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Abstract: Gastrin-releasing peptide (GRP), a member of bombesin-like peptides, and its receptor
(GRP-R) play an important role in various physiological and pathological conditions. In this work, we
investigated the role of GRP-R on adipogenesis in 3T3-L1 adipocytes. The expression of GRP-R was
significantly increased during the adipocyte differentiation of 3T3-L1 cells. The inhibition of GRP-R
by the antagonist RC-3095 affected adipogenesis in 3T3-L1 cells, which reduced lipid accumulation
and regulated the expression of adipogenic genes. Moreover, cyclic AMP response element-binding
protein (CREB) directly bound to the GRP-R promoter upon exposure to adipogenic stimuli. The
down-regulation of GRP-R by the knockdown of CREB inhibited adipocyte differentiation of 3T3-L1
cells. Together these results suggest that the regulation of GRP-R activity or expression has an
influence on adipogenesis through regulating adipogenic related genes.
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1. Introduction

The family of mammalian bombesin receptors is composed of three receptors: Gastrin-releasing
peptide receptor (GRP-R/BB2), neuromedin B receptor (NMB-R/BB1), and the orphan bombesin receptor
subtype-3 (BRS-3/BB-3) [1]. These mammalian bombesin receptors are specific G-protein-coupled
receptors that mediate the diverse actions of bombesin-like peptides (BLPs) in autocrine, paracrine,
or neuroendocrine systems [2]. BLPs, including gastrin-releasing peptide (GRP) and neuromedin B
(NMB), have been identified in mammalian tissues. The interaction of GRP-R with GRP influences a
wide range of physiological processes including thermoregulation, gastric and pancreatic secretion,
stress responses, and food intake and satiety [3]. Increasing evidence has suggested that GRP and
its receptor act as a mitogen, morphogen, and proangiogenic factor in many types of cancer, and an
inflammatory mediator in inflammatory cells and vascular cells [4,5].

GRP is widely expressed and secreted in the neurons of the brain, spinal cord, and gastrointestinal
tract as well as in some tumors including small cell lung cancer (SCLC), prostate cancer, and esophageal
squamous cell carcinoma [6,7]. However, the expression of GRP-R in normal tissues has not been
fully determined yet; GRP-R has been reported to be expressed in some central and peripheral tissues
including the brain, stomach, pancreas, and adrenal cortex [8]. Meanwhile, NMB-R is detected in
visceral adipocytes, and NMB is also expressed in adipose tissue, which is involved in the regulation
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of energy balance [9,10]. However, the expression and role of GRP and GRP-R have not previously
been reported in adipose tissues.

In our present study, we investigated the expression of GRP-R during adipogenesis and the
underlying molecular mechanisms, and characterized the action of the GRP-R antagonist on the
adipogenic differentiation of 3T3-L1 preadipocytes.

