curve and

variable importance of the RSF model. (C) ROC curve of 1-, 3-, and 5-year survival predicted by the AIPS in the training cohort. (D) AUC values of the AIPS in predicting

different survival time. (E) Survival curve for the training cohort.
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Association of the AIPS with the TIME and genome alterations

Next, we systematically evaluated the correlation between the AIPS
and the TIME using eight algorithms. Several immune cells, such as
macrophages, fibroblasts, and cancer-associated fibroblasts (CAFs),
were highly infiltrated in the high AIPS score group (Figure S4A). Cor-
relation analysis revealed that these immune cells were significantly
positively correlated with the AIPS (Figure S4B). Using the estimate al-
gorithm, we found that compared with those in the low AIPS score
group, the immune score, stroma score, and ESTIMATE score were
greater in the high AIPS score group, but the tumor purity was lower
(Figure S4A). In addition, the expression levels of chemokines and re-
ceptors, such as interleukin (IL)6, CXCR4, IFNGR2, IL10RB, VEGFA,
and IL4R, were generally greater in the high AIPS score group (Fig-
ure S5A), and these chemokines were significantly positively correlated
with the AIPS score (Figure S5B). We analyzed the somatic mutation
data and identified the top 10 genes with mutation rates in both sub-
groups (Figures 6A and 6B). By comparison, we found that the muta-
tion frequencies of five genes (IDH1, ADAMTS12, CYP4B1, PCDH18,
and SNTG2) were significantly greater in the low AIPS score group
than in the high AIPS score group (Figure 6C). Currently, IDH1 mu-
tation is recognized as an important molecular marker for the prog-
nosis of GBM20; thus, the remaining four gene mutations may serve
as potential prognostic markers for GBM.

Immunotherapy prediction and drug sensitivity

A previous study suggested that patients with TP53 mutations are
more susceptible to being treated with immune checkpoint inhibitors
(ICIs).21 We found that the low AIPS score group (45%) seemed to
have more TP53 mutations than did the high AIPS score group
(26%). Thus, we further explored the ability of the AIPS to predict
immunotherapy response. The tumor immune dysfunction and
exclusion (TIDE) algorithm is a widely used and reliable method
for predicting immunotherapy response (Figure 6D).22 In the training
cohort, we found that the low AIPS score patients had lower TIDE
scores and a higher proportion of treatment response than the high
AIPS score patients (Figures 6E and 6F). These data suggested that
patients with high AIPS scores based on our AIPS had greater immu-
nosuppression and immune escape and that patients with low AIPS
scores might be potential candidates for immunotherapy.22 More-
over, we calculated the half maximal inhibitory concentration
(IC50) of chemotherapy drugs to investigate the relationship between
the AIPS and chemotherapy resistance. We identified several poten-
tially sensitive chemotherapeutic agents for low (Figure 6G) and high
AIPS score (Figure 6H) GBM patients.

Expression patterns and single-cell analysis of the top 12 genes

of variable importance

Given the robust predictive power of the AIPS, we further analyzed
the top 12 genes in the RSF model, which may play a critical role in
GBM. Using the GEPIA website, we found that the mRNA expres-
Figure 3. The predictive power of the AIPS was evaluated in validation cohorts

ROC curves for 1, 3, and 5 years, AUC values at different times, and survival curves

