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ABSTRACT BALB/c mice were repeatedly immunized with a galactosyl transferase-rich micro- 
somal fraction of rat myeloma cells. Spleen cells were subsequently fused with Sp2/0 mouse 
myeloma cells, the resulting hybridomas were cloned, and their secreted Ig was screened for 
reactivity with antigens belonging to the Golgi complex. One such monoclonal antibody, 
6F4C5, gave especially intense immunofluorescent staining of the Golgi area of myeloma cells 
and fibroblasts. It recognized two proteins bands on immunoblots of gel-fractionated cell 
lysates: a major one with an estimated Mr of 54,000 and a minor one at 86,000. Both proteins 
were concentrated in microsomal fractions isolated at low ionic strength. They were hydro- 
philic judging from partitioning of a Triton X-114 cell lysate. Both were cytoplasmically oriented 
as demonstrated by protease and high KCl treatments of postmitochondrial supernatants and 
microsomal fractions. Neither was retained by columns of insolubilized wheat germ agglutinin 
or concanavalin A, which suggests that they are not glycoproteins. Their more detailed location 
in the Golgi complex was studied by immunoelectron microscopy, using a saponin permea- 
bilization procedure and peroxidase-conjugated reagents. The observed staining was restricted 
to two or three cisternae in the medial part of the stack. Nevertheless, differential centrifugation 
experiments indicated that the two antigens may be recovered in distinct subcellular fractions: 
this may be related to the unexpected observation that rather low salt concentrations strip 
the antigens from microsomal fraction. 

The Golgi complex plays a central role in vesicular traffic in 
the cell cytoplasm. In addition to mediating intracellular 
transport, it is a site of maturation of oligosaccharides of 
giycoproteins and appears to accomplish the sorting of lyso- 
somal enzymes from secretory and cell surface glycoproteins 
(1-3). It is composed of vesicles and a stack of flattened 
cisternae. Those near the rough endoplasmic reticulum (prox- 
imal cisternae) are thought to receive vesicle-enclosed quanta 
of proteins which exit from the rough endoplasmic reticulum. 
At the other (distal) face of the stack, vesicles or vacuoles that 
contain mature content (e.g., with complete oligosaccharide 

Abbreviations used in this paper: Con A, concanavalin A: Mab, 
monoclonal antibody; NP-40, Nonidet P-40; PAGE-IB, PAGE fol- 
lowed by immunoblotting; PMS, postmitochondrial supernatant; 
0.25 M STKM, a buffer solution containing 0.25 M sucrose, 50 mM 
Tris-HCl, pH 7.3, various concentrations of KCI, and 5 mM MgCI2; 
TBS, Tris-buffered saline; TX-100 and TX-114, Triton X-100 and - 
114, respectively; WGA, wheat germ agglutinin. 

chains) bud off toward the cell surface. A cytochemical het- 
erogeneity of the stack has been demonstrated in many cell 
types, although only a very small number of markers is 
available. The conventional markers are an unidentified os- 
miophilic material that is restricted to the proximal cisternae, 
nucleoside diphosphatase (thiamine pyrophosphatase) which 
is found in distal cisternae, and acid phosphatase which is 
found in the still more distal structure named GERL (4). 
Moreover, antibodies directed toward galactosyl transferase 
have been used to detect the enzyme in distal cisternae of 
HeLa cells (5). This result is in agreement with the observation 
that wheat germ agglutinin (WGA) ~ (which binds more ma- 
ture oligosaccharides) stains the same Golgi region and a 
population of vesicles that are thought to be in transit to the 
cell surface of myeloma cells (6). 

The existence of functionally distinct subcompartments in 
the Golgi complex is also indicated by biochemical studies. 
Enzyme activities involved in oligosaccharide processing can 
be partially separated by subfractionation of microsomal frac- 
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tions on isopycnic gradients (7-10). Studies of the~maturation 
of biosynthetically labeled secretory proteins (l l), and the 
study of the effects of ionophores (l, 12), also indicate func- 
tional specialization. 

As a step toward further dissection of the Golgi complex, 
we and others (l 3-15) are developing an extensive new set of 
markers of this composite organelle: a family of monoclonal 
antibodies (MAbs). With such antibodies it should prove 
possible to have markers for at least as many subregions of 
the Golgi complex as are presently distinguished and possibly 
for structures for which no markers are available. It should 
also prove possible to establish the cytologic origin of available 
Golgi subfractions isolated by isopycnic sedimentation, to 
study the biosynthesis of Golgi proteins representative of the 
various subeompartments, and possibly (for antigens on the 
cytoplasmic face of Golgi elements) to purify the correspond- 
ing subfractions by immunoadsorption. 

We report here the production and characterization of one 
such Mab (6F4C5) which is strikingly Golgi specific. 