2. Results

2.1. GRP-R Expression Is Increased during Adipocyte Differentiation

To determine the expression pattern of GRP-R during adipocyte differentiation, we prepared
preadipocyte 3T3-L1 and differentiating/differentiated 3T3-L1 cells. For adipocyte differentiation,
3T3-L1 preadipocytes were stimulated with differentiation medium for 7 days. As shown in Figure 1A,
the cell morphology changed to adipocyte-like cells, and lipid droplets were accumulated. Consistent
with the observation of lipid droplet staining with Oil Red O, the mRNA expression of the adipogenic
marker genes, CCAAT/enhancer binding protein-β (C/EBP-β), CCAAT/enhancer binding protein-δ
(C/EBP-δ), and peroxisome proliferator-activated receptor-γ (PPAR-γ), was significantly increased
upon exposure to adipogenic stimuli (Figure 1B). During differentiation, the cooperative action of
C/EBP-β, C/EBP-δ, and PPAR-γ stimulates adipogenesis [11]. Interestingly, the mRNA expression
of GRP-R was significantly induced with adipocyte differentiation (Figure 1C). Similarly, the protein
level of GRP-R was dramatically increased during adipogenic differentiation (Figure 1D).
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Figure 1. The expression of GRP-R (Gastrin-releasing peptide receptor) in adipocyte differentiation 
of 3T3-L1 cells. Preadipocyte 3T3-L1 cells were induced to differentiate by the addition of DMI (DEX, 
IBMX, and insulin) for the indicated times. (A) During adipogenic differentiation, changes in cell 
morphology were observed by a phase contrast microscope at 200× magnification, and oil red O 
staining was performed. (B) Total RNA was isolated during adipogenesis. The adipocyte specific 
markers (C/EBP-β, C/EBP-δ, and PPAR-γ) were investigated by real-time PCR. The level of 
expression was normalized to 36B4. Each value represents the mean ± SD from three independent 
experiments. * p < 0.05 compared to Day 0. (C) The mRNA expression of GRP-R during 3T3-L1 
differentiation was measured by real-time PCR. * p < 0.05 compared to Day 0. (D) The level of GRP-R 
protein was detected using the specific antibody. β-actin was used as the internal control. 

Figure 1. The expression of GRP-R (Gastrin-releasing peptide receptor) in adipocyte differentiation
of 3T3-L1 cells. Preadipocyte 3T3-L1 cells were induced to differentiate by the addition of DMI (DEX,
IBMX, and insulin) for the indicated times. (A) During adipogenic differentiation, changes in cell
morphology were observed by a phase contrast microscope at 200× magnification, and oil red O
staining was performed. (B) Total RNA was isolated during adipogenesis. The adipocyte specific
markers (C/EBP-β, C/EBP-δ, and PPAR-γ) were investigated by real-time PCR. The level of expression
was normalized to 36B4. Each value represents the mean ± SD from three independent experiments. *
p < 0.05 compared to Day 0. (C) The mRNA expression of GRP-R during 3T3-L1 differentiation was
measured by real-time PCR. * p < 0.05 compared to Day 0. (D) The level of GRP-R protein was detected
using the specific antibody. β-actin was used as the internal control.
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2.2. GRP-R Antagonist Modulates Adipocyte Differentiation

To investigate the role of GRP-R in adipocyte differentiation, 3T3-L1 preadipocytes were cultured
in the presence of RC-3095, a specific antagonist of GRP-R [12]. Various doses of RC-3095 (1 nM, 10 nM,
100 nM, or 1 µM) did not affect the viability of 3T3-L1 cells (Figure 2A). In this study, 3T3-L1 cells under
differentiation were incubated with 1 µM of RC-3095. The effect of RC-3095 on 3T3-L1 preadipocyte
differentiation was observed by cell morphology changes and Oil Red O staining (Figure 2B). RC-3095
reduced lipid accumulation on day 10 of 3T3-L1 preadipocyte differentiation (Figure 2C). Furthermore,
we confirmed the effect of RC-3095 on the expression of adipogenic marker genes. As shown in
Figure 2D, the expressions of C/EBP-β or PPAR-γ were mildly reduced by RC-3095 in separate repeated
experiments. In addition, the treatment of 3T3-L1 cells with GRP slightly increased the accumulation of
lipid droplets and the expressions of adipogenic markers during adipocyte differentiation (Figure S1).
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Figure 2. RC-3095 modulates the adipocyte differentiation of 3T3-L1 cells. (A) 3T3-L1 cells were
incubated with various concentrations of RC-3095 for 24, 48, or 72 h, respectively. Cell viability was
determined by MTT (3-[4-dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide) assay. Dimethyl
sulfoxide (DMSO) was used as a solvent for RC-3095. (B) During differentiation, RC-3095 (1 µM) was
co-treated with DMI. Adipogenic cells were observed and stained with Oil Red O under a phase-contrast
microscope at 200× magnification. (C) Oil Red O was extracted and quantitatively analyzed. Each
value represents the mean of at least three independent experiments. * p < 0.01 was compared to Day 0.
# p < 0.05 was compared to the positive control. (D) The effect of RC-3095 on adipogenic differentiation
markers was analyzed by real-time PCR using primers specific to C/EBP-β or PPAR-γ. * p < 0.01 was
compared to Day 0. # p < 0.05 was compared to the positive control.
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2.3. Downregulation of GRP-R by CREB Knockdown Inhibits the Adipocyte Differentiation of 3T3-L1 Cells

