
 International Journal of 

Molecular Sciences

Review

The Potential for Connexin Hemichannels to Drive
Breast Cancer Progression through Regulation of the
Inflammatory Response

J. Matthew Rhett ID and Elizabeth S. Yeh *

Department of Cell and Molecular Pharmacology & Experimental Therapeutics, Medical University of South
Carolina, Charleston, SC 29412, USA; rhettj@musc.edu
* Correspondence: yeh@musc.edu; Tel.: +1-843-876-2301

Received: 7 March 2018; Accepted: 28 March 2018; Published: 30 March 2018
����������
�������

Abstract: Over the past few decades, connexin hemichannels have become recognized as major
players in modulating the inflammatory response. Chronic inflammation is documented to promote
tumorigenesis and is a critical component of tumor progression. Furthermore, inflammation is
strongly linked to angiogenesis, immunotolerance, invasiveness, metastasis, and resistance in breast
cancers. In this review, the literature on the role of connexin hemichannels in inflammation is
summarized, and the potential role for hemichannel-mediated inflammation in driving breast cancer
progression is discussed. Lastly, the potential for connexin-based therapeutics to modulate the
inflammatory component of the tumor microenvironment as an avenue for the treatment of breast
cancer is also discussed.

Keywords: hemichannels; breast cancer; connexin; purinergic; inflammation; tumor-associated
macrophage (TAM); tumor-associated neutrophil (TAN); metastasis; resistance

1. Introduction

Connexins are membrane proteins that constitute connexin hemichannels and the intercellular
channels that comprise gap junction (GJ) structures. These proteins contain a cytoplasmic
N-terminus, four transmembrane domains, two extracellular loops that mediate hemichannel docking,
a cytoplasmic loop, and a cytoplasmic C-terminus that acts as a regulatory domain [1]. The channels
formed from connexins facilitate the passive diffusion of small molecules (<~1000 Da) between the
cytoplasm and extracellular space in the case of hemichannels, or between cells in the case of GJ
intercellular channels [2]. Much study has been devoted to GJs and their corresponding intercellular
channels over the past 70 years, since they were first described in the 1960s. However, the wide-spread
study of connexin hemichannels is a much more recent phenomenon, having truly gained traction
over the last several decades [3].

Connexin hemichannels have been demonstrated to play both physiological and pathological
roles [4]. Physiological functions include the regulation of hearing sensitivity in cochlear cells and
ephaptic conduction in the vertebrate retina [5,6]. That said, connexin hemichannels appear to play
a key part in mediating a pathological response to injury and stress. Numerous publications have
shown that hemichannels open in response to a variety of stimuli that are common features of cell
damage including mechanical stimulation, changes in ionic concentration and pH, oxygen and glucose
deprivation (i.e., ischemia), and oxidative stress [7–10]. Hemichannels also open in response to
cytokines and inflammatory agents: basic fibroblast growth factor (bFGF), tumor necrosis factor-α,
interleukin-1β (IL-1β), and lipopolysaccharide (LPS) [11,12]. The opening of hemichannels results in
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the diffusion of small molecules such as adenosine triphosphate (ATP) from the cell interior to the
extracellular space that can participate in pro-inflammatory and pro-death signaling [13,14].

Oxidative stress and hypoxia are predominant features of the tumor environment, and it is now
well established that inflammation plays a role in the initiation and progression of cancer [15,16].
Given the potential connection, it is somewhat surprising that there are only a handful of studies
that have examined the role of hemichannels in the development of cancer. In this review, we will
discuss the mechanisms by which connexin hemichannels facilitate inflammation, what is currently
known about hemichannels and cancer, the role of tumor-associated inflammation in breast cancer,
and therapeutics that target hemichannels as adjuvant treatments to minimize tumor-associated
inflammation and improve the prognosis for breast cancer patients. We will focus predominantly on
the connexin43 (Cx43) isoform as it is the best characterized.

