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Abstract: Among the myriad of molecules produced by the liver, both bile acids and their precursors,
the oxysterols are becoming pivotal bioactive lipids which have been underestimated for a long time.
Their actions are ranging from regulation of energy homeostasis (i.e., glucose and lipid metabolism)
to inflammation and immunity, thereby opening the avenue to new treatments to tackle metabolic
disorders associated with obesity (e.g., type 2 diabetes and hepatic steatosis) and inflammatory
diseases. Here, we review the biosynthesis of these endocrine factors including their interconnection
with the gut microbiota and their impact on host homeostasis as well as their attractive potential for
the development of therapeutic strategies for metabolic disorders.

Keywords: liver; bile acids; oxysterols; inflammation; gut microbiota; steatosis; cholesterol; lipid
metabolism; glucose metabolism

1. Introduction

The liver, by being the first organ exposed to molecules absorbed from the intestine,
plays a vital role in the detoxification of harmful substances (e.g., toxins and xenobiotics)
and in the regulation of energy homeostasis [1,2]. This metabolic hub of the body displays
an extensive number of signaling pathways mediated by over a dozen of cell types in
different proportions with distinct roles [3]. The hepatocytes are the major parenchymal
cells of the liver. They are the functional units of this organ and represent 60% of the total
liver cells but occupy 80% of the liver volume [4]. These cell types are essential and can
manage numerous and various physiological processes (e.g., detoxification, bile acid (BA)
synthesis, regulation of glucose and lipid metabolism). Hepatocytes are the biggest cell
type of the liver (i.e., 20–40 µm) and have a life span of at least 150 to 200 days in humans
and up to 450 days in rodents [4]. Aside from hepatocytes, the liver is also composed of
biliary epithelial cells and sinusoidal cells. Specifically, sinusoidal cells, including liver
sinusoidal endothelial cells (LSECs), Kupffer cells (KCs) and hepatic stellate cells (HSCs),
constitute about 30–40% of total liver cell number and 6.5% of the liver volume [4]. LSECs
lie along the sinusoids and have the particularity of possessing pores, also called fenestrae,
which mainly filter the molecules of the blood for the hepatocytes [5]. KCs are the resident
macrophages of the liver. Under physiological conditions, they act as sentinels and have
the capacity, for instance, to clear endotoxins coming from the gut lumen to defend the
liver [6]. Finally, HSCs contribute to fibrogenesis and play a major role in the production
of the extracellular matrix [3,7]. Altogether, the liver is an intricate organ composed of a
complex network of various cell types which need to be properly regulated to maintain an
appropriate body homeostasis.

In this review, we will mainly focus on the role played by the hepatocytes on the
production of different bioactive lipids such as BAs and oxysterols. We will summarize the
major pathways involved in the production of these molecules in both physiological and
pathological conditions. We will also report how the oxysterol/BA profiles vary during
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metabolic and inflammatory disorders and their consequences on the host metabolism.
Ultimately, the recent therapeutic strategies designed to tackle metabolic disorders using
compounds able to modulate BA metabolism will be delineated.

2. Biosynthesis of Oxysterols and BAs

The liver is an organ of utmost importance for the regulation of cholesterol concen-
tration since it is the main tissue involved in both its production and metabolization. At
high levels, cholesterol is toxic and can damage the surrounding cells. One efficient way to
eliminate this excess from the body is to convert it into its oxidized derivatives, that are
oxysterols and BAs which are playing different metabolic roles [8,9]. In fact, the most de-
scribed function for BAs regards lipid assimilation in the gut. Indeed, after meal ingestion,
these molecules are secreted into the duodenum and facilitate the digestion and absorption
of dietary fat, steroids and fat-soluble vitamins [8]. However, this role is far from being
unique as detailed later in this review.

Oxysterols are early oxygenated forms of cholesterol or of its precursors that are gen-
erated through enzymatic (e.g., cytochrome (CYP) P450s and cholesterol 25-hydroxylase
Ch25OH) and non-enzymatic reactions (e.g., reactive oxygen species (ROS)) [10,11]. Oxys-
terols resulting from these reactions can be structurally different and divided in several
groups including monohydroxycholesterols, dihydroxycholesterols, epoxycholesterols
or ketone derivatives (Figure 1A) [12]. Although they were long considered as simple
intermediates in the formation of BAs (e.g., 25-hydroxycholesterol (OHC) and 7α-OHC)
and steroid hormones (e.g., 22(R)-OHC), they also act as signaling mediators. These related
activities will be addressed in detail later in this review. Of interest, their synthesis is not
restricted to hepatocytes since some have also been detected in immune cells and neurons,
among others [12].

Unlike oxysterols, primary BAs are only generated in hepatocytes through an elaborate
network involving at least 17 enzymes (Figure 1) [13]. There are two main routes producing
primary BAs: the classic and the alternative pathways. In humans, the classic pathway
accounts for approximately 90% of total BA production whereas the alternative pathway
contributes for the remaining 10% under normal physiological condition. In rodents,
however, both cascades participate equally to the synthesis of BAs [14,15].
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Figure 1. Overview of oxysterol and bile acid (BA) metabolism. (A) Structure of the main oxysterols and BAs involved in 
host homeostasis modulation. (B) Biosynthesis and circulation of oxysterols and BAs. (1) Primary BAs are generated from 
oxysterols through numerous enzymes (e.g., CYP7A1, CYP27A1, CYP7B1 and CYP8B1) in hepatocytes, are then 
conjugated with T or G by BAL and BAAT and finally stored in the gallbladder. (2) Upon meal ingestion, these are released 
into the duodenum. (3) BAs can facilitate lipid absorption. (4) Some primary BAs are deconjugated and then converted 
into secondary BAs by specific intestinal bacteria. (5) While approximately 5% are excreted, (6) about 95% are reabsorbed 