To further confirm the role of GRP-R in adipocyte differentiation, we tried to design and introduce
different GRP-R siRNA target sequences into 3T3-L1 cells, but could not obtain efficient GRP-R siRNA
constructs to knockdown the mouse GRP-R gene. It has been reported that cyclic AMP response
element (CRE) sites exist within the promoter of GRP-R and that cyclic AMP response element binding
protein (CREB) is critical for the transcriptional regulation of GRP-R expression [13,14]. To evaluate
the binding of CREB to the GRP-R promoter, chromatin immunoprecipitation (ChIP) was performed
on differentiated 3T3-L1 adipocytes. First, using an extensive analysis of the 5′–flanking region
of the mouse GRP-R gene, we identified two putative CRE sites, CRE1 (−4737–−4729) and CRE2
(−506–−499) within 5 kb of the 5′–flanking promoter region of the mouse GRP-R gene (Figure 3A). The
recruitment of CREB to the promoter regions was assessed by PCR using two primer sets encompassing
CRE1 and CRE2 sequences, respectively. Of the two CRE sites, CREB specifically binds with high
affinity to the CRE2 (−506–−499) region within the mouse GRP-R promoter (Figure 3B). In addition,
to investigate whether adipogenic differentiation stimuli affect the interaction between CREB and the
GRP-R promoter, we performed a ChIP assay with 3T3-L1 cell lysates before and after the induction
of differentiation. As shown in Figure 3C, PCR products corresponding to the interaction of CREB
with the CRE2 region of the GRP-R promoter were only detected in differentiated 3T3-L1 adipocytes.
This result indicated that the recruitment of CREB to the CRE2 region within the GRP-R promoter
was essential for the induction of the GRP-R gene during the differentiation of 3T3-L1 cells. Next,
to demonstrate whether GRP-R expression is modulated by CREB, 3T3-L1 cells were transfected
with CREB-targeting siRNA. The silencing effect of the CREB siRNA transfection was confirmed
by a decrease in the protein expression level of CREB. As shown in Figure 3D, the knockdown of
CREB suppressed the protein expression of GRP-R. Next, we elucidated whether the downregulation
of CREB decreases the adipogenesis of 3T3-L1 cells. In the presence of CREB siRNA, the 3T3-L1
preadipocytes were differentiated into adipocytes in adipogenic differentiation medium. We then
performed real-time quantitative PCR for expression analysis of adipogenic-related factors. As shown
in Figure 3E, the induction of adipogenic markers, C/EBP-β, C/EBP-δ or PPAR-γ, were downregulated
by the transfection of CREB siRNA.
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Figure 3. Involvement of CREB-dependent GRP-R in adipogenesis. (A) Localization of putative CREs
within the ~5 kb fragment of the 5′–flanking region of the mouse GRP-R gene. Putative CRE sites were
defined by the core sequence 5′-TGACGTCA-3′. (B) The sonicated cell lysate from differentiated 3T3-L1
cells was immunoprecipitated with antibodies against control IgG or CREB. A sonicated cell lysate
was used as an input control. The two putative CRE binding sites (CRE1, −4737–−4729 and CRE2,
−506–−499) were amplified by PCR using specific primers to the CRE1 or CRE2 sequence. (C) The
sonicated cell lysate from undifferentiated or differentiated 3T3-L1 cells were cultured as described and
subjected to ChIP assay. IgG or CREB antibody was used to precipitate sonicated chromatin. (D) 3T3-L1
cells were transfected with negative control siRNA or CREB siRNA for 72 h. The expression of CREB
or GRP-R protein was confirmed by Western blot assay using CREB or GRP-R antibodies, respectively.
(E) Control siRNA or CREB siRNA-transfected 3T3-L1 cells were incubated with DMI for indicated
days. Total RNA was purified and analyzed by real-time PCR using specific primers for C/EBP-β,
C/EBP-δ, or PPAR-γ. * p < 0.05 compared to Day 0.