MATERIALS AND METHODS 

Cells 
lgM-seereting (IR202; reference 16) and nonsecreting (YB2/0; reference 17) 

rat myeloma cells were gifts from H. Bazin (University Catholique de Louvain, 
Brussels, Belgium) and C. Milstein (Medical Research Council Laboratory, 
Cambridge, England). The cells were recovered from ascitic fluid of pristane- 
primed Lou rats injected intraperitoneally 1 wk earlier with 107 cells. FR 3T3 
rat fibroblasts (18) came from F. Cuzin (Universit6 de Nice, France). They 
were maintained in Dulbecco's modified Eagle's medium which contained 5% 
fetal calf serum. 

Subcellular Fractionation and Preparation of 
Cell Lysates 

A total microsomal fraction was purified according to Tartakoff (unpub- 
lished). In brief, 2 x l0 s IR202 cells in 0.5 ml hypotonic salt solution were 
homogenized at 4"C with a Dounce homogenizer, then adjusted to 0.25 M 
sucrose, 50 mM Tris-HC1, pH 7.3, 25 mM KCI, and 5 mM MgC12 (0.25 M 
STK2sM) in the presence of 10 ~g/ml cycloheximide, DNAse (10 t~g/ml), and 
phenylmethylsulfonyl fluoride (40 ug/ml). After a first centrifugation for 3 min 
at 2,200 g to eliminate nuclei and unbroken cells, 2-ml samples of the super- 
natant were centrifuged for 7.5 rain at 6,500 g,v in a Ti50 rotor equipped with 
adapters for 2-ml tubes (Beckman Instruments Inc., Palo Alto, CA). The 
resulting "postmitochondrial" supernatant (PMS) was then centrifuged for 45 
or 150 min (see figure legends) at 165,000 g,v in the Ti50 rotor. The pelleted 
total microsomal fraction was resuspended in 0.2 ml of 0.25 M STK2~M and 
loaded onto a 20-45% linear mannose TK25M gradient, which was centrifuged 
overnight at 165,000 ga, in an SW 50.1 swinging bucket rotor (Beckman 
Instruments, Inc.). Fractions were collected with an Autodensiflo II (Buchler 
Instruments Inc., Fort Lee, N J) and their density was determined by using an 
organic column of 1,2-dichlorobenzene and pet ether. Each fraction was assayed 
for galactosyl transferase activity (vide infra). Fractions rich in galactosyl 
transferase (between I. 14 and 1.16 g/ml) were pooled and will be referred to as 
the "Golgi preparation" (11). 

Rat liver Golgi fractions were isolated according to the procedure of Leele- 
vathi as modified by Tabas and Kornfeld (19). Cell lysates were obtained by 
resuspension of 10* cells in 1 ml of I% Nonidet P-40 (NP-40) in Tris-buffered 
saline (TBS; see below) followed by 5-min sedimentation at 2,200 g to eliminate 
nuclei. Protein was determined according to Lowry et al. (20) using BSA as a 
standard. 

Immunization and Cell Fusion 
BALB/c mice were injected four times weekly intraperitoneally with samples 

of the Golgi preparation containing 100 ug of protein. The first sample was 
emulsified with complete Freund's adjuvant in a total volume of 0.5 ml, the 
latter ones with incomplete Freund's adjuvant. 3 d after a final intraperitoneal 
boost with 500 ug protein (of Golgi preparation) in PBS, spleens from three 
mice were teased and 10 s cells from the resulting suspension were used for 
fusion with 3 x 107 Sp 2/0 Ag 14 mouse myeloma cells (21) according to the 

procedure described by Galfr6 et al. (22). After fusion, cells were suspended in 
Dulbecco's modified Eagle's medium containing 20% fetal calf serum, hypo- 
xanthine, aminopterin, and thymidine, plus streptomycin and penicillin, and 
they were distributed into five 96-well tissue culture trays that contained 3 × 
l03 mouse peritoneal cells per well. After 15-20 d, supernatants from wells 
with growing cells were screened by a dot immunobinding assay (23). Cells 
recovered from positive wells were cloned twice by limiting dilution in the 
presence of feeder peritoneal cells, and the clones were grown in mass culture 
or injected into pristane-primed BALB/c mice to obtain ascitic fluid. 