Figure 1. Overview of oxysterol and bile acid (BA) metabolism. (A) Structure of the main oxysterols and BAs involved
in host homeostasis modulation. (B) Biosynthesis and circulation of oxysterols and BAs. (1) Primary BAs are generated
from oxysterols through numerous enzymes (e.g., CYP7A1, CYP27A1, CYP7B1 and CYP8B1) in hepatocytes, are then
conjugated with T or G by BAL and BAAT and finally stored in the gallbladder. (2) Upon meal ingestion, these are released
into the duodenum. (3) BAs can facilitate lipid absorption. (4) Some primary BAs are deconjugated and then converted
into secondary BAs by specific intestinal bacteria. (5) While approximately 5% are excreted, (6) about 95% are reabsorbed
and travel back to the liver via the portal vein. (7) Finally, a small proportion of BAs reaches other organs (e.g., muscles
and adipose tissue) through the systemic circulation. Abbreviations: BA, bile acid; BAAT, bile acid CoA:amino acid
N-acyltransferase; Bai, bile acid-inducible; BAL, bile acid CoA ligase; BSH, bile salt hydrolase; CA, cholic acid; CDCA,
chenodeoxycholic acid; CYP, cytochrome P450 enzyme; DCA, deoxycholic acid; G, glycine-conjugated species; HCA,
hyocholic acid; HDCA, hyodeoxycholic acid; LCA, lithocholic acid; MCA, muricholic acid; MDCA, murideoxycholic acid;
OHC, hydroxycholesterol; T, taurine-conjugated species; UDCA, ursodeoxycholic acid.
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On the one hand, the classic pathway initiates with the rate-limiting enzyme named
cholesterol 7α-hydroxylase (CYP7A1) and aims to produce both cholic acid (CA) and
chenodeoxycholic acid (CDCA) [13,16]. The sterol 12α-hydroxylase (CYP8B1) is also a
key enzyme of this cascade since it is required to form CA and is, therefore in charge of
regulating the CA/CDCA ratio [17]. On the other hand, the alternative pathway regulates
oxysterol levels by synthesizing 24(S)-OHC, 25-OHC and 27-OHC (also known as 26-OHC)
through the transporter steroidogenic acute regulatory protein (StarD1) and the enzyme
sterol 27-hydroxylase (CYP27A1) [18]. These bioactive lipids are thereafter metabolized
mainly by oxysterol 7α-hydroxylase (CYP7B1) to predominantly generate CDCA. Notewor-
thy, in rodents, ursodeoxycholic acid (UDCA) is considered as a primary BA and CDCA is
mostly converted to α-muricholic acid (MCA) and β-MCA by CYP2C70, a 6β-hydroxylase
enzyme recently identified [13,18,19]. Once formed, primary BAs are conjugated with
glycine in humans and taurine in rodents by bile acid CoA:amino acid N-acyltransferase
(BAAT) and excreted into the biliary canaliculi via the ABC-transporter bile salt export
pump (BSEP) to ultimately be stored in the gallbladder [15]. These amphipathic molecules
are secreted into the duodenum after a meal but most of the conjugated BAs are then
actively reabsorbed in the distal ileum by the apical sodium-dependent bile salt transporter
(ASBT), travel back to the liver through the portal blood, are taken up by the Na+-dependent
taurocholate transporter (NTCP) in hepatocytes to finally be secreted in the gallbladder.
This phenomenon is called the enterohepatic circulation. However, a small proportion of
BAs escapes this reabsorption and are profoundly affected by the gut microbiota in the
ileum and colon. Conjugated BAs are firstly deconjugated by bacterial bile salt hydrolases
(BSHs) present in a large variety of bacteria including both Gram-negative (e.g., Bacteroides)
and Gram-positive genera (e.g., Clostridium, Lactobacillus, Listeria and Enterococcus) [20].
Free BAs can either cross the gut barrier through passive diffusion or be further processed
by bacterial enzymatic activities (e.g., dehydrogenation and dehydroxylation), increasing
the catalogue of BA molecules. Indeed, CA and CDCA are metabolized by the bacterial 7α-
dehydroxylase, that removes their 7α-OH group, to form secondary BAs, deoxycholic acid
(DCA) and lithocholic acid (LCA), respectively [15]. Additionally, in humans’ gut, CDCA
can also be biotransformed into UDCA by 7β-hydroxysteroid dehydrogenase (HSDH)
which epimerizes its 7α-OH into a 7β-OH group. Besides, oxo-BAs can also be generated
by 3α, 7α and 12α-HSDHs which epimerize the corresponding α-OH group to carbonyl
group. These oxo-BAs can be further metabolized into iso-BAs and epi-BAs trough the
β-epimerization of the carbonyl group thanks to 3β, 7β and 12β-HSDHs [20]. In mice,
murine-specific primary BAs, α-MCA and β-MCA, can be converted into secondary BAs
as well. Although both can generate murideoxycholic acid (MDCA), only β-MCA can be
metabolized intoω-MCA, hyocholic acid (HCA) and hyodeoxycholic acid (HDCA) [15].
These bacterial metabolites can also be passively absorbed from the gut and can impact the
whole organism by acting as signaling molecules (this will be discussed in a subsequent
section of this review). In total, ~95% of the total BAs are reabsorbed at some point, whereas
~5% are excreted in the feces [8]. Of interest, in the mouse liver, LCA and DCA can be
converted back to CDCA and CA, respectively, through rehydroxylation, by the recently
described 7α-hydroxylase (CYP2A12) [19]. Finally, it is worth mentioning that in an adult
human liver, around 500 mg of cholesterol is daily catabolized into BAs [13].

3. Physiological Roles of BAs on Energy Homeostasis and Inflammation
3.1. BA Profile in Inflammatory and Metabolic Diseases

BAs are amphipathic molecules and their hydrophobicity level can be classified accord-
ing to this order LCA>DCA>CDCA>CA>HDCA>UDCA>β-MCA>α-MCA, free species be-
ing more hydrophobic than conjugated BAs (glycine-conjugated> taurine-conjugated) [20–22].
One of their primary function regards their ability to digest and absorb lipid-related
molecules in the intestine [15]. Nevertheless, in humans, changes in BA profile have also
been widely observed in patients suffering from obesity and associated comorbidities (e.g.,
nonalcoholic fatty liver disease (NAFLD), nonalcoholic steatohepatitis (NASH) and type
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2 diabetes (T2DM)). For instance, individuals with metabolic disorders usually have an
increase in total BA pool [23]. This has been largely reported in NAFLD/NASH patients in
several compartments such as the liver, serum and feces [24–27]. Besides, the enlargement
of the BA pool has recently been associated with the progression of the disease [28,29]. Para-
doxically it should be mentioned that an elevated BA pool is not always associated with
deleterious health effects given that humans undergoing bariatric surgery are characterized
by a rise in BA levels while their metabolic parameters are improving [30]. Moreover,
although obesity-related disorders are usually characterized by a chronic low-grade inflam-
mation, individuals with chronic intestinal inflammatory diseases (e.g., Crohn’s disease
(CD) and ulcerative colitis (UC)) exhibit another BA profile. Indeed, in inflammatory bowel
diseases (IBD), it has been clearly demonstrated that the deconjugation and thus the con-
version of primary to secondary BAs were impaired resulting in an increased conjugated
primary BA level [31–33]. This suggests that the location and severity of inflammation
might also influence the BA composition.