2. Connexin Hemichannels and the Inflammatory Response

Connexins have defined expression patterns in the breast. In developed human breast tissue,
Cx43 localizes to the myoepithelial cells and fibroblasts and Cx26 localizes to luminal epithelial cells,
while Cx30 and Cx32 have been shown to be expressed in luminal epithelial cells during lactation
in the mouse [17]. While there is no direct evidence provided in the literature for the presence of
hemichannels in these cells, we can likely infer their existence from the presence of functional GJs.
Other stromal cells present in the breast that are known to express connexins are resident macrophages
and vascular endothelial cells [18,19]. In general, connexin expression appears to be downregulated
in primary breast tumors, and the protein that is expressed often appears to be cytoplasmic [20].
These findings initially led to the conclusion that Cx43 was a tumor suppressor; however, a more
complex picture has emerged. Both increased and decreased Cx43 expression have been correlated
with increased metastatic potential [21]. Given this context, the discrimination of GJ function versus
hemichannel function versus channel independent functions may be necessary to create a complete
picture of the role of connexins in breast cancer.

The inflammatory response to injured or stressed tissue can generally be characterized by
the initial infiltration of the tissue by neutrophils and monocytes (within minutes) followed by
macrophages (over a period of days) [22]. If healing progresses normally, the inflammation resolves
and damaged tissue is regenerated or replaced with a fibrotic scar (depending on the location and
extent of the injury) [23]. A vast array of signaling molecules initiate and coordinate the inflammatory
process including bacterial peptides, cytokines, and extracellular nucleic acids (purinergic signaling
molecules) [24–26]. In particular, it is well documented that connexin hemichannels provide
a conduit for extracellular nucleic acids in response to a variety of stimuli. Mechanical stimulation
or manipulation of cells has been shown to cause ATP release from corneal endothelial cells, ovarian
granulosa cells, astrocytes, and Cx43-expressing C6 glioma cells in a Cx43-dependent manner,
and from renal glomerular endothelial cells via Cx40 hemichannels [7,27–29]. C6 cells engineered
to express Cx43 were demonstrated to release ATP in response to bFGF and LPS in a Cx43-specific
manner [11]. Decreased extracellular Ca2+ concentration is well documented to induce connexin
hemichannel opening and ATP release [3,30,31]. Conversely, increased intracellular calcium induces
hemichannel-mediated ATP release [32]. However, increased intracellular Ca2+ concentration likely
opens hemichannels through a complex biochemical pathway resulting in changes in redox potential,
which is another demonstrated hemichannel activator [10,33]. Finally, ischemia-like conditions
have been shown to elicit ATP release from connexin hemichannels in cultured cardiomyocytes
and astrocytes [34–36].

Intracellular ATP provides a primary energy source for cells by acting as an allosteric regulator of
enzymes, a substrate in enzymatic reactions, and a building block for nucleic acids. Extracellular ATP’s
principal role is as a signaling molecule [37]. Cells express three families of receptors for extracellular
nucleotides: P1 adenosine receptors and P2 ATP receptors, which can be broken down in to P2X
ion channel receptors, and P2Y G protein coupled receptors (GPCRs) [37]. These receptors have a
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well-defined physiological role in co-transmission in the central and peripheral nervous system, as well
as in the vasculature in regulating vascular tone [38]. In the context of inflammation, extracellular
ATP is classified as a damage-associated molecular pattern (DAMP) that alerts host defenses to the
presence of injured cells [39]. When cells are ruptured or undergo necrosis, they spill their contents
into the extracellular space. This includes cytoplasmic ATP, which can be as high in concentration as
10 mM in intact cells, but its presence outside of cells is tightly regulated by innate mechanisms unless
released during cell rupture [40]. This extracellular ATP then acts as a signal for local inflammatory
cells, such as resident macrophages, to produce cytokines that in turn attract blood-borne leukocytes,
predominantly neutrophils [26]. This source of extracellular ATP is, however, short-lived. Ecto- and
exonucleotidases are widely expressed and rapidly convert ATP to adenosine diphosphate (ADP),
then adenosine monophosphate (AMP), and finally adenosine [41]. Adenosine is eventually converted
to inosine by adenosine deaminase, effectively removing all purines from the signaling pool [42].