Analysis of Monoclonal Antibodies 
IMMUNOBINDING DOT ASSAY; The procedure was that of Hawkes et 

al. (23) using immobilized rat liver Golgi fractions. 1-~1 samples of a 0.4 mg/ 
ml rat liver Golgi fraction in 50 mM Tris-HCl, pH 7.3, 200 mM NaC1 (TBS) 
were dotted onto small squares of nitrocellulose. They were saturated for 30 
rain at room temperature with agitation with 20% normal rabbit serum in 
TBS, incubated 2 h with 100 el of undiluted culture supernatant, and washed 
three times with TBS, followed by incubation with peroxidase-conjugated rabbit 
anti-mouse Ig (Nordic Laboratory, Tillburg, The Netherlands) at 1/500 dilution 
in 20% normal rabbit serum/TBS. After three rinses, squares were incubated 
with 4 chloro-l-naphthol (Merck Chemical Div., Merck & Co., Rahway, NJ)/ 
H202 reagent (23). 

IMMUNOFLUORESCENCE: Cells (IR 202, YB 2/0, FR 3T3 rat fibro- 
blasts) were grown on glass coverslips, fixed with formaldehyde as described by 
Ash et al. (24), and permeabilized with 0.2% Triton X-100 (TX-100) in 0.2% 
gelatin (Bio-Rad Laboratories, Richmond, CA)/PBS. The coverslips were then 
incubated with culture supernatants for 30 min (or with purified 6F4C5 Mab, 
intact or biotinylated), repeatedly washed with 0.2% gdatin/PBS, and then 
stained with rhodamine- or fluorescein-conjugated rabbit anti-mouse Ig or 
rhodamine-conjugated avidin (Vector Laboratories, Inc., Burlingame, CA). 
After further washings, cells were observed with an epifluorescence illumination 
photomicroscope (Zeiss). 

TRANSFER AND IMMUNOBLOT STAINING: IR 202 cell lysates or 
subcellular fractions (2 x l06 cell equivalents) were electrophoresed after 
reduction on 7.5-20% gradient polyacrylamide SDS slab gels (25) and trans- 
ferred to nitrocellulose (26). Transfers were stained with the hybridoma super- 
natants or with purified 6F4C5 Mab as in the dot immunobinding assay (see 
above), or with Amido black (Merck & Co.) (27) to detect all protein bands. In 
all cases, molecular weight standard proteins (Bio-Rad Laboratories) were run 
in parallel. The electrophoresis, transfer, and immunostaining procedure is 
referred to as PAGE-lB. 

Localization of IR202 IgM on the transfer was accomplished with a rabbit 
anti-IR202 IgM antiserum (gift of H. Bazin) followed by a peroxidase-conju- 
gated goat anti-rabbit Ig (Nordic Laboratory). In these cases, saturation and 
incubations were in 0.2% gelatin/TBS. 

Analysis of Cell Fractions 
PROTEASE T R E A T M E N T  OF PMS:  PMS from 2 x 106 IR202 cells was 

incubated with trypsin N-tosyl-L-phenylalanine chloromethyl ketone (Millipore 
Corp., Bedford, MA) or pronase (Calbiochem-Behring, La JoUa, CA) at 0.5 and 
5 ~,g/ml for 60 rain at 4°C in the absence or presence of 0.5% TX-100. At the 
end of the incubation a mixture ofinhibitors was added: 5 mM EGTA, 50 ug/ 
ml soybean trypsin inhibitor, and 1 mM phenylmethylsulfonyl fluoride (final 
concentrations). Control experiments lacked proteases or had inhibitors added 
before the proteases. The incubations were terminated by addition of 10% 
trichloroacetic acid. The resulting precipitates were coUected by sedimentation, 
dissolved in reducing sample buffer, and analyzed by PAGE-IB. In parallel, 
galactosyl transferase activity was assayed in each of these conditions before 
trichloroacetic acid precipitation. 

HIGH SALT TREATMENT: IR 202 PMS or total microsomal fractions 
(obtained after 150 rain of sedimentation) were adjusted to 25, 100, or 500 
mM KCI in 0.25 M sucrose, 50 mM Tris-HCl, pH 7.3, 5 mM MgCI2, incubated 
15 min at 4"C, and centrifuged 150 min at 165,000 g,v in a Ti 50 rotor. 
Supernatants and pellets (2 x 106 cell equivalents) were analyzed by PAGE-IB. 
Pellets were also assayed for the latency of galactosyl transferase activity. 

Lectin-binding Protein Analysis 
IR 202 cell lysates were loaded onto l-ml WOA-gepharose or concanavalin 

A (ConA)-Sepharose (both from Pharmacia Fine Chemicals, Upsala, Sweden) 
Pasteur pipette columns equilibrated in 0.1% NP-40/TBS, 1 mM MnCI2, 1 
mM CaCI2, 1 mM MgCI2, and 1 mM phenylmethylsulfonyl fluoride (column 
buffer). After 1 h at room temperature, the columns were washed with 5 ml of 
column buffer (pool A) and eluted with 5 ml of 0.5 M a-methyl mannoside or 
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0.5 M N-acetyl glucosamine (both from Sigma Chemical Co., St. Louis, MO) 
in column buffer, for Con A- and WGA-Sepharose columns, respectively (pool 
B). Pools A and B were precipitated with 7 vol of acetone at 0*C, reduced, and 
prepared for PAGE-lB. 