Coming back to the role of BAs on lipid absorption, it has been established that the
composition of BAs released in the intestine influence this function, that can in turn, have
an impact on energy homeostasis. Indeed, it has been reported that hydrophobic BAs only
produced by the classic pathway and thereby hydroxylated on their C12 (also known as
12-OH BAs), including CA and its microbial-derivative DCA, enhance the absorption of
fat and cholesterol in mice by forming efficiently mixed and larger micelles, respectively
(Figure 2A) [22,34,35]. This could substantially aggravate metabolic parameters in obesity-
related diseases. Conversely, it has recently been demonstrated that UDCA administration
in mice, a non 12-OH BA, exerted beneficial metabolic outcomes by increasing the rate of
BA enterohepatic circulation and excretion leading to an accelerated BA synthesis and a
diminished cholesterol level in the liver [36]. Additionally, by administering BAs from the
alternative pathway instead of the classic pathway in mice, it has been demonstrated that
an elevated concentration of the hydrophilic non 12-OH BAs, MCAs and UDCA, resulted
in a decreased intestinal fat and cholesterol absorption [22]. In line with this, it has been
shown that serum 12-OH BAs were augmented in humans with insulin resistance [37].
Moreover, a reduction in non 12-OH BA plasma level was found in unhealthy individuals
with high body mass index (BMI) (i.e., ≥25 kg/m2) compared to healthy subjects with low
or high BMI [38]. Curiously, it should be noted that the ratio 12-OH/non 12-OH rose in the
serum of obese who lost weigh in spite of a reduction in their total BA level [39]. Overall,
promoting the alternative pathway to manage metabolic disorders seems promising as
recently reviewed by Jia and colleagues [40]. However, one should bear in mind that
enhancing this alternative pathway may have different consequences on mice compared to
humans since CDCA (in humans) and MCA (in mice) exhibit different hydrophobicity level
and opposing effects on one BA receptor called farnesoid X receptor (FXR) (this receptor
will be extensively discussed later in this review). Further investigations are definitely
required to clarify it.

Noteworthy, among all the studies mentioned here above, we noticed some discor-
dances in BA profile associated with one specific disorder. Although this is not clearly
addressed in these clinical research, we do believe that these differences may be due to
the feeding state of the person (i.e., fasting versus postprandial measurements), the use of
drugs influencing the gut microbiota and/or the liver function (e.g., metformin, statins and
proton-pump inhibitors), the technique of measurement (e.g., untargeted versus targeted
studies), biological sample analyzed (e.g., plasma versus stool), gender and age as well as
the severity of the disease.

Collectively, this suggests that BAs might display context-dependent roles and it
strengthens the importance of deciphering the exact functions of these bioactive lipids
that potentially may be used as future treatments to counteract either inflammatory or
metabolic disorders.
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ing secondary BAs are impacting host metabolism. (C) BAs and oxysterols are considered as signaling molecules since 
they can interact with a panel of receptors distributed in the whole body. The BA receptors FXR, TGR5 and VDR as well 
as the oxysterol receptor LXR are the most important ones regarding inflammatory and metabolic disorders. Abbrevia-
tions: BA, bile acid; CA, cholic acid; DCA, deoxycholic acid; FXR, farnesoid X receptor; GLP-1, glucagon-like peptide 1; 
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Figure 2. BAs and oxysterols at the nexus of host homeostasis. (A) BA profile in the intestine regulates lipid assimilation
with 12-OH BAs promoting fat and cholesterol absorption. Conversely, the composition of the diet also influences BA
profile since total BAs is increased upon high-fat diet (HFD) exposure. (B) A mutual relationship exists between the gut
microbiota and BAs. BAs regulate the proliferation, maturation and the composition of the intestinal bacteria while the gut
microbiota generates secondary BAs. Displaying a healthy equilibrium is essential since bacterial metabolites including
secondary BAs are impacting host metabolism. (C) BAs and oxysterols are considered as signaling molecules since they
can interact with a panel of receptors distributed in the whole body. The BA receptors FXR, TGR5 and VDR as well as the
oxysterol receptor LXR are the most important ones regarding inflammatory and metabolic disorders. Abbreviations: BA,
bile acid; CA, cholic acid; DCA, deoxycholic acid; FXR, farnesoid X receptor; GLP-1, glucagon-like peptide 1; LXR, liver X
receptor; MCA, muricholic acid; OH, hydroxyl group; TGR5, Takeda G-protein coupled receptor 5; UDCA, ursodeoxycholic
acid; VDR, vitamin D receptor.

3.2. BAs as Endocrine Molecules

Apart from playing a key role in lipid absorption, it is now recognized that BAs act
as signaling mediators influencing host homeostasis by interacting with both a G protein
coupled receptor named TGR5 (Takeda G-protein coupled receptor 5) and various nuclear
receptors such as FXR, vitamin D receptor (VDR), constitutive androstane receptor (CAR)
or pregnane X receptor (PXR). While PXR and CAR are mostly associated with drug
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metabolism and detoxification, it has been proven that FXR, TGR5 and VDR mediate
pleiotropic effects in inflammation and energy metabolism (Figure 2C) [14,16].