brandt_475, and (F) TCGA validation cohorts.
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sion levels of CHI3L1, FKBP9, HOXD11, IMPDH1, MDK, MYBL2,
SETD8, TMEM2, and UST were significantly upregulated in GBM,
while the expression levels of EPM2A and FLRT1 were significantly
decreased in GBM (Figure 7A). EDN3 expression in GBM tissues
was lower than that in normal tissues, but the difference did not
reach statistical significance (Figure 7A). To the best of our knowl-
edge, five (CHI3L1, IMPDH1, MDK, MYBL2, and SETD8) of the
top 12 genes have received less research attention in GBM. In this
study, IHC and WB revealed that all five genes were upregulated
in GBM tissues compared with adjacent tissues, which is consistent
with the findings of our bioinformatics research (Figures 7B and
7C). We further explored the percentage and distribution of these
12 genes in GBM through the GSCA website. The results showed
that IMPDH1, FKBP9, EDN3, MYBL2, EPM2A, and UST had
high copy number variation (CNV) proportions in GBM (Fig-
ure 7D). Among them, IMPDH1, FKBP9, EDN3, and MYBL2
mainly exhibited heterozygous amplification, while EPM2A and
UST exhibited heterozygous deletion (Figure 7D). Correlation anal-
ysis revealed that the expression of IMPDH1, FKBP9, EPM2A, and
FLRT1 was significantly positively correlated with the proportion of
CNV (Figure 7E), and the methylation of CHI3L1, FKBP9,
IMPDH1, MDK, and FLRT1 significantly inhibited their expression
in GBM (Figure 7F). In addition, we investigated the expression of
12 key genes in immune cells using glioma/GBM single-cell data. As
shown in (Figure S6), these genes were expressed to varying degrees
in immune cells.

DISCUSSION
GBM is the most aggressive and heterogeneous primary central ner-
vous system tumor.23,24 Although tumor-treating field therapy has
enriched the comprehensive treatment of GBM in recent years, the
median survival time has only been extended to 19.4 months in a
phase III trial.25 Thus, we created a 79-gene AIPS with 117 machine
learning algorithm integrations in the combined training cohort to
determine useful GBM biomarkers. Through the use of time, receiver
operating characteristic (ROC), and survival analyses, the predictive
power of the AIPS was confirmed across several independent cohorts.
In addition, the AIPS was also compared with 10 previously devel-
oped prognostic signatures for GBM/glioma based on the C-index.
The results showed that the AIPS exhibited the best predictive perfor-
mance compared with the other prognostic models in all independent
cohorts. Finally, based on the AIPS, we also distinguished between
two different groupings. A greater tumor mutation burden, a more
favorable prognosis, a significantly active TIME, and a stronger
immunotherapy response were detected in the low AIPS group.
Therefore, in clinical practice, our AIPS may be a reliable biomarker
for stratified treatment of GBM.

Traditional WHO tumor categorization no longer accurately reflects
the demands of neurosurgeons for optimum GBM indicators due to
in the (A) CGGA_301, (B) CGGA_325, (C) CGGA_693, (D) GSE13041, (E) Rem-



Figure 4. Comparison of our AIPS with the 10 previous models in the C-index

The C-index of ourmodel was higher than that of previousmodels in (A) CGGA_301, (B) CGGA_325, (C) CGGA_693, (D) GSE13041, (E) Rembrandt_475, (F) TCGA validation,

and (G) training cohorts, ****p < 0.0001.

www.moleculartherapy.org
advancements in medical therapy. Numerous prognostic signatures
for GBM have been identified in recent years based on metabolism,
hypoxia, and programmed cell death; however, these signatures are
all dependent on certain pathways and have limitations.14,15 To fully
represent the importance of diverse pathways in the onset and pro-
gression of GBM, we incorporated the intersecting genes of six
distinct GBM cohorts—which were not based on genes associated
with particular pathways—in our investigation. Additionally, in
earlier studies, researchers preferred to build signatures based on a
single algorithm.17–19,26 In this study, for the purpose of building a
Molecular Therapy: Oncology Vol. 32 September 2024 7
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Figure 5. Univariate Cox regression analysis and clinical correlation analysis

(A–G) Prognostic role of AIPS, previously published models, and clinical features in validation and training cohorts. (H–J) Relationship between AIPS and 1p19q status, IDH

status, and survival status of GBM patients in the training cohort.
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signature, we merged 10 common machine learning arithmetic per-
mutations into 117 algorithm combinations, which might compen-
sate for the deficiencies of a single method. Among the 117 algorithm
combinations, RSF was found to be the best signature with the great-
est C-index (0.868).