In addition to the burst of extracellular ATP produced from ruptured cells, the remaining living
cells in the region of tissue surrounding the damage experience many of the cellular stressors discussed
above (mechanical stimulation by foreign objects, inflammatory cytokines and bacterial peptides,
changes in intra- and extracellular ion concentration, oxidative stress, and lack of oxygen and nutrients)
that induce connexin hemichannel-mediated ATP release [13]. This provides a more sustained source of
ATP that can directly attract neutrophils and activate macrophages, leading to chronic inflammation if
the tissue damage is not resolved [13,25,26,43,44]. Indeed, it has been demonstrated that the inhibition
of connexin hemichannels reduces inflammation in a number of injury contexts. The first evidence for
connexin hemichannels in inflammation comes from seminal work in which murine dermal wounds
were treated with a Cx43 antisense oligonucleotide to locally reduce Cx43 levels, resulting in reduced
neutrophil infiltrate in the wound area [45]. However, it should be noted that because the antisense
reduced total Cx43 levels, it was not clear whether the effects of the antisense were due to reduced
GJ or hemichannel communication, or some combination. Further support for a role for connexin
hemichannels in inflammation came from work with the Cx43-mimetic α-connexin carboxyl-terminal
peptide 1 (aCT1), which inhibits Cx43 hemichannel function but increases GJ communication [46].
Specifically, it was shown that aCT1 treatment of skin wounds in mice significantly reduced the number
of neutrophils in the wound area for up to four days post-injury [47]. Similarly, in a separate study it
was found that the application of aCT1 to the site of a silicone implant reduced acute inflammation [48].
Work with another inhibitor of Cx43 hemichannels, juxtamembrane peptide 2 (JM2), demonstrated
that inflammation was again reduced and that this reduction was dependent on decreased ATP release
from vascular endothelial cells [30,49]. In the context of central nervous system injury, the reduction of
total Cx43 with antisense and the blockade of Cx43 hemichannels using mimetic peptides also reduced
inflammation [50–52]. Importantly, mice with astrocyte-targeted deletion of Cx43 and Cx30 display
reduced inflammation following spinal cord injury in association with a significant reduction of ATP
release in the injured tissue, as measured by in vivo bioluminescence imaging [53].

Many modulators of Cx43 function have moved into clinical trials [54]. Most salient to this review,
clinical trials with aCT1 show improved healing of diabetic foot ulcers and venous leg ulcers, which
are wounds characterized by chronic inflammatory states [55,56]. Taken together, these data support a
model in which early inflammation (i.e., infiltration of neutrophils primarily) is maintained in injured
tissue by the secretion of ATP from stressed cells remaining in, and adjacent to, a damaged tissue.
Under normal circumstances, as inflammation progresses and converts to the “proliferative” phase of
healing, stressors are removed and the early inflammatory response resolves. However, the failure of
wound healing to progress leads to chronic inflammation, in part due to continued ATP signaling via
connexin hemichannels in stressed cells.

3. Inflammation and Breast Cancer

Most cancers are never truly “cured”, but rather “controlled” through cycles of remission and
disease recurrence [57,58]. As such, many tumors bear the hallmarks of a chronic wound. Indeed,
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the stroma surrounding tumors has long been recognized to share similarities with wounded tissue [59].
In particular, leukocytes are well documented to associate with tumors, and have been termed
tumor-associated neutrophils and macrophages (TANs and TAMs, respectively) [60,61]. TANs and
TAMs may initially be attracted to tumor sites by the presence of DAMPs, including ATP, released by
cells in the necrotic core of the tumor, or by tumor cells necrosing in response to surgery, radiation
therapy, or chemotherapy [61]. In one example, it was demonstrated that tumor necrosis induced
by the inactivation of autophagy in an apoptosis-defective context was associated with macrophage
infiltration of the tumor site [62]. Paradoxically, despite the enhanced necrosis, tumor growth was
accelerated in this model, suggesting that TAMs promote tumor cell survival and proliferation.
In addition, tumors can generate cytokines that attract inflammatory cells including IL-1, IL-6, IL-8,
CCL1, CCL2, CCL20, and S100A proteins [60,63,64]. Interestingly, cytokines that attract TANs and
TAMs to tumor sites may also be produced by cancer-associated fibroblasts (CAFs) [65,66]. Importantly,
Cx43 is expressed in CAFs and may be important for the infiltration of tumor stroma by TAMs [67].
Once TANs and TAMs have arrived at a tumor site, a positive feedback loop may be established
in which tumor cells continue to produce signals that attract and maintain inflammatory cells at
the site, and TANs and TAMs promote tumor growth by producing growth factors and promoting
angiogenesis [15].