3.2.1. Farnesoid X Receptor (FXR)

FXR is expressed in various tissues including the liver (i.e., hepatocytes> LSECs,
HSCs and KCs), intestine (i.e., enterocytes from ileum > colon), kidneys, adipose tissue,
adrenal glands, cardiovascular system and lungs. However, its role has mostly been
investigated in the tissues taking part in the BA enterohepatic circulation [16]. FXR is
activated by several BAs such as CDCA, DCA, CA and LCA with unconjugated BAs
being more potent FXR activators than conjugated BAs [41–44]. Although this latter
fact remains stable across studies, controversial data have been published regarding the
ranking of FXR-activating BAs. This difference might vary according to the in vitro/in vivo
conditions, organisms, FXR isoforms and sometimes pathological situations. Indeed,
several in vitro studies carried out on cell lines from different organisms (e.g., humans
and monkeys) have drawn the conclusion that FXR-activating BA rank was the following
CDCA > DCA > LCA > CA [41–44]. In mice, according to an in vivo study investigating
the expression of several hepatic and ileal FXR-target genes following the ingestion of
specific BA at different doses, CA and DCA were greater FXR activators than CDCA
and LCA and differed in a dose-dependent manner [45]. Strikingly, in NASH/NAFLD
patients, despite the higher amount of total BAs and consequently FXR agonists, FXR
activity is diminished [26,46]. Jiao and colleagues have suggested that DCA might act
as FXR antagonist in the presence of CDCA in humans with NASH [26]. It is also worth
noting that, in mice, Tα/β-MCAs have been reported to act as FXR antagonists [47].

• FXR and BA Regulation

The synthesis of BAs is under the control of a negative feedback loop. When entering
in enterocytes, ileal FXR is activated and enhances the expression of both the intestinal bile
acid-binding protein (I-BABP) [44], and the organic solute transporter (OST)α and OSTβ
that are basolateral BA transporters leading to an efflux of BAs in the portal vein. More
importantly, intestinal FXR activation also promotes the secretion of the intestinal fibroblast
growth factor (FGF)15 in mice (FGF19 in humans) [14]. Subsequently, this small molecule
is conveyed to the portal circulation and reaches the liver to activate the fibroblast growth
factor receptor (FGFR)4/β-Klotho receptor that represses CYP7A1 and CYP8B1 through
extracellular signal-regulated kinase (ERK) and c-Jun N-terminal kinase (JNK) stimulation
leading to the suppression of BA synthesis (Figure 3) [48–50]. The inhibition of those two
key enzymes is also mediated, to a lesser extent, by the activation of FXR in hepatocytes.
This latter will induce the transcription of the nuclear receptor small heterodimer partner
(SHP) resulting in the inhibition of CYP7A1 and CYP8B1 to avoid BA accumulation, which
can induce liver inflammation and injury [18].

• FXR, Energy Homeostasis and Inflammation

FXR actions have extensively been studied and conflicting results were reported re-
garding its beneficial effects during pathological conditions. Many Fxr knockout animals
were generated and several experiments demonstrated that the deletion of Fxr was delete-
rious for the regulation of BA homeostasis as well as lipid and glucose metabolism [51–54].
First, FXR activation has been indicated to prevent the hepatic accumulation of BAs to
toxic levels by inducing BSEP and BAAT in order to enhance BA efflux and conjugation,
respectively. In addition to inhibiting BA synthesis, FXR stimulation may also lower
the reuptake of plasma BA by downregulating NTCP [55–57]. It was also demonstrated
that hepatic lipogenesis was decreased upon FXR activation. Indeed, FXR stimulation
enhances fatty acid oxidation through peroxisome proliferator-activated receptor (PPAR)α
stimulation and reduces de novo lipogenesis by repressing both carbohydrate responsive
element binding protein (ChREBP) and indirectly sterol responsive element binding protein
1 (SREBP-1c) [58–61]. More precisely, hepatic FXR activation leads to the activation of SHP
which in turn inhibits liver X receptor (LXR) resulting in the repression of SREBP-1c [62].
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Regarding glucose homeostasis, the role of FXR is less clear. One study showed that FXR
stimulation inhibited gluconeogenesis by repressing two rate-limiting step enzymes (i.e.,
phosphoenolpyruvate carboxykinase (Pck1) and glucose-6-phosphatase (G6pc)) in vitro
whereas another study demonstrated the opposite [63,64]. In spite of this dissimilarity,
most of the experiments performed on mice indicated that FXR activation lowers blood
glucose level and enhances insulin sensitivity [53,54,65]. Finally, anti-inflammatory proper-
ties have also been described upon FXR activation in the liver. Although, the decrease in
proinflammatory cytokines is likely due to the transrepression of nuclear factor-kappa B
(NF-κB) [66–68], other mechanisms may also occur. For instance, FXR anti-inflammatory ef-
fects could also be linked to a reduced hepatic lipid accumulation [61]. Indeed, an elevation
of hepatic lipids has been reported to induce ROS formation and to activate NF-κB-related
pathways, worsening liver inflammation [69,70]. Further studies are thereby required to
provide a better understanding of the mechanisms underlying this FXR function.
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the control of the immune system involving TLR/MyD88 complex. Finally, a reciprocal regulation 
might take place between BAs and NAPE-PLD, which is responsible for generating other crucial 
bioactive lipids named NAEs. Abbreviations: BA, bile acid; CYP27A1, sterol 27-hydroxylase; 

Figure 3. Modulation of oxysterol and BA profiles by the hepatic endocannabinoid and immune
system in male mice. BAs are cholesterol-derived bioactive lipids synthesized by two pathways
in hepatocytes: the classic pathway (i.e., CYP7A1 and CYP8B1) and the alternative pathway (i.e.,
CYP27A1 and CYP7B1), this latter being the main route for oxysterol production. BA synthesis is
under the regulation of a negative feedback loop. When FGF15, produced by enterocytes and secreted
into the portal vein, binds to FGFR4/β-Klotho receptor, it induces the repression of BA production
by activating ERK/JNK enzymes. Interestingly, this repression cascade seems also under the control
of the immune system involving TLR/MyD88 complex. Finally, a reciprocal regulation might take
place between BAs and NAPE-PLD, which is responsible for generating other crucial bioactive lipids
named NAEs. Abbreviations: BA, bile acid; CYP27A1, sterol 27-hydroxylase; CYP7A1, cholesterol 7α-
hydroxylase; CYP7B1, oxysterol 7α-hydroxylase; CYP8B1, sterol 12α-hydroxylase; ERK, extracellular
signal-regulated kinase; FGF15, fibroblast growth factor 15; FGFR4, fibroblast growth factor receptor
4; JNK, c-Jun N-terminal kinase; MyD88, myeloid differentiation primary response gene 88; NAE,
N-acylethanolamine; NAPE-PLD, N-acylphosphatidylethanolamine-selective phospholipase D; TLR,
toll-like receptor.