Multiple enrichment analysis was used to clarify the possible biolog-
ical mechanism and significant signaling pathways implicated in the
AIPS. The enrichment analysis of protective and risk genes in our
AIPS revealed the existence of a wide range of biological processes
and signaling pathways, including those related to metabolic reprog-
ramming, programmed cell death, and drug research information, in
contrast to the model genes identified in previous studies, which were
based on specific biological pathways. These findings suggest that the
AIPS can accurately capture the biological data involved in GBM
development. In addition, we noted that the AIPS-related genes
were mainly enriched in extracellular structures, ECM tissues, focal
adhesion, and ECM-receptor interactions, which are biological pro-
cesses related to cancer migration and invasion27,28 This finding sug-
gested that tumors with higher AIPS scores had a greater proportion
of malignant components. According to the pathway analysis, the
8 Molecular Therapy: Oncology Vol. 32 September 2024
high AIPS group was mostly enriched in immune-related, invasion,
and migration pathways, which helps to explain why its immunolog-
ical microenvironment is more suppressive and its biological activity
is more malignant. The low AIPS group exhibited enrichment of
metabolism-related pathways, suggesting that the AIPS is involved
in the metabolism of GBM substances and may influence the forma-
tion and incidence of GBM through the regulation of AIPS-related
metabolic enzymes. These findings, to some extent, reveal the reason
for the significant difference in the prognosis of GBM patients in the
two subgroups.

Despite recent advances in the treatment of solid tumors with immu-
notherapy, no phase III clinical studies of immunotherapy have been
successful in improving patient outcomes for GBM owing to the ex-
istence of a highly immune-suppressive TIME.29,30 The TIME has a
major influence on the development, progression, and treatment
resistance of tumors, according to earlier research.31 In our investiga-
tion, immunosuppression was present in the high AIPS group, but
relative immune activation was observed in the low AIPS group. In
addition, we discovered that there were substantial differences in tu-
mor-infiltrating immune cells between the high AIPS score group and



Figure 6. Genomic alterations, immunotherapy prediction, and drug sensitivity analyses

(A and B) Waterfall plots showed the top 10 genes with mutation rates in high- and low-AIPS score subgroups. (C) Genes with different mutation rates between two groups.

(D) Identification of TIDE scores for GBMpatients in the training cohort. (E) TIDE scores were compared between the two subgroups. (F) The immunotherapy response rates of

the two subgroups were compared. Screening of sensitive drugs for (G) low-AIPS score and (H) high-AIPS score groups by IC50 analysis, *p < 0.05, **p < 0.01, ***p < 0.001,

****p < 0.0001.
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low AIPS score group. These results implied that the genes involved in
the construction of the AIPS were important for the development of
GBM and the makeup of the TIME. CAFs secrete immunomodula-
tory chemicals, physically interact with immune cells, and modify
the ECM to promote the growth of cancer cells and immune escape.32
Additionally, CAFs, the most crucial matrix elements, have the ability
to dramatically promote the aggressiveness and development of can-
cer.33 In our study, increased CAF infiltration was a manifestation of
poor prognosis in the high AIPS score group and might indicate that
CAFs promote the growth of GBM. Tumor-associated macrophages
Molecular Therapy: Oncology Vol. 32 September 2024 9
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(TAMs) are crucial for the genesis, invasion, metastasis, and immu-
nosuppressive microenvironment of tumors.34 In addition, substan-
tial TAM infiltration is believed to decrease susceptibility to radiation,
chemotherapy, and targeted treatments and is often linked to a poor
prognosis in a number of tumor types.35 Furthermore, Tang et al.
discovered that Smad3 might encourage TAMs to differentiate into
CAFs with protumor effects.33 In our study, TAMs demonstrated
greater infiltration and poorer prognosis in the high AIPS score group
and reduced infiltration and improved prognosis in the low AIPS
score group, which was consistent with previous research. According
to earlier research, B lymphocytes are the main immune cells that
participate in the adaptive immune response against tumors.36 Wa-
taru Kida et al. suggested that the use of PD-1/PD-L1 blockade in hy-
popharyngeal cancer can increase the activation of B lymphocytes.37