2.4. Expression of GRP-R and GRP in Adipose Tissues of High-Fat Diet-Induced Obese Rats

To determine the expression of GRP-R in adipose tissues in vivo, we developed a high-fat diet
(HFD)-induced obese rat model for 14 weeks and monitored body weight. All rats became obese
with a body weight averaging 1.5–fold higher than rats fed a standard diet (SD) (Figure 4A). We next
examined the levels of expression of GRP-R in the adipose tissues of HFD-induced obese rats. GRP-R
mRNA was present in subcutaneous, visceral, and perivascular adipose tissues. The GRP-R mRNA
level was higher in perivascular adipose tissues than in visceral or subcutaneous adipose tissues.
Meanwhile, the mRNA expression level of GRP-R in perivascular adipose tissues was similar between
SD and HFD-induced obese rats (Figure 4B). However, the secretion of GRP protein was significantly
increased in conditioned medium from the perivascular adipose tissue (PVAT) of HFD-induced obese
rats compared to SD rats. The mRNA levels of GRP and adipogenic markers were also consistently
upregulated in the PVAT of HFD-induced obese rats compared to those in standard diet rats (Figure 4C).
These results suggest that GRP can be actively released from the PVAT of obese rats.
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group was fed a standard diet, and the HFD (high-fat diet) group was fed a high-fat diet for 14 weeks.
The body weight was measured once every two weeks. (B) All rats were sacrificed at week 14, and
subcutaneous (SCAT), visceral (VCAT) or perivascular adipose tissues (PVAT) from the HFD group and
perivascular adipose tissues from SD group were obtained. The total RNA was extracted from each
adipose tissue and then analyzed by RT-PCR using primers specific for GRP-R. GAPDH served as an
internal control (top). The graph shows the densitometric analysis of the relative GRP-R mRNA levels.
The GRP-R expression from the PVAT of SD rats was set to 100% (bottom). (C) Conditioned medium
from the PVAT of HFD-induced obese rats or from the PVAT of SD rats was prepared, respectively, and
then, the secreted GRP protein in rat perivascular adipose tissue-conditioned medium was quantified
by ELISA. The mRNA levels of GRP, C/EBP-β, C/EBP-δ, and PPAR-γ in PVAT of HFD-induced obese
rats or in PVAT of SD rats were quantitatively analyzed by real-time PCR using specific primers for
GRP, C/EBP-β, C/EBP-δ, or PPAR-γ. * p < 0.05, ** p < 0.01 was compared to the PVAT of SD rats.