After having introduced the positive effects of FXR activation, it should be noted that
its inactivation can also be beneficial in metabolic diseases [71,72]. For instance, Prawitt
and colleagues demonstrated, in mice, that the deletion of Fxr conferred a protection
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against insulin resistance as well as obesity induced either genetically or by the diet [71].
Additionally, another study indicated that upon FXR agonist administration, mice fed
with a high-fat diet (HFD) gained more weight [73]. In view of all these inconsistencies,
researchers went further and succeeded in generating organ-specific FXR knockout mouse
models as well as specific (ant)agonists in an effort to assess the tissue-dependent FXR func-
tions. Nonetheless, by genetically disrupting, inhibiting (i.e., glycine-β-MCA) or enhancing
(i.e., fexaramine) only intestinal FXR, here again, paradoxical effects were reported [74–77].
Interestingly, Schmitt and coworkers suggested that hepatic FXR activation would rather
be protective since its specific-liver deletion led to an increase in hepatic lipid accumulation
under cholesterol diet [78]. Additional studies are clearly warranted to shed light on
the beneficial versus deleterious effects of FXR activation in various tissues and different
pathological conditions.

3.2.2. Takeda G-Protein Coupled Receptor 5 (TGR5)

TGR5 is widely expressed in metabolic relevant tissues such as brown adipose tissue
(i.e., adipocytes), pancreas (i.e., β-cells), intestine (i.e., L-cells and monocytes), muscles (i.e.,
skeletal and smooth), gallbladder and the liver (i.e., KCs and cholangiocytes) [79,80]. Its
strongest endogenous agonist includes LCA and, to a lesser extent, (un)conjugated DCA,
CDCA, UDCA and CA [81,82]. Interestingly, TGR5 activation promotes health benefits
through different mechanisms of action. First, it impacts mitochondrial energy homeostasis
by increasing thermogenesis in muscles and adipose tissues [83,84]. Then, it promotes the
release of the incretin glucagon-like peptide 1 (GLP-1) in enteroendocrine cells of the gut
enhancing insulin secretion [85,86]. Finally, it contributes to the reduction of inflammation
in both the liver by inhibiting the nuclear translocation of NF-kB in KCs [87,88] and in the
intestine in IBD-related context [80,89].

3.2.3. Vitamin D Receptor (VDR)

VDR is expressed in various cell types of the immune system (e.g., lymphocytes, neu-
trophils, macrophages and dendritic cells) and in organs of metabolic relevance including
the liver, adipose tissue and intestine [90,91]. This receptor was primary known to be
stimulated by the active form of vitamin D (i.e., 1,25-dihydroxyvitamin D3 (1,25(OH)2D3)),
and later by LCA [91–93]. Nowadays, it is established that VDR modulates immunity,
gut barrier integrity and inflammation [90,91,93]. For instance, VDR activation by LCA
exerts anti-inflammatory action in colonic cancer cells by repressing NF-kB signaling [94].
This is consistent with the fact that VDR activation by 1,25(OH)2D3 also mediates anti-
inflammatory properties [95,96]. More recently, it has been reported that specific LCA-
derived molecules (i.e., 3-oxoLCA and isoalloLCA) influence intestinal host immunity
through VDR receptor [97,98]. Finally, in 2020, Chatterjee and coworkers explored the im-
pact of the deletion of Vdr in intestinal epithelial cells and in myeloid cells, on both the gut
microbiota and their associated metabolites. They discovered that these deletions deeply
impacted 84 among the 765 metabolites analyzed and sometimes in a gender-dependent
manner. For instance, the secondary BAs, LCA and DCA, were found increased in the
feces of females deleted for Vdr and not in males suggesting that sex hormones might
influence BA profile. BA metabolism was further examined and both intestinal and hepatic
FXR protein expression were elevated following Vdr disruption. This increase was even
higher when exposing the mice to HFD [99]. Altogether, these studies highlight the rel-
evance of better understanding the function of VDR especially regarding metabolic and
inflammatory diseases.

3.3. BAs, Gut Microbes and Energy Homeostasis

In addition to acting as signaling factors, BAs can also modulate host homeostasis
directly and indirectly via the gut microbiota (Figure 2B). Indeed, as described earlier in
this review, several gut microbes are able to directly convert primary BAs into secondary
BAs through the enzymes BSH and 7α-dehydroxylase, among others [20,100]. Interestingly,
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one resulting metabolites, LCA holds a particular interest in metabolic and inflammatory
disorders since it is the more potent agonist ligand of three BA receptors (i.e., TGR5, PXR
and VDR) influencing positively the host metabolism [82,92,101–103]. It is thereby not
surprising that the reduction of secondary BAs has been associated with health disorders
such as chronic intestinal inflammatory diseases (i.e., CD and UC) [31]. This empha-
sizes another key role of the gut microbiota and eventually the importance of having an
appropriate gut ecosystem in pathological situations (for review [83,104]). With this in
mind, Allegretti and colleagues conducted a pilot study in which overweight individuals
(BMI > 25kg/m2) received fecal microbiota transplantation (FMT) from a single lean donor
(BMI = 17.5 kg/m2) by oral capsules during 12 weeks. Although their BMI did not change,
they exhibited a “normalized” BA profile strengthening the impact of the gut microbiota
on the modulation of BA profile [105]. Finally, recent studies shed light on the fact that
some of these microorganisms also participate to the metabolization of cholesterol, which
is the precursor of BAs, through specific enzymes [106,107]. Indeed, Kenny and colleagues
identified a group of bacterial cholesterol dehydrogenases encoded by ismA genes that
convert cholesterol to coprostanol, the latter being mostly excreted in feces [107].

On the other hand, the indirect way includes the modulation of the gut microbiota by
BAs. Indeed, these bioactive molecules can alter the maturation, composition and prolifer-
ation of these microorganisms, by notably exhibiting antimicrobial properties [108–110].
Therefore, since the gut microbiota is a central actor driving host homeostasis by producing
a multitude of metabolites [83], exhibiting a proper BA profile seems crucial to avoid
health complications.

Altogether, the existence of this mutual crosstalk is captivating and should receive
further attention when exploring host physiology.