Moreover, loss of B cells in melanoma was linked to a poor response
to ICIs.38 Additionally, B lymphocytes are linked to a favorable prog-
nosis for a number of cancers, such as ovarian, breast, and colorectal
cancer.39–41 These results imply that B lymphocytes may be a potent
tool for antitumor treatment and may provide a novel direction for
immunotherapy in this regard. In our study, we observed a significant
increase in B cells in the low AIPS score group. Therefore, the use of
ICIs in the low AIPS score group could produce a stronger immune
response. According to a growing number of studies, patients with gli-
omas who have CD4+ or CD8+ T cells have a better prognosis than
those with gliomas with CD4� or CD8� T cells.42,43 Fan et al. noted
that glioma development may be inhibited by promoting T cell pro-
liferation and memory T cell responses.44 In our study, we observed
that CD4+ T cell infiltration was not significantly different between
the high and low AIPS score groups, while CD8+ T cell infiltration
was significantly greater in the low AIPS score group than in the
high AIPS score group, which partly indicates that the low AIPS score
group may be more sensitive to immunotherapy. One of the most
promising immunotherapies for GBM is PD-1 checkpoint inhibition,
yet the outcomes of clinical studies have revealed that patient efficacy
varies substantially.45 Determining which GBM patients are likely to
respond to immunotherapy is a crucial challenge, according to the
findings of many prior clinical trials.46 In this study, the TIDE algo-
rithm was used to determine that the GBM patients in the low
AIPS score group had a better response to immunotherapy, while
the GBM patients in the high AIPS score group displayed immuno-
suppression and poor immunotherapy efficacy. These data further
suggest that our AIPS is helpful in identifying potential immuno-
therapy-sensitive GBM patients.

Modern medicine requires clinicians to provide accurate and individ-
ualized treatment for patients. As a result, we developed specific med-
ications for the GBM patients in the high AIPS score group using the
“OncoPredict” R package. According to our research, ZM447439-
1050, X5.Fluorouracil-1073, and WIKI4-1940 all demonstrated
Figure 7. The expression patterns of the top 12 genes in the RSF model

(A) The expression levels of these genes in GBM and normal tissue were compared using

CHI3L1, IMPDH1, MDK, MYBL2, and SETD8 in GBM and adjacent tissue. (D) Evaluat

Correlation between methylation and mRNA expression, *p < 0.05.
considerably greater sensitivity in the high AIPS score group
compared with the low AIPS score group. The sensitivity of
ZM447439-1050, X5.Fluorouracil-1073, and WIKI4-1940 in the
GBM patients in the high AIPS score group should be confirmed in
further clinical studies. There are limitations to our study. First, the
samples used in this investigation were all retrospective, and prospec-
tive studies are required to verify the capacity of the AIPS for predic-
tion. Second, more research must be conducted on the biological
traits linked to the AIPS. Third, additional in vivo and in vitro
research is required to investigate the mechanisms of numerous
AIPS genes in GBM.

In summary, based on 117 machine learning algorithms, this study
developed a reliable gene signature for predicting the prognosis of
GBM patients. The AIPS not only showed excellent predictive perfor-
mance in patients but also classified GBM into different states at the
immune and genomic levels.

MATERIALS AND METHODS
GBM data collection and preprocessing

Datasets were collected from the Chinese Glioma Genome Atlas
(CGGA) and Gene Expression Omnibus (GEO). Then, 1,036 GBM
samples from six cohorts (CGGA_301 [n = 124], CGGA_325 [n =
139], CGGA_693 [n = 249], GSE13041 [n = 191], Rembrandt_475
[n = 181], and The Cancer Genome Atlas [TCGA] [n = 152]) were
obtained for analysis. We combined the data from the six datasets
and removed batch effects using the “limma” and “sva” R packages
to reduce differences between the datasets due to experimental errors,
allowing downstream analyses to consider only biological differences.
By applying the “FactoMineR” and “factoextra” packages, we used
PCA to evaluate batch removal.