TANs and TAMs cells have highly plastic phenotypes, and can play either pro- or anti-tumor
progressing roles depending on the type and stage of the cancer involved. TANs and TAMs affect
tumor initiation, proliferation, apoptosis, epithelial-to-mesenchymal transition (EMT), angiogenesis,
extracellular matrix (ECM) deposition and remodeling, and the ability of adaptive immune cells
to respond to the tumor [60,61]. These cells also impact metastasis at the level of intravasation,
can chaperone tumor cells through the circulation, and impact the seeding of metastases in the
premetastatic niche [68–72]. For the purposes of this review, we will focus on the role of these
inflammatory cells as it pertains to breast cancer metastasis and therapeutic resistance.

Breast cancer is not really a single disease, but a set of cancers that are primarily adenocarcinomas
originating from the ductal and lobular tissue of the mammary gland. These cancers can be broken
down into molecular subtypes based on their receptor expression pattern: (1) Luminal A tumors
tend to express estrogen receptor (ER) and usually progesterone receptor (PR), but are negative
for human epidermal growth factor receptor-2 (HER2); (2) Luminal B tumors are usually ER-, PR-,
and HER2-positive; (3) HER2 enriched tumors are predominantly positive for HER2, but have little to
no ER or PR expression; (4) Basal-like cancers tend to be “triple-negative breast cancers” (TNBCs) that
express little to no ER, PR, or HER2 [73]. Inflammatory breast cancer is a rare form of breast cancer that
does not fit neatly into the four molecular subtypes. Despite the name, the link between inflammation
and inflammatory breast cancer remains poorly understood, but many of the inflammatory pathways
that are active in the canonical molecular subtypes also play a role in the tumorigenesis of inflammatory
breast cancer [74]. For tumors that are ER-, PR-, and/or HER2-positive, these receptors provide
molecular targets for adjuvant treatment, which are designed to block their function [75]. In the case of
TNBC, the standard of care remains surgery and chemotherapy [76]. Importantly, receptor positive
tumors can become resistant to targeted therapies, and all tumors can recur (often as metastases to
other organs or tissues) following a disease-free interval, leading to a chronic disease state [75].

Whether or not a breast tumor develops resistance or metastasizes following treatment is strongly
dependent on the presence of TANs and/or TAMs. Generally, the presence of these cells is associated
with pro-tumorigenic and metastasis promoting effects. In the case of TANs, studies have shown
that a high neutrophil-to-lymphocyte ratio in peripheral blood is prognostic of worse overall survival
and disease-free survival for breast cancers, especially ones that are ER- and HER2-negative [77].
Studies using cell-based assays suggest that TANs promote the angiogenesis and invasiveness of breast
cancer [78,79]. Further work in mice supports a tumor-promoting role for TANs. One study showed
that invasive breast cancer reprogramed myeloid precursors to differentiate into atypical neutrophils
(also known as myeloid-derived suppressor cells (MDSCs)) that suppressed the proliferation of CD4-
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and CD8-positive T-cells by 50%, thus helping tumors to avoid immune detection [80]. Another group
found that breast cancers that produced CXCL1 and CXCL2 attracted CD11b+Gr1+ myeloid cells
(neutrophil and monocyte precursors), which in turn promoted tumor cell survival and metastasis [81].
Importantly, chemotherapy induced endothelial cells to produce tumor necrosis factor-α (TNF-α),
leading to chemoresistance by “hyperactivating” the system of myeloid cell-stimulated tumor growth
and metastasis.