4. Oxysterols in Energy Homeostasis and Inflammation
4.1. Oxysterol Profile in Inflammatory and Metabolic Diseases

Level of oxysterols is altered under pathophysiological conditions such as inflamma-
tory diseases (e.g., IBD), obesity-related disorders (e.g., NAFLD and T2DM) and some
cancers [111–118]. Oxysterol measurement from colon biopsies of IBD patients showed
that 25-OHC level was higher while 4β-OHC level was lower compared to healthy indi-
viduals [118]. Although this field of research is still in its infancy, more data are available
regarding metabolic disorders. For instance, a reduction of serum 4β-OHC level has been
associated with obesity in humans [111]. Accordingly, this diminution has also been noted
in the liver and adipose tissue of both genetically and diet-induced obese mice [112]. Con-
versely, 4β-OHC as well as 25-OHC and 27-OHC were increased in the blood of NAFLD
patients compared to control individuals [116]. Consistent with this finding, hepatic dis-
orders such as cirrhosis were also observed in humans with Cyp7b1 mutation and were
associated with a plasma accumulation of 24(S)-OHC, 25-OHC and 27-OHC [119–121].
Noteworthy, this oxysterol profile might evolve with the disease progression of NAFLD to
NASH or might be different according to the samples harvested for oxysterol measurement.
Indeed, in a recent study, Raselli and colleagues measured in liver samples, an increased
level of 24(S)-OHC and 7-OHC derivatives in NASH patients compared to controls [122].
In line with this, this profile was also identified in the liver of murine model of NASH [122].
Regarding patients with diabetes or hyperlipidemia, a higher 25-OHC, 27-OHC and 7-KC
plasma levels were reported compared to healthy controls [114]. Finally, although an excess
of some oxysterols is correlated with metabolic disorders, it is worth mentioning that
the absence of oxysterols from the alternative pathway also results in devastating health
condition. This is the case for humans harboring Cyp27a1 mutation which have an elevated
cholesterol level and suffer from cerebrotendineous xanthomatosis [123,124].

4.2. Oxysterols as Endocrine Molecules

Oxysterols have been described to exert various effects on host homeostasis through
numerous molecular targets including LXR, insulin-induced gene (INSIG) proteins, the
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Epstein–Barr virus-induced gene 2 (EBI2, also known as GPR183), Smoothened (SMO),
the retinoid-related orphan receptor (ROR) and the estrogen receptor (ER)α [9,10,125,126].
Although the modulation of immunity by oxysterols via ROR, ER or GPR183 is an inter-
esting topic [10,12], in this review, we will focus on their roles in energy homeostasis and
inflammation principally via LXR (Figure 2C).

Liver X Receptor (LXR)

LXR family is involved in the regulation of cholesterol homeostasis, BA synthesis,
glucose and lipid metabolism as well as in inflammation [127]. This family includes
two isotypes, LXRα and LXRβ, and commonly forms a heterodimer with the retinoid X
receptor (RXR)α. LXRα is expressed in metabolically active tissues (e.g., liver, adipose
tissue and intestine) whereas LXRβ is ubiquitously expressed [128]. Noteworthy, it has been
discovered that their transcriptional activity was regulated by desmosterol, a precursor
of cholesterol, and several oxysterols such as 24(S)-OHC, 25-OHC, 27-OHC and 24(S),
25-epoxycholesterol [125,127].

• LXR and Cholesterol Homeostasis

It has been largely recognized that oxysterols mediate the elimination of cholesterol
excess by activating LXR and by inhibiting SREBP. In response to a low cellular level of
cholesterol, SREBP is activated and is responsible of the synthesis and uptake of choles-
terol by inducing the transcription of 3-hydroxy-3-methylglutaryl coenzyme A reductase
(Hmgcr) and low-density lipoprotein receptor (Ldlr), among others [125,129]. Conversely,
when the concentration of cellular cholesterol is high, SREBP is retained in the endoplas-
mic reticulum (ER) due to the binding of cholesterol/desmosterol and some oxysterols
(e.g., 24(S)-OHC, 25-OHC and 27-OHC) on SREBP-cleavage activating protein (SCAP) and
INSIG respectively. This action suppresses the synthesis and the uptake of cholesterol. At
the same time, oxysterols and desmosterol interact with LXR resulting in the enhancement
of the excretion of cholesterol by inducing ATP-binding cassette(ABC) subfamily A mem-
ber(ABCA)1 and ABC subfamily G member(ABCG)1 and in the inhibition of its uptake by
stimulating the inducible degrader of the low-density lipoprotein receptor (IDOL) [125].
Moreover, LXR further mediates the elimination of cholesterol excess by inducing the
transcription of Abcg5/8 and Cyp7a1 in order to increase its efflux and conversion to BAs,
respectively [130,131].

• LXR, Glucose and Lipid Metabolism

Interestingly, LXR activation by some of its oxysterol agonists (e.g., 22(R)-OHC and
24(S),25-epoxycholesterol) enhances de novo lipogenesis by inducing the expression of
notably Srebp1c, fatty acid synthase (Fasn) and stearoyl-CoA desaturase (Scd1) [128,132–134].
In addition, LXR stimulation leads to the inhibition of gluconeogenesis by decreasing the
expression of Pck1 and G6pc [135,136]. Of interest, a similar reduction has been indicated
in murine primary hepatocytes treated with 7α-OHC, but this time, in a ROR-dependent
manner [137].

The involvement of LXR in glucose and lipid metabolism has been further confirmed
by using a non-endogenous oxysterol (i.e., 22(S)-OHC) which behaves as a LXR antago-
nist [126]. Indeed, incubation of 22(S)-OHC with human skeletal muscle cells from lean,
obese and type 2 diabetic individuals enhanced glucose uptake and decreased lipogenesis
as reflected by the reduced gene expression of Fasn and Scd1 in all groups [138]. Note-
worthy, the reduction of lipid accumulation and Fasn mRNA expression have also been
observed in murine adipocytes treated with 27-OHC [139].

• LXR and Inflammation

One last LXR function discussed in this review regards its impact on inflammation.
LXR stimulation leads to the reduction of the inflammatory response and several mech-
anisms have been proposed over the past few years. As such it has been suggested that
LXR may suppress inflammation through the transrepression of proinflammatory gene
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promoters, the promotion of cholesterol efflux, the alteration of lipid profile resulting
in an increase in anti-inflammatory lipid level and through the modification of immune
cell phenotype [140]. However, although the influence of cholesterol efflux in decreasing
inflammation seems to be consistent across studies, it is worth noting that the transrepres-
sion activity has been challenged and that Thomas and colleagues recently discovered
a cis-repressive activity linked to LXR [141,142]. More studies are definitely required to
decipher the exact molecular action of LXR in suppressing inflammation.