Univariate Cox regression analysis and enrichment analysis

Univariate Cox regression analysis was performed for all six cohorts.
OS-related genes were selected according to the following criteria: (1)
p < 0.05 was achieved in at least four cohorts, and (2) the hazard ratio
was consistently greater than 1 or less than 1. Then, we used the “clus-
terprofiler” R package to carry out GO and KEGG analyses for risk
and protective OS-related genes, respectively.

Establishment and validation of the AIPS prognostic signature

To establish a comprehensive AIPS for GBM, we used 10 machine
learning algorithms, including random forest (RSF), step Cox, least
absolute shrinkage and selection operator (LASSO), gradient boosting
machine (GBM), CoxBoost, partial least-squares regression for Cox
(plsRcox), elastic network (Enet), ridge, survival support vector ma-
chine (Survival-SVM), and supervised principal component (Super
PC) algorithms. Then, we arranged and combined the 10 machine
learning algorithms into 117 algorithm integrations. In this study,
the GEPIA website. (B and C) IHC and WB were used to evaluate the expression of

ion of CNV percentage. (E) Correlation analysis of CNV with mRNA expression. (F)
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the merged cohort was used as the training cohort. We used 117 al-
gorithm integrations to construct signatures based on 79 prognostic
genes in the training cohort. The consistency index (C-index) values
were calculated for all seven cohorts (CGGA_301, CGGA_325,
CGGA_693, GSE13041, Rembrandt_475, TCGA, and training co-
horts), and the model with the highest average C-index was regarded
as the best prognostic signature. The predictive efficacy of the AIPS
was evaluated in six test cohorts and the training cohort. The optimal
cutoff scores for the high and low AIPS subgroups were calculated
through the “survminer” package. The K-M curve and time-depen-
dent receiver operating characteristic (tdROC) curve were used to
evaluate the data. The “survminer” package was used to calculate
the optimal cutoff score for the high and low AIPS score groups.

Comparison with published signatures and clinical correlation

analysis

The AIPS was compared with 10 previously published GBM/glioma
models using six GBM test cohorts and the training cohort. We calcu-
lated the risk scores of the seven cohorts based on the expression of
signature genes and coefficients reported previously in the literature
and evaluated their ability to predict the prognosis of GBM patients
according to the C-index. In addition, we further compared their
prognostic efficacy in all cohorts by univariate Cox regression anal-
ysis. We also explored the association of the AIPS with common clin-
ical features.

Functional enrichment analysis of the AIPS

To explore the underlying biological mechanisms of the AIPS in
GBM, the top 50 genes positively and negatively correlated with the
AIPS were identified in the training cohort by Pearson analysis.
Next, GO and KEGG analyses were performed based on these 100
significantly related genes. GSEA (Reactome pathway) was conducted
to compare the high and lowAIPS score groups using the “clusterPro-
filer” R package. The enrichment gene sets achieved a p.adjust <0.05,
which was considered to indicate statistical significance. The
HALLMARK, KEGG, Reactome, Biocarta, and WikiPathways gene
sets were obtained from the MSigDB database, and the terms associ-
ated with the AIPS score for each GBM patient were identified by
the “GSVA” package in R.

Evaluation of the TIME and genome alterations

We explored the relationship between the AIPS and immune cells
in the TIME. Immune cell evaluation was carried out using the
“IOBR” package and was based on the following eight methods:
MCPcounter, EPIC, xCell, CIBERSORT, IPS, quanTIseq,
ESTIMATE, and TIMER.47 The relationship between immune cell
levels and AIPS scores was evaluated using Pearson correlation anal-
ysis. GBM mutation data (TCGA-GBM) was downloaded from the
TCGA database. The assessment of somatic variation data was carried
out via the “maftools” package.