Immunoelectron Microscopy 
IR 202 cells in suspension or adherent to tissue culture dishes were fixed 

with 4% paraformaldehyde for 1 h at room temperature and processed in the 
presence of 0.05% saponin as in reference 28 using biotinylated 6F4C5 protein 
(30 vg/107 cells) followed by peroxidase-conjugated avidin (Vector Laborato- 
ries, Inc.) at 60 vg/107 cells. After several washes including saponin, the cells 
were refixed with glutaraldehyde and then incubated 30 min at room temper- 
ature with peroxidase substrates in the presence of imidazole at pH 7.3 (29), 
postfixed with 1% OsO4 in 0.1 M cacodylate, pH 7.3, for 60 min at 4"C, 
dehydrated in graded ethanols, and embedded in Epon. Unstained sections 
were examined in a Philips 300 electron microscope. In some experiments, this 
staining was combined with that of thiamine pyrophosphatase (30) which came 
after the refixation. 

Miscellaneous Procedures 
Extraction of membrane proteins with Triton X-114 (TX-114) was as 

described by Bordier (31). Galactosyl transferase activity assay was performed 
according to Bretz, Bretz, and Palade (32) with ovalbumin as acceptor. For 
latency studies, assays were performed in the presence or absence of Triton. 
Biotinylation was as recommended by Guesdon et al. (33), with a biotinyl N- 
hydroxy-succinimide ester (Calbiochem-Behring Corp.) to amino group ratio 
of 1:1. (This procedure yields 42% blocking of the amino groups in sheep Ig 
[33]). Test of Ig class of the Mab by immunodiffusion was with Miles rabbit 
anti-mouse subclasses (Miles Laboratories Inc., Elkhart, IN). 

Purified 6F4C5 Mab was obtained from ascitic fluid or culture supernatant 
by a first precipitation with (NH,)2SO4 at 50% saturation. After sedimentation, 
the pellet was resuspended in PBS and dialyzed 24 h at 4"C against PBS. The 
retained fraction was loaded onto a column of rabbit anti-mouse lg-Sepharose, 
washed with 0.5 M NaCI in PBS, and eluted with 0.2 M glycine, pH 2.8. The 
resulting Ig fraction was concentrated by pressure dialysis in PBS for 24 h and 
then diluted 1 : 1 in glycerol and stored at -20"C. 

Elution of the 6F4C5 Mab from immunoblots was effected by a 30-min 
incubation of the transfer in 0.2 M glycine, pH 2.8, at room temperature (14). 
The eluate was removed and adjusted to pH 7.3 with 2 M Tris-HCI, pH 7.3, 
and used at once. Coupling of proteins to Sepharose was as recommended by 
Pharmacia Fine Chemicals with CNBr-activated Sepharose. Fluorescent probes 
were conjugated as in reference 34. 

RESULTS 

The four hybridization experiments performed yielded 32 
positive wells, as judged by the dot test using rat liver Golgi 
fractions. Each population was cloned twice. Among these a 
further selection by immunofluorescent staining of FR 3T3 
rat fibroblasts allowed us to select eight clones. Supernatants 
of four of them stained a restricted perinuclear region corre- 
sponding to the Golgi area, as judged by staining with WGA- 
rhodamine (not shown), whereas the others stained both the 
Golgi area and other sites in the cell cytoplasm. None were 
obviously reactive with the cell surface. 

6F4C5, the most strikingly positive clone as judged by both 
tests, is the subject of this report. By immunodiffusion, we 
have determined that this antibody is a 71. 

Immunofluorescence 
Fig. 1 shows the intracellular staining observed with 6F4C5 

Mab which reveals a perinuclear reticulated structure typical 
of the Golgi area. A similar pattern was observed with fibro- 
blasts (Fig. 1, a and b) and myeloma cells (Fig. 1, c and d). 

Immunoblot Staining 
A cell lysate was reduced and submitted to PAGE-IB (Fig. 

2a). Two bands were consistently detected, of approximate 
Mr 54,000 (major band) and 86,000 (minor band). 
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Antibodies that banded to the 54,000- and 86,000-mol-wt 
regions of the transfer were eluted separately (see Materials 
and Methods). Both preparations stained a cell lysate trans- 
ferred to nitrocellulose with a pattern indistinguishable from 
that of Fig. 2 a. Thus, these two proteins share a common 
antigenic determinant. 