In line with this, Jakobsson and coworkers demonstrated that mice deleted for Lxr
were more prone to develop colitis compared to controls and that this intestinal inflam-
mation was diminished upon LXR agonist administration. In addition, they showed that
inflamed colon of IBD subjects had lower Lxr mRNA expression level compared to non-
inflamed colons [143]. Finding the right oxysterol(s) leading to this anti-inflammatory
effect may open new therapeutic strategy to treat chronic intestinal inflammatory diseases.
Nevertheless, one should keep in mind that activating LXR might also lead to increased
lipogenesis and different LXR antagonists are being investigated to tackle NAFLD (e.g.,
25-OHC-3S) [144–146]. Therefore, intending to design an intestinal-specific LXR agonist
might be interesting in this context.

Finally, it should be mentioned that 25-OHC, which can bind to a wide spectrum of
receptors (e.g., LXRα, LXRβ, GPR183, RORα and RORβ) [147–149], is the most studied
oxysterol regarding inflammation. However, its function is still debated since it exhibits
both pro- and anti-inflammatory properties [150,151]. This complexity is further under-
scored by a recent study of Guillemot-Legris and colleagues which indicated that 25-OHC
administration had no inflammatory effect in the colon of a colitis mouse model. Still, they
surprisingly found that 4β-OHC administration worsened the intestinal inflammation of
this mouse model supporting a potential new function for this oxysterol [118]. Besides this
study, we observed that in two specific mouse models of genetically induced hepatic in-
flammation, both 25-OHC and 4β-OHC, were either strongly affected or unaltered despite
a similar liver inflammatory tone [152,153]. Altogether, these data support that further
experiments are needed to clarify the exact roles of these two oxysterols in inflammation
and eventually the molecular targets of 4β-OHC.

To conclude, despite their structural similarities, oxysterols exhibit a broad range of
physiological effects and sometimes show opposite actions. It should be emphasized that it
is quite difficult to assign a clear function to a specific oxysterol since this system is highly
complex. Indeed, one oxysterol can target several receptors and these receptors are not
specific to one oxysterol. Moreover, a single enzyme can be involved in the formation
of several oxysterols (e.g., CYP27A1 and CYP7B1) and a specific oxysterol can either be
generated by different pathways (e.g., 25-OHC) or metabolized through various enzymes
(e.g., 7α-OHC and 27-OHC) [9]. Nonetheless, given their involvement in key signaling
pathways associated to inflammatory and metabolic disorders, research on these bioactive
lipids should definitely be pushed forward.

5. Newly Identified Modulators of BAs and Oxysterols

Although the synthesis and the regulation of both BAs and oxysterols are becoming
well described in the literature, we have discovered that disrupting specific genes involved
in innate immunity or belonging to the endocannabinoid system, within hepatocytes, was
strongly linked with a modulation of both the synthesis and the degradation of BAs and
oxysterols (Figure 3) [152,153].

Myeloid differentiation primary response gene 88 (MyD88), a key player of the im-
mune system, has long been considered as only controlling inflammatory signaling cas-
cades. However, its physiological role has evidently been undervalued. More precisely,
we previously demonstrated that MyD88 was also able to modulate energy, glucose and
lipid metabolism [154]. Recently, we discovered that mice harboring hepatocyte-specific
deletion of MyD88 (Myd88∆Hep) were predisposed to liver fat accumulation, glucose intoler-
ance and inflammation [155]. By further exploring the molecular mechanisms underlying



Cells 2021, 10, 400 13 of 23

this phenotype, we performed lipidomic analysis and found that Myd88∆Hep mice had
an altered BA and oxysterol metabolism [153]. We showed that the absence of MyD88 in
hepatocytes impacted the negative feedback loop suppressing BA synthesis likely by a
mechanism involving ERK activity. Finally, we observed that the predisposition of these
mice to hepatic inflammation was linked to the accumulation of 25-OHC and to a lower
extent to 4β-OHC [153]. Altogether, these data revealed an unexpected crosstalk between
the innate immune system and liver lipid metabolism and highlighted a new role for
hepatocyte MyD88 as a regulator of BA synthesis.

The endocannabinoid system participates to the regulation of several crucial functions
in host health such as food intake, energy balance and inflammation [156,157]. Accord-
ingly, alteration of this complex system has been associated with diverse metabolic disor-
ders. Remarkably, among the bioactive lipids involved in this system, modifications of
N-acylethanolamine (NAE) levels have been reported. The role of these bioactive lipids are
emerging and they are mainly synthesized by N-acylphosphatidylethanolamine-selective
phospholipase D (NAPE-PLD) [156].

We have previously proven that deleting Napepld in either the intestine or the adi-
pose tissue was correlated with a higher susceptibility to obesity, diabetes and inflam-
mation [158,159]. In addition, by generating a new mouse model of inducible Napepld
hepatocyte-specific deletion (Napepld∆Hep), we found that the absence of NAPE-PLD,
specifically in hepatocytes, induced an increased fat mass gain and hepatic steatosis in
mice and that Napepld∆Hep mice were more sensitive to liver inflammation compared to
controls [152]. By seeking for the molecular mechanisms, as expected we found that the
majority of the endocannabinoids were affected by the deletion. More surprisingly, by
using a lipidomic approach we discovered that Napepld∆Hep mice displayed a distinct
profile of both oxysterols and BAs [152]. We thereby identified a novel role for hepatocyte
NAPE-PLD which goes beyond the mere synthesis of NAEs. Interestingly, it has been
recently demonstrated that BAs also regulate NAPE-PLD activity suggesting the existence
of a potential mutual crosstalk between the endocannabinoid system and BA metabolism.
As such, DCA (KD ~43 µM) and CDCA (KD ~25 µM) have been described to stabilize and
drive NAPE-PLD catalytic activity whereas LCA (KD ~20 µM), which showed the highest
affinity for the enzyme, has been indicated to inhibit its activation [160]. In line with this,
in vitro LCA inhibits the enzyme at a low concentration (~68 µM) whereas the BA concen-
tration required to activate NAPE-PLD and to induce a half-maximal response varies from
~2 to 4 mM [160]. Although the physiological meaning of this study remains to be assessed
in vivo, these results seem promising since BA concentration spans from ~2 to 10 mM in the
ileum after meal ingestion and at lower range (µM) in the blood and the liver [26,161,162].
More recently, tauroursodeoxycholic acid (TUDCA), taurohyodeoxycholic acid (THDCA)
as well as α/β-MCAs and their taurine-conjugated forms have also been identified as
NAPE-PLD inhibitors, although slightly less potent than LCA [163]. These studies paved
the way to the design of specific NAPE-PLD modulators [164].