Immunotherapy prediction and drug sensitivity

We evaluated the ability of the AIPS to predict the response to tumor
immunotherapy using the TIDE algorithm. The TIDE scores and
12 Molecular Therapy: Oncology Vol. 32 September 2024
immunotherapy responses of the GBM patients in the training group
were obtained from the TIDE database. The IC50 is a common mea-
sure of a cell’s sensitivity to drugs and can help identify potentially
sensitive drugs; a higher IC50 indicates a lower sensitivity to treat-
ment. The “oncoPredict” R package was used to predict the IC50
value of each sample formultiple cancer drugs.48We identified poten-
tially sensitive drugs by comparing the difference in IC50 values be-
tween the high and low AIPS score groups.
Expression patterns and single-cell analysis

The top 12 genes were selected according to their variable importance
in RSF for subsequent analysis. The differences in the expression of 12
key genes between GBM and normal tissues were assessed via the
GEPIA website. We explored the percentage and distribution of these
12 genes in GBM through the GSCA website. The TISCH2 website
was used to analyze the expression of key genes in immune cells at
the single-cell level.
Immunohistochemical staining

Differences in the expression of CHI3L1, IMPDH1, MDK, MYBL2,
and SETD8 between GBM and adjacent normal tissues were verified
in clinical samples. All specimens, including six GBM tissues and the
relevant adjacent tissues, were obtained from the Department of
Neurosurgery, Guangxi Medical University Cancer Hospital between
May 2020 and August 2023. The information of clinical patients is
shown in Table S1. All GBM and adjacent tissue samples were
approved by the Ethics Committee of the Guangxi Medical University
Cancer Hospital and informed consent was obtained from the pa-
tients. The GBM and adjacent tissues were fixed with paraformalde-
hyde, dehydrated, embedded in paraffin, and sectioned for routine
IHC staining. The slides were incubated with the following primary
antibodies: MYBL2 polyclonal antibody (1:50, Proteintech, 18896-
1-AP), MDK polyclonal antibody (1:200, Proteintech, 28546-1-AP),
SETD8 polyclonal antibody (1:200, Proteintech, 14063-1-AP),
CHI3L1 polyclonal antibody (1:200, Proteintech, 12036-1-AP), and
IMPDH1 polyclonal antibody (1:200, Proteintech, 22092-1-AP).
Finally, all the IHC-stained sections were photographed using a
microscope.
Western blotting

Protease inhibitors and NP40 (Beyotime) lysates were used to lyse
the tissues, and a BCA Protein Assay Kit (Thermo Fisher Scientific)
was used to measure the protein concentration. Protein was electro-
phoresed on a 10% SDS-PAGE gel, transferred to a PVDF mem-
brane, blocked for 2 h with 5% skim milk, and incubated with pri-
mary antibodies, including MYBL2 polyclonal antibody (1:1,000,
Proteintech, 18896-1-AP), MDK polyclonal antibody (1:1,000, Pro-
teintech, 28546-1-AP), SETD8 polyclonal antibody (1:1,000, Pro-
teintech, 14063-1-AP), CHI3L1 polyclonal antibody (1:500, Protein-
tech, 12036-1-AP), and IMPDH1 polyclonal antibody (1:1,000
Proteintech, 22092-1-AP), overnight at 4�C, followed by incubation
with secondary antibodies for 2 h at room temperature. Then, three
further washes with TBST solution were performed. Finally, we
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employed an enhanced chemiluminescence (ECL) developer (Abb-
kine) to detect the antibody signal.

Statistical analysis

All data cleaning, analysis, and plotting were performed in R4.2.2
software. The C-indices of the different groups were compared
through the “Compare C” R package. Normally distributed variables
were analyzed through t tests, and nonnormally distributed data were
analyzed through the Wilcoxon rank-sum test. The comparison of
categorical variables between the two groups was performed using
the chi-square test. The difference in prognosis between the two
groups was assessed by K-M survival analysis and the log rank test.
The rest of the statistical methods have been described above.
p < 0.05 was regarded as statistically significant.
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