Localization of 6F4C5 Antigen to the Total 
Microsomal Fraction 

Various cell fractions were then analyzed by PAGE-IB (Fig. 
2, b-e). When the PMS was sedimented for 45 min at 165,000 
gay, the 86,000-mol-wt species was recovered in supernatant 
and the 54,000-mol-wt protein was found primarily in the 
pellet. When the centrifugation was extended to 150 min both 
proteins were detected in the pellet and little or no 86,000- 
mol-wt protein was left in the supernatant (Fig. 2). These 
observations show that the 54,000-mol-wt species is associated 
with a particle that is more readily sedimented than that of 
the 86,000-mol-wt species. Relatively little 54,000- and almost 
no 86,000-mol-wt protein were detected in the mitochondrial 
fraction (not shown). 

Studies on Lectin Binding 
The lectins Con A and WGA were then used to explore the 

possible presence of carbohydrate in the antigens recognized 
by 6F4C5. An NP-40 cell lysate was loaded onto either a Con 
A- or a WGA-Sepharose column and specifically bound giy- 
coproteins were eluted as indicated in Materials and Methods. 
The presence of the antigens in the flow-through or in the 
specifically eluted fractions was monitored by PAGE-lB. Re- 
suits are shown in Fig. 3. The 54,000- and 86,000-mol-wt 
proteins were detected only in the flow-through fractions of 
both columns, where their staining intensity was comparable 
to that of the sample loaded. As a control, it was observed 
that when the nitrocellulose strips were incubated with Con 
A peroxidase, the only stained bands were in the specifically 
eluted glycoproteins (not shown). Hence, the 54,000- and 
86,000-mol-wt proteins are probably not glycoproteins, but 
we cannot exclude that they contain O-linked oligosaccha- 
rides. 

Since the proteins recognized by 6F4C5 Mab appear to be 
membrane associated, it is important to know (a) whether 
they are intrinsic or extrinsic membrane proteins, and (b) on 
which side of the membrane their antigenic sites are exposed. 
To this end, we treated cell fractions with detergent, high KC1 
concentration, or proteolytic enzymes. 

Localization of the Antigens 
TX-l 14 is useful for rapid and quantitative partitioning of 

integral membrane proteins with a hydrophobic domain and 
soluble, hydrophilic proteins (31). After extraction of IR202 
myeloma cells with TX-114, aqueous and detergent phases 
were analyzed by PAGE-lB. The validity of the extraction 
was monitored in two ways. (a) The activity of galactosyl 
transferase, a Golgi membrane protein that requires detergent 
for its solubilization (32), was assayed in both fractions: 86% 
of the recovered activity was found in the detergent extract. 
(b) IgM of the myeloma was stained by immunoblotting: all 
Ig was detected in the aqueous phase, none in the detergent 
phase (Fig. 4). Immunoblots that had been stained with 6F4C5 
showed that both proteins were recovered in the aqueous 
phase, indicating that they are probably not intrinsic mem- 



FIGURE 1 Immunofluorescent 
staining by 6F4C5 Mob of fibro- 
blasts FR3T3 (a and b) and mye- 
Ioma cells YB 2/0 (c and d). Cells 
were grown on glass coverslips, 
then fixed and stained with cul- 
ture supernatants as described in 
Materials and Methods. (a and c) 
Phase-contrast micrographs. (b 
and d) Immunofluorescence of 
the same fields. Note the intense 
staining in the perinuclear cyto- 
plasm. In the fibroblasts a reticu- 
lar pattern is visible. Y82/0 cells 
have been chosen instead of 
IR202 cells because IgM of the 
latter cross-reacts with mouse Ig. 
Bar, 10/~M. (a and b) x 1,085. (c 
and d) x 2,320. 

brane proteins (Fig. 4). 
To further explore the localization of these antigens, we 

treated subcellular fractions with high KCI concentrations 
which should release adlumenal extrinsic proteins, but not 
extrinsic proteins on the lumenal face of the microsomal 
membrane (35). PMS and total microsomal fractions (150- 
min centrifugation) were adjusted to 0.25 M STKM at 25, 
100, and 500 mM KC1 and sedimented for 150 min at 165,000 
gag. The presence of 6F4C5-specific proteins in the sedimented 
fractions or in the supernatants was monitored by PAGE-IB 
(Fig. 5). Galactosyl transferase activity and latency in the 
pellets were determined in parallel, as indications of the 
intactness of the vesicles at different concentrations of KCI. 
As can be seen (Fig. 5), both proteins became nonsediment- 
able at 100 or 500 mM KCI and some 86,000-mol-wt species 
was even released at 25 mM KCI. This extraction was not due 
to a permeabilization of microsomal vesicles since 84-94% 

of the total galactosyl transferase activity remained latent. 
Thus, the 54,000- and the 86,000-mol-wt molecules appear 
to be associated with the cytoplasmic face of the microsomal 
membrane. 