Similar to the case with neutrophils, TAMs are generally associated with worse outcomes in breast
cancer. One study found a significant correlation between TAM infiltration, angiogenic markers,
and reduced relapse-free survival and overall survival in clinical breast carcinoma isolates [82].
Direct evidence that TAMs promote breast tumor angiogenesis comes from experiments performed in
the mouse mammary tumor virus-polyomavirus middle T-antigen (MMTV-PyMT) mouse model that
showed that genetic depletion of macrophages resulted in a significant delay in the development of a
dense vascular network and progression to malignancy in primary mammary tumors [83]. Similarly,
the depletion of TAMs in murine F9 teratocarcinoma and human A673 rhabdomyosarcoma mouse
tumor models resulted in significantly reduced tumor growth and vascularization [84]. Another study
also suggested that tumor-associated inflammatory cells can aid metastasis by producing factors that
increase vascular permeability [61]. Supporting this statement, direct imaging of vasculature, TAMs,
and mammary tumor cells using multiphoton microscopy has shown that cancer cells preferentially
intravasate at points in the vasculature where TAMs are located [85].

In addition to promoting angiogenesis and metastasis, inflammatory cells may also contribute
to resistance to endocrine therapy. One study showed that ERα-positive, but not ERα-negative, cell
lines displayed enhanced growth in response to IL-6 in vitro, and in vivo, MCF-7 cells engineered to
express ectopic human IL-6 displayed significantly greater tumor growth in athymic nude mice when
compared to parental MCF-7 cells [86]. Later work from the same group demonstrated that IL-6 also
promoted EMT in ERα-positive breast cancer cells [87]. Other lines of evidence point to the activation
of the transcription factor nuclear factor-κB (NF-κB) in the development of hormone-resistant breast
cancer [88]. Importantly, NF-κB can be activated by a number of cytokines produced by TAMs and
TANs [61]. TNF-α—another cytokine produced by TAMs—enhances invasiveness of ERα-positive
breast cancer cells in vitro [89]. Finally, epidemiological evidence shows that there is a reduced risk
of hormone receptor-positive, but not hormone receptor-negative, breast cancer incidence in women
who regularly take non-steroidal anti-inflammatory drugs (NSAIDs) [90]. A plausible interpretation
of these data is that tumor-associated inflammation, and by extension leukocytes, may provide
the signals necessary for hormone-receptor positive mammary tumor cells to evade the targeted
chemotherapeutics that make these subtypes of cancer treatable.

It should be noted there is also evidence that tumor-associated inflammatory cells can have
anti-metastatic effects. Stockman et al. found that while the deletion of vascular endothelial growth
factor-A (VEGF-A) from myeloid cells reduced the vascularization and vascular permeability of
mammary tumors in mice, it paradoxically also enhanced tumor growth [91]. This confounding
result may be attributed to the authors’ finding that the vasculature of myeloid-derived VEGF-A
depleted mice was “normalized” by greater pericyte coverage of the vessels, less leaky vasculature,
and reduced hypoxia in the tumors. Neutrophils have also been shown to have anti-metastatic
properties. Neutrophil depletion in mice with orthotopically implanted 4T1 tumors displayed
a significant reduction in the recruitment of neutrophils to the lungs prior to metastasis at day
7 post-implantation, and significantly increased metastatic load in the lung at day 14, suggesting that
“tumor-entrained” neutrophils inhibited the seeding of metastatic cells in the lung [71]. Despite these
confounding results, on balance TAMs and TANs appear to promote tumor cell proliferation,
tumor-associated angiogenesis, metastasis, and resistance to therapy in breast cancer.
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4. Hemichannels in Cancer