3. Discussion

The promoter region of the human and mouse GRP-R gene has been determined in human
gastrointestinal cancer cell lines such as HuTu-80 and Caco-2, prostatic epithelial cancer cells, and
Swiss 3T3 cells [13,15]. Xiao et al. identified CRE, AP-1, and Oct-1 sites within the 5′–flanking region
of the human GRP-R gene [8]. The transcriptional regulation of the human GRP-R gene requires the
binding of the CREB transcription factor to two distinct CRE sites at 112 bp and 1108 bp upstream of
the transcription start site [13]. The mouse GRP-R gene was also identified, which includes all three
exons, parts of the introns, and part of the 5′- and 3′-flanking regions as in the human gene [14]. Two
kb of the 5′-flanking region of the mouse GRP-R gene (between positions −2569 and +1) was analyzed
and revealed the presence of a cis-regulatory consensus sequence, including TATA-like motifs, a
SP-1 site, AP-1 and AP-2 sites, and one CRE site [14]. In the present study, two putative CRE sites,
between −4737 to −4729 bp and −506 to −499 bp, have been identified by computer-based analysis
of the 5′-flanking region of the mouse GRP-R gene (between positions −5426 and +1). Further, we
demonstrated the interaction between the CREB protein and CRE (−506–−499) region of the mouse
GRP-R promoter in differentiated 3T3-L1 adipocytes. Several lines of evidence have indicated that
CREB plays an essential role as a transcriptional activator in the different stages of the differentiation
of preadipocytes to adipocytes [16,17]. Further investigation will be needed to determine whether the
transcriptional activity of the mouse GRP-R promoter can be regulated during adipocyte differentiation
and the binding of functional CREB to CRE site(s) is required for the transcriptional activation of the
GRP-R promoter in differentiating 3T3-L1 adipocytes.
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Adipose tissue functions not only as energy storage but also an endocrine organ that secretes
a variety of bioactive substances such as adipokines [18]. Obesity is defined as an accumulation of
excessive adipose tissue that produces dysregulated adipokines, which contributes to the pathogenesis
of obesity-related diseases, including type 2 diabetes and cardiovascular disease [19,20]. Most blood
vessels are surrounded by perivascular adipose tissue (PVAT), which was considered a passive
structural support for the vasculature [21]. More recently, it has been reported that PVAT actively
regulates vascular tone and function, and produces various adipokines with a paracrine vascular effect
due to the proximity of PVAT to the vascular wall [22]. Obesity causes the excessive accumulation of
inflamed and dysfunctional PVAT, which is regarded as a major risk factor for the development of
cardiovascular diseases [23,24]. We report in this study that secreted GRP levels were elevated in PVAT
supernatant in rats fed a high-fat diet, compared to PVAT in rats fed a normal diet. We previously
reported that GRP induces endothelial dysfunction and the proliferation/migration of vascular smooth
muscle cells, the main events of the progression of atherosclerosis [25,26]. Therefore, we speculate that
obese PVAT-derived GRP acts as a pro-inflammatory adipokine to stimulate vascular inflammatory
responses in the adjacent vascular wall (vascular endothelial and vascular smooth muscle cells). We
did not detect a high level of GRP in differentiated 3T3-L1 adipocytes (Figure 1A). The profiles of
the secretome from perivascular fat cells are different than those from subcutaneous and visceral fat
cells [27]. PVAT is comprised of many cell types, not only adipocytes but also a stromal vascular fraction
that includes mesenchymal stem cells, vascular endothelial cells, macrophages, and leukocytes [28].
Therefore, the expression pattern of GRP needs to be determined in order to understand its role in
perivascular adipocytes in comparison with visceral or subcutaneous adipocytes and characterize
which type of cells in obese PVAT predominantly produce and secrete GRP. In conclusion, these results
indicate that the upregulation of GRP-R during adipogenesis is mediated by activated CREB. We
also demonstrated that a GRP-R antagonist modulates the differentiation of 3T3-L1 cells into mature
adipocytes. Further in vivo studies will be necessary to confirm the critical role of GRP or GRP-R in
the molecular regulation of adipose tissue function in normal and pathological states.

4. Materials and Methods

4.1. Reagents

RC-3095 and GRP were provided by Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified
Eagle’s medium (DMEM), fetal bovine serum (FBS), and calf serum (CS) were obtained from Gibco
Life Technologies (Grand Island, NY, USA). 3-isobutyl-1-methylxanthine (IBMX), dexamethasone,
insulin, and Oil Red O solution were purchased from Sigma-Aldrich (St. Louis, MO, USA).
3-[4-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide (MTT) was obtained from Sigma-Aldrich.
Rabbit polyclonal GRP-R and rabbit monoclonal CREB antibodies were obtained from Santa Cruz
Biotechnology (Dallas, TX, USA) and Cell Signaling Technology (Danvers, MA, USA), respectively.
β-actin antibody was purchased from Bioworld Technology (St. Louis Park, MN, USA).