Even though the exact mechanisms explaining the interconnections observed between
either the endocannabinoid or immune system and BAs/oxysterols are still under in-
vestigations, these data strongly suggest that any putative dietary intervention or drug
treatment targeting the immunity, or the endocannabinoid system might influence BA
and/or oxysterol profile, and thus host homeostasis.

6. Therapeutic Strategies

Metabolic and inflammatory disorders are still rising among the worldwide popula-
tion [165,166]. Despite huge efforts to slow their progression, the efficacy of the current treat-
ments is still limited emphasizing the need to find new therapeutic approaches [165,167].
As BAs are bioactive lipids displaying pleiotropic actions regarding energy homeostasis
and inflammation, several strategies have been developed based on their metabolic func-
tions. Although this is not the purpose of this review, we have briefly mentioned the
current targets and strategies.
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Due to its pivotal function on host homeostasis, FXR has become an attractive thera-
peutic target to treat metabolic disorders and many FXR agonists have been designed [168].
Among those, obeticholic acid (OCA), a semi-synthetic BA analogue based on CDCA
structure which has already been approved to treat primary biliary cholangitis in hu-
mans, showed all the beneficial health effects of FXR activation when administered in
animals [66,169–171] and is currently a good candidate for the treatment of NASH and
T2DM [16]. From a clinical point of view, administration of OCA in a phase II trial in
NAFLD and T2DM patients resulted in an amelioration of insulin sensitivity and a decrease
in liver proinflammatory markers [172]. Moreover, in a phase III clinical trial for treating
NASH, the administration of 25 mg of OCA on a daily basis during 18 months improved
fibrosis in NASH patients [173]. Noteworthy, some safety concerns have been raised re-
garding this compound such as an increased level of serum LDL cholesterol, decreased
level of serum HDL cholesterol, gastrointestinal issues and pruritus. These side effects
have delayed its approval on the market and other novel candidates are currently under
clinical investigations [168,174].

Aside from FXR, TGR5 is also a potential interesting target. Indeed, many rodent
studies showed that TGR5 activation reduces inflammatory responses and promotes ther-
mogenesis and insulin sensitivity. Hence, this receptor has drawn considerable attention
from a therapeutic view [16,79]. Over the past years many selective and dual agonists (i.e.,
TGR5/FXR) have been developed and tested [86,175–180]. Despite extensive efforts, the ma-
jority of these compounds triggered unwanted side effects mainly because TGR5 is widely
expressed in the body and has different physiological actions [79]. For instance, TGR5
over-activation caused pruritus, nausea and gallbladder filling in rodent studies [181–183].
Moreover these adverse effects might be due to the fact that these agonists potentially dis-
play off-target effects by stimulating other receptors including LXR and PXR [147,184,185]
and exhibit detergent-like properties [186]. For all of these reasons, the focus of the current
studies has shifted toward the identification of non-steroidal intestinal-selective TGR5
agonists to tackle T2DM even though avoiding the systemic exposure restricts the benefi-
cial effects of TGR5 regarding energy expenditure and inflammation [187–189]. Finally, it
should be pinpointed that both clinical studies and evidence of beneficial effects of TGR5
activation in humans are still scarce and required further investigation [79].

In parallel to the design and exploration of receptor activity modulators, FGF19
analogs are currently studied. Based on its ability to both suppress BA synthesis and
modulate energy homeostasis, FGF19 has recently emerged as an interesting candidate
to treat metabolic disorders [190–192]. However, FGF19 has also been associated with
an increased risk of developing cancer [193,194]. Consequently, an engineered FGF19
analog, Aldafermin, which does not promote tumorigenesis, has been developed and
tested in NASH clinical trial. This molecule shows great potential since in a phase II study
comprising 78 patients with NASH, it has been reported that patients receiving daily 1 mg
of Aldafermin for 24 weeks had a reduced hepatic lipid content.

Finally, the use of BA sequestrant (e.g., colesevelam and colestimide) or ASBT in-
hibitors, to limit BA absorption and FXR activation, have been investigated but this strategy
may be a doubled-edged sword. It is recognized that BA sequestrant improves glucose
metabolism and lowers cholesterol level by enhancing its conversion to BAs in the liver but
it might also promote an elevation of plasma triglycerides and hepatic steatosis [23,195,196].
Of interest, although displaying similar effects regarding cholesterol metabolism, ASBT
inhibitors only partially restrict the absorption of BAs since free BAs are still able to cross
the gut barrier through passive diffusion allowing, at a lesser extent, their endocrine ac-
tions [197]. Accordingly, its administration in animal models fed with HFD resulted in
an improvement of metabolic parameters regarding hepatic steatosis and insulin sensi-
tivity [197,198]. In the future, research should assess its putative therapeutic efficacy in
humans with metabolic disorders such as NAFLD or T2DM [199,200].
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7. Conclusions and Perspectives

Overall, the liver is a vital and metabolically complex organ that contributes to the
synthesis of a constellation of molecules that take part in the regulation of host homeostasis.
As discussed in this review, among the plethora of bioactive compounds endogenously
produced, BAs and oxysterols are very intricate bioactive lipids acting through various
receptors present in numerous tissues. Their synthesis and degradation are finely tuned
and controlled by different mechanisms among which some are still to be discovered.
Nevertheless, BAs and to a lesser extent, oxysterols, are currently under investigation in
preclinical and clinical studies and both are appearing as emerging therapeutic targets to
tackle inflammatory and metabolic disorders.

We do believe that future therapies will successfully reach the market, but we also
want to highlight that cautious interpretations are warranted regarding the comparisons
between data obtained in mice versus humans. This is obviously the case for all the
research performed in medicine, but the very specific profile of BAs observed in mice
versus humans and eventually the putative changes in receptor affinity and expression may
be additional interfering factors. Finally, besides the considerations of the living organism,
gender differences are also very critical confounders when investigating metabolic diseases
and BA metabolism.

Ultimately, all data deeply demonstrate the existence of multiple interconnections and
redundant pathways between cholesterol metabolism, gut microbiota and host homeostasis.
Hence, underlining the importance of considering all these systems when working in the
field of metabolism and nutrition.
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