To confirm this hypothesis, we explored the protease-sen- 
sitivity of the antigens. Samples of PMS were incubated with 
a range of concentrations ofpronase or trypsin in the absence 
or presence of TX-100. Even at the lowest doses of proteases 
in the absence of detergent, the 54,000- and 86,000-mol-wt 
proteins were susceptible as judged by immunoblot analysis. 
In contrast, galactosyl transferase activity was abolished by 
such treatments only in presence of detergent. Fig. 6 shows 
the result of trypsin treatment. 

Localization to Submicrosomal Fractions 

At 25 mM KCI, both proteins were recovered in microso- 
mal fractions. Nevertheless, it was not possible to establish 
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their submicrosomal origin by isopycnic subfractionation of 
microsomes because subfractionation in the presence of 25 
mM KC1 resulted in extensive pelleting of the antigens (along 
with a considerable amount of galactosyl transferase) with 
rough microsomes (p>1.22 g/ml), whereas at KC1 concentra- 
tions >100 mM, the antigens were no longer membrane 
associated. 

Immunoelectron Microscopy 
Since immunofluorescence clearly showed the staining of 

the Golgi area by the 6F4C5 Mab, we used ultrastructural 
immunocytochemistry to examine the more detailed localiza- 
tion of this staining of the Golgi complex. Although immu- 
noblotting can be performed after glutaraldehyde treatment 
of the nitrocellulose strip (not shown), the use of even small 
amounts (0.05%) of glutaraldehyde is not compatible with an 
immunocytochemical staining by the 6F4C5 Mab, despite the 
saponin treatment (unpublished observations). Cells were 
therefore fixed only with paraformaldehyde. Fig. 7 a shows 

FIGURE 2 Identification by immunoblotting of the antigen recog- 
nized by 6F4C5 Mab. IR202 PMS were centrifuged 45 min (lanes 
b and c) or 150 rain (lanes d and e) at 165,000 gay. The respective 
pellets (lanes b and d) and supernatants (lanes c and e) and an IR- 
202 NP-40 cell lysate (lane a) were reduced and analyzed by PAGE- 
lB. Arrowheads indicate the specifically stained proteins. Each of 
the three samples (a, b and c, and d and e) is derived from 2 x 106 
cells. 
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the overall distribution of staining in the IR202 cells: peroxi- 
dase staining is almost completely restricted to the Golgi 
complex. The only other structures that are stained are the 
focal portions of the rough endoplasmic reticulum which are 
lightly positive. At higher magnification, the strong staining 
is seen to be restricted to the Golgi cisternae (Fig. 7b); small 
vesicles budding off or in the vicinity of the Golgi cisteruae 
may also be stained (Fig. 8). In most cases the staining clearly 
outlines the membranes of the cisternae (cf. Fig. 7, c). In other 
images (Figs. 7 b and 8) it appears to cover the whole width 
of a cisterna probably as a result of a diffusion of the enzy- 
matic reaction product (36), which may be facilitated by the 
exposure to saponin. The cytochemical marker of distal cis- 
ternae, thiamine pyrophosphatase, was used to further estab- 
lish the exact location of the stained structures. As can be 
seen (Fig. 8), thiamine pyrophosphatase was restricted to the 
two most distal cisternae, the peroxidase reaction product was 
found in medial cisternae, and the most proximal cisternae 
were unstained. 

DISCUSSION 
The monoclonal antibody described in this paper was raised 
by immunization of mice with a smooth microsomal fraction 
of rat myeloma cells, obtained by isopycnic centrifugation 
and selected for its high galactosyl transferase activity. It is 
one of a series of Mab that clearly stain the Golgi complex 
and was chosen for this study because its fluorescent localiza- 
tion is especially striking. 

We will discuss first the nature and orientation of the 
proteins recognized by this Mab, then their localization in 
situ in the Golgi complex as revealed by immunoelectron- 
microscopy. 

The Mab 6F4C5 recognizes two proteins, a major one of 
54,000 mol wt, and a minor one of 86,000 mol wt, which 
share a common antigenic determinant, as proven by the 
observation that the Ig molecules bound to one of them can 
be eluted and bound to the other. Many Mabs have been 
reported to recognize several proteins (37-39). In the present 
case, it is difficult to decide whether these two proteins only 

FIGURE 4 Extraction with TX-114 of IR- 
202 myeloma cells. IR 202 cells were 
lysed with TX-114 at 4°C and clarified 
by a 5-min centrifugation (2,200 g at 
4°C). The resulting supernatant was par- 
titioned with TX-114 (31). The aqueous 
and detergent phases were reduced and 
analysed by PAGE-lB. (lanes a and b) 
Amido black staining of aqueous and 
detergent phases, respectively. (lanes c- 
e) Immunostaining by 6F4C5 of the total 
lysate, aqueous, and detergent phases, 
respectively. (lanes f-h) Immunostaining 
(by an antiserum anti-rat) of IgM of the 
total lysate, aqueous, and detergent 
phases, respectively. 