4.2. Cell Culture

Mouse 3T3-L1 preadipocytes were grown in DMEM containing 10% CS at 37 ◦C in a humidified 5%
CO2 incubator. For adipocyte differentiation, 3T3-L1 cells were maintained 2 days post-confluence. Cell
differentiation was then induced with DMI (1 µM dexamethasone, 0.5 mM IBMX, and 5 µg/mL insulin)
in DMEM with 10% FBS for 72 h. Afterward, the cells were maintained in DMEM supplemented with
10% FBS and 5 µg/mL insulin for 4 days. This medium was changed every 2 days. RC-3095 was added
with every medium change during the differentiation period.

4.3. Oil Red O Staining

At the end of differentiation, the cells were washed with phosphate-buffered saline (PBS) and
fixed with 10% formalin for 1 h. The cells were rinsed with 60% isopropanol and completely dried.
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The lipid droplets were stained with Oil Red O solution for 10 min. After staining, the Oil Red O
solution was removed, and the plates were washed with water and dried. Stained lipid droplets were
photographed under a phase contrast microscope. To quantify lipid accumulation, stained Oil Red
O samples dissolved with 100% isopropanol and then the absorbance of solution was measured at
520 nm.

4.4. MTT Assay

3T3-L1 cells (2 × 104 cells/well) were cultured in 24-well plates. After 24 h, cells were treated
with various concentrations of RC-3095. After 24, 48 or 72 h, the MTT solution (0.5 mg/mL) was added
to each well. After incubation for 3 h, the medium was removed and formazan dye was extracted by
DMSO. The absorbance was detected at 495 nm.

4.5. Western Blot Analysis

Harvested cells were lysed in a RIPA buffer (50 mM Tris; pH 7.5, 150 mM NaCl, 0.5%
sodium deoxycholate, 0.1% SDS, 2 mM EDTA, 1% Triton X-100) with a protease inhibitor cocktail
(Sigma-Aldrich) and the protein concentration was measured by BCA assay. Equal amounts of
protein (30 µg/lane) were separated using SDS-PAGE, and transferred to a nitrocellulose membrane
(GE Healthcare, Marlborough, MA, USA). The membrane was blocked with 5% skim milk in TBS
containing 0.1% Tween 20 for 1 h and probed with appropriate antibodies. The signal was detected
using enhanced chemiluminescence (ECL) reagent (GE Healthcare Life Sciences).

4.6. Enzyme-Linked Immunosorbent Assay (ELISA)

The amounts of GRP protein in plasma and adipose tissue-conditioned medium (ATCM) were
determined by ELISA according to the manufacturer’s instructions (Cusabio, Carlsbad, CA, USA).
The absorbance of the samples at 450 nm was measured using an ELISA reader (Dynex), and the GRP
amounts were determined by interpolating the values on to a standard curve generated as per the
manufacturer’s instructions.

4.7. RT-PCR and Real-Time PCR Analysis

Total RNA was isolated with the Hybrid-R kit (Geneall, Seoul, Korea) according to the
protocol recommended by the manufacturer. cDNA was synthesized with 2 µg of total
RNA using the reverse transcription kit (Promega, Madison, WI, USA). For RT-PCR analysis,
cDNA was amplified with following primers: GRP, 5′-TCTTGCTGTTGGCTCTGGTC-3′

and 5′-GGATCCCAAGTAGGCTGGAG-3′; GRP-R, 5′-TGGGAGACCTACTGCTGCTG-3′ and
5′-TTTAGGGTGCAGCTCATTGG-3′; GAPDH, 5′-CAACTCCCTCAAGATTGTCAGC-3′ and
5′-GGGAGTTGCTGTTGAAGTCACA-3′. Quantitative RT-PCR was performed with the AB7500
instruments (Applied Biosystems, Foster City, CA, USA) using SYBR green PCR master mix
(Applied Biosystems). The primer sequences for real-time PCR were as follows: 36b4, 5′-
TGGGCATCACCACGAAAATC-3′ and 5′-TTCAGCATGTTCAGCAGTGTGG-3′; C/EBP-β,
5′-GGGGTTGTTGATGTTTTTGG-3′ and 5′-CGAAACGGAAAAGGTTCTCA-3′; C/EBP-δ,
5′-GGAACACGGGAAAGCATGA-3′ and 5′-GGGTTAAGCCCGCAAACATTA-3′; PPAR-γ,
5′-TGGAATTAGATGACAGTGACTTGG-3′ and 5′-CTCTGTGACGATCTGCCTGAG-3′; GRP-R,
5′-TGATTCAGAGTGCCTACAATCTTC-3′ and 5′-CTTCCGGGATTCGATCTG-3′.

4.8. Chromatin Immunoprecipitation (ChIP) Assay

ChIP analysis was performed with the ChIP assay kit (Millipore, Burlington, MA, USA),
according to the manufacturer’s protocol. Immunoprecipitation was performed with control IgG
and anti-CREB (Abcam, Cambridge, UK) antibodies. The region containing CRE binding sites within
the mouse GRPR promoter was amplified using PCR with specific primers. The oligonucleotide
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primers for PCR were as follows: CRE1 (−4737–−4729), 5′-TGAAAAGTCAAGAGTAGTGA-3′ and
5′-TGATGACAAGGTGATGTGCT-3′; CRE2 (−506–−499), 5′-TTGGAGAAAGCAGGCAGCTG-3′ and
5′-TTCCCTGATTTGTAGAACCT-3′. PCR was run for 35 cycles and amplicons were analyzed by 2%
agarose gel electrophoresis. Independent experiments were repeated at least twice. Individual ChIP
assays were repeated 3 times.

4.9. RNA Interference Experiment

The CREB siRNA and control siRNA were purchased from Santa Cruz Biotechnology and Bioneer
(Daejeon, Korea), respectively. For transfection with Amaxa Nucleofector (Lonza, Basel, Switzerland),
cells were prepared at a density of 1 × 106 cells in 100 µl of nucleofector solution. The solution
was contained with 200 pM of CREB siRNA or control siRNA. The cells were transferred into the
electroporation cuvette. After electroporation using Amaxa Nucleofector, the cells were cultured in
35-mm culture plates with fully supplemented medium.

4.10. High-Fat Diet (HFD)-Induced Obese Model and Experimental Protocols

Male Sprague-Dawley rats (SD, 6 weeks of age), weighing 210–230 g, were obtained from Samtako,
Osan, Korea. After three days of acclimatization, the rats had free access to either a standard rodent
chow (SD, fat content, 11% of energy), or a high-fat diet (fat content, 60% of energy), based on lard
(HF-L), olive oil (HF-O), coconut fat (HF-C) or fish oil (derived from cod liver, HF-F). Weight gain
and food intake were monitored once a week. After 14 weeks, the animals were euthanized after an
overnight fast (16 h). Venous blood was drawn from the heart into EDTA-coated vials, and plasma was
prepared and stored at −80 ◦C pending further ELISA analysis. Next, aortas were removed and then,
perivascular adipose tissue (PVAT) was dissected along the whole aorta and weighed. Four-hundred
milligrams of fat tissue from each animal was collected and conditioned at 37 ◦C in 1 mL of serum-free
DMEM-Ham’s F-12 medium with 0.2% BSA for 24 h. The adipose tissue-conditioned medium (ATCM)
was centrifuged, frozen, and kept at −80 ◦C until use. Subcutaneous adipose tissue (SCAT) and
visceral adipose tissue (VCAT) samples were collected in liquid nitrogen for lipid and mRNA analysis
as described.

4.11. Statistical Analysis

Data were the mean ± SD obtained for at least three independent experiments. Statistical
comparisons between groups were performed by the one-way ANOVA followed by the Student’s
t test.

Supplementary Materials: The following are available online at http://www.mdpi.com/1422-0067/19/12/3971/
s1.
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