FIGURE 3 Immunoblot staining by 6F4C5 of fractions eluted from WGA- and Con A-Sepharose columns. NP-40 lysates of IR202 
myeloma (lanes a and a ') were loaded onto Con A- and WGA-Sepharose columns. After 1 h at room temperature, columns were 
rinsed and glycoproteins eluted specifically (see Materials and Methods). Con A-Sepharose flow-through (lanes c and c') and 
specifically eluted (lanes b and b') fractions, and WGA-Sepharose flow-through (lanes e and e') and eluted (lanes d and d') 
fractions, were run on SDS gels and transferred to nitrocellulose. The paper was cut and one half (lanes a-e) was stained with 
amido black and the other (lanes a ' -e ' )  was immunostained with 6F4C5 as in Fig. 2. Although a range of proteins is retained by 
the lectin columns (lane b and d), the antigens of interest are not (lanes b' and d'). In d, the proteins specifically eluted from the 
WGA column are mainly heavy and light chains of IR202 IgM. 
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FIGURE 5 Influence of KCI concentration on the association of 6F4C5 specific proteins to microsomal vesicles. Analysis by 
PAGE-lB. (lane a) Sample of sedimented PMS (150' at 165,000 gay). (lanes b-d) Microsomal fractions collected by sedimentation 
of PMS (150 min at 165,000 gay) were resuspended by hand (Dounce, two to three strokes) in 0.25 M STKM containing 25, 100, 
or 500 mM KCl. Each was then resedimented (150 min at 165,000 gay) and the resulting pellets (p) and supernatants (s) were 
analyzed. (lanes e-g) Samples of PMS were diluted with an equal volume of 0.25 M STKM to yield 25, 100, and 500 mM KCI. 
They were sedimented and analyzed as for lanes b-d. In parallel, pellets were assayed for galactosyl transferase activity in the 
presence or absence of TX-IO0 and the percent latency (activity without detergent/activity with detergent) was determined. By 
this measure, it is evident that the KCI treatments did not change the degree of intactness of the microsomes. 

share a common antigenic determinant or whether they are 
more directly related, for instance by a precursor product 
relationship. On the one hand, both proteins share similar 
characteristics in their relation with the smooth membranes: 
(a) They are extrinsic proteins localized on the cytoplasmic 
side of the membranes (as shown by their release at high KCI 
concentration); (b) they are present in the hydrophilic phase 
after extraction of the membranes with TX-114; and (c) they 
are similarly sensitive to protease treatment of microsomes in 
the absence of detergent. Furthermore, both the 54,000- and 
the 86,000-mol-wt molecules appear to be free of N-linked 
oligosaccharides. On the other hand, membranes bearing the 
54,000-mol-wt proteins present in the PMS sediment faster 
(entirely present in the pellet after 45 min at 165,000 gay) than 
the structure bearing the 86,000-mol-wt protein (Fig. 2). The 
evidence thus suggests that these proteins are recovered on 
different-sized particles after cell homogenization. If the site 

of synthesis of one or both of them is on the rough endo- 
plasmic reticulum, they must move very quickly to the Golgi 
complex judging from the immunocytochemical data. On the 
other hand, considering the orientation of these proteins, 
which is like cytochrome b5 and NADH cytochrome b5 re- 
ductase (40-42), it is more logical to anticipate synthesis on 
free ribosomes followed by posttranslational membrane as- 
sociation. Furthermore, the 86,000-mol-wt protein is still 
detectable in very small amounts in the PMS, even after long 
centrifugation times, when most of the membranes and all 
the 54,000-mol-wt antigens have pelleted. If the 86,000-mol- 
wt protein were indeed synthesized on free ribosomes, it is 
conceivable that after rapid membrane binding, it is cleaved 
and transported to another site (possibly still part of the same 
cisternae), thus being the precursor of the major 54,000-mol- 
wt protein. A partial analogy may be found in the synthesis 
of certain reticulocyte proteins which are associated with the 

2206 THE JOURNAL OF CELL BIOLOGY - VOLUME 99, 1984 



FIGURE 6 Susceptibility to proteases of 6F4C5 specific proteins in an IR202 PMS. Samples or IR202 PMS were incubated with 
trypsin at 0 (lanes a and a '), 0.5 (lanes b, b', d, and d') and 5/~g/ml (lanes c, c', e, and e') for 60 min at 4°C in the absence (lanes 
a-e) or presence (lanes a'-e') of TX-100. Inhibitors were added at the end of the incubation. In control experiments, samples 
were incubated with inhibitors before and during protease treatment (lanes b, c, b', and c'). Samples were then assayed for 
transferase activity, reduced, and submitted to PAGE-lB. It is clear that both antigens are cleaved in the absence of detergent, in 
conditions that maintain microsomal integrity. 

inner surface of the plasma membrane proteins (43). 
The release of the antigens from microsomal membranes 

at subphysiological KCI concentrations (~ 150 mM; see ref- 
erence 44) is surprising. This might cause some problems in 
the purification of Golgi subfractions by immunoadsorption. 
Several considerations bear on the weakness of the interaction: 
(a) In the cell sap a variety of ions, metabolites, and soluble 
macromolecules may influence the membrane affinity of the 
antigens in question. Indeed, when subcellular fractionation 
is conducted in the presence of 100 mM KC1, the amount of 
the antigens recovered in the microsomal pellet is inversely 
proportional to dilution of the PMS (unpublished observa- 
tion); (b) the mechanical trauma of homogenization may 
labilize the adhesion of such components. Moreover, it is 
possible that homogenization fragments Golgi cisternae into 
domains of distinctive composition, size, and/or density. Such 
considerations may explain the apparent nonidentity of the 
sedimentation properties of the two antigens. Cytochemical 

and morphological heterogeneity in single cisternae have been 
described (45). 

Whatever their possible interrelationship, the two proteins 
recognized by 6F4C5 Mab are the first identified Golgi pro- 
teins localized to the cytoplasmic face of Golgi membranes. 
To date, four other Mabs against Golgi proteins have been 
described. One detects a 110,000-mol-wt protein in the Golgi 
region (13), and the others recognize Golgi intrinsic mem- 
brane proteins of 135,000 (14), 103,000-108,000, and 
180,000 mol wt (l 5). Since the present Mab selectively reacts 
with at least three rat cell types, namely myeloma cells, 
fibroblasts, and liver, it is likely that the corresponding pro- 
teins are basic elements of the Golgi membranes, and possibly 
are important for effecting transport. 

At the ultrastructural level, the staining with 6F4C5 is 
primarily of Golgi cisternae, as opposed to vesicles. When a 
cross section of the Golgi stack was examined, only some of 
the cisternae were stained and these tended to be centrally 
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FIGURE 7 Ultrastructural localization of antigens recognized by 6F4C5. IR202 cells in suspension were fixed for 1 h with 4% 
paraformaldehyde, permeabilized with 0.05% saponin, and incubated with biotinylated 6F4C5 followed by avidin-peroxidase. 
The cells were then washed, refixed with 4% glutaraldehyde, and incubated with peroxidase substrates. After a postfixation with 
1% OsO4, the cells were dehydrated and embedded in Epon. Unstained thin sections were examined in a Philips 300 electron 
microscope. (V) Vesicles similar to those that are thought to mediate Ig transport to the cell surface (6). Arrows indicate unstained 
cisternae. (a) Bar, 2 #m; x 7,800. (b and c) Bar, 0.2 #m; x 86,500. 
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FIGURE 8 Double staining for thiamine pyrophospha- 
tase activity and antigens recognized by 6F4C5. IR202 
cells were processed as in Fig. :7, but were refixed in 
0.2% glutaraldehyde/2% paraformaldehyde and stained 
for thiamine pyrophosphatase activity (30) 40 min at 37°C 
before the addition of peroxidase substrates. (N) Nucleus. 
(V) Ig transport vesicles. Arrows indicate unstained cister- 
nae; arrowheads indicate peroxidase-stained small vesi- 
cles. Bar, 0.5 #m. × 54,000. 

located (i.e., medial). Double staining experiments with nu- 
cleoside diphosphatase (thiamine pyrophosphatase), a marker 
of  distal cisternae, confirmed this assignment. No distinctive 
functions are known to be associated with medial cisternae; 
however, in selected cells these cisternae are histochemically 
positive for nicotinamide adenine dinucleotide phosphatase 
activity (46, 47). 

What is of  particular interest in this restricted localization 
on medial Golgi cisternae is that it may be the expression of 
the dynamic membrane-membrane interactions which are 
characteristic of  Golgi function. It is likely that these interac- 
tions require a considerable specificity, and that such specific- 
ity is mediated by membrane determinants on the cytoplasmic 
(adlumenal) surface of  these membranes. For example, alto- 
gether uncharacterized determinants are thought to be re- 
sponsible for the close apposition of adjacent Golgi cisternae 
(48-49), an association that persists even after considerable 
disorganization of Golgi structure (12). Other cytoplasmic 
determinants may be responsible for accurate targeting of  
vesicles to and from the Golgi stack. 
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