While the significance of connexins and GJs in cancer has been extensively explored (see [17,21,92,93]),
there is limited data from which to draw conclusions about the role of hemichannels in cancer.
That said, inferences can be made from a number of sources. For example, antibodies to the extracellular
domains of Cx43 have been demonstrated to block hemichannels without affecting gap junctional
communication [94]. When Cx43 extracellular loop antibodies (called E2 antibodies) were applied
in a rat model of glioblastoma, it was found that animal survival and tumor regression were
enhanced, and this effect was synergistic with radiotherapy, suggesting that hemichannel blockade was
anti-tumorigenic in this model [95]. However, it should be noted that these results could also be due to
an immunogenic response to cells tagged by the antibody. Conversely, additional work has shown
that ATP release by hemichannels on osteocytes inhibited the growth, migration, and invasiveness
of human breast cancer cells using in vitro cell migration assays [96]. In addition, this study showed
that mice with an osteocyte-specific genetic knockout of Cx43, or transgenic mice engineered to have
osteocyte-specific expression of a Cx43 mutant (∆130–136) without functional GJ or hemichannels,
exhibited enhanced tumor growth of transplanted mammary tumor cells, but not when a GJ-deficient
and functional hemichannel Cx43 mutant (R76W) was expressed in osteocytes. These conflicting
results suggest that the function of hemichannels in cancer may be specific to the context of a given
disease state.

A number of in vitro studies also shed light on the role of hemichannels in cancer. One of the many
small molecules that hemichannels can also release is nicotinamide adenine dinucleotide (NAD+) [97].
Extracellular NAD+ is readily converted to cyclic ADP-ribose (cADPR—a potent second messenger
mobilizer of intracellular calcium) by the ectoenzyme CD38, and one study found that NAD+ released
by CD38+ “feeder” cells enhanced the proliferation of CD38− “target” cells, presumably by the
conversion of NAD+ to cADPR [98]. CD38 is primarily expressed in lymphoid cells (which include
T cells and macrophages), and it has been suggested that NAD+ released by tumor cells could
suppress immune cell function directly while simultaneously enhancing tumor cell proliferation
by converting NAD+ to cADPR via CD38 on local immune cells [99]. Similarly, ATP that is released
by Cx43 hemichannels and converted to adenosine by ectonucleases could provide a pro-metastatic
signal in breast cancer by activating purinergic receptors on mammary tumor cells [21].

Conversely, it has also been shown that hemichannel opening can provide a pro-death signal.
In one instance, localized apoptotic cell death was induced in C6 cells by electroporetic cytochrome
C loading. In cells that were engineered to stably express Cx43, cells adjacent to the electroporated
cells also underwent apoptosis, but this was not observed in wild-type (non-Cx43-expressing) cells,
indicating the spread of some “pro-death” signal through GJs [100]. Interestingly, it was also observed
that Cx43-overexpressing cells at distant locations from the cytochrome C loaded cells also underwent
apoptosis, and this effect was specifically dependent on Cx43 hemichannel function. The authors of
this study hypothesized that a signal was either being released from hemichannels in dying cells of the
loading or adjacent region, or being accepted through hemichannels in the distant region. However,
further tests to determine the paracrine messenger responsible for transmitting pro-death signals could
only rule out ATP and glutamate, suggesting that some other small molecule was responsible or that
hemichannel opening itself was contributing to the apoptotic effect. Supporting the second notion,
it has also been shown that cultured cardiomyocytes subjected to simulated ischemia-reperfusion
display significantly reduced cell viability, and that blocking hemichannels significantly increased
cell survival [9]. Taken together, a direct role of connexin hemichannels in cancer has not been well
established, but there is strong evidence that hemichannels modulate cellular characteristics that
control tumor growth and metastasis.

5. The Intersection of Hemichannels, Inflammation, and Breast Cancer: Therapeutic Potential

Given that the tumor microenvironment of breast cancer lesions is conducive to the opening of
connexin hemichannels [4,16], and these channels are well-established to release pro-inflammatory
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signals such as ATP [13], it is perhaps unsurprising that malignant breast tumors can be comprised
of up to 50% macrophages [101]. Overall, the preponderance of the literature on tumor-associated
leukocytes suggests these cells are pro-angiogenic, pro-metastatic, promote tumor growth, and enhance
resistance to therapeutics. Therefore, we propose a model in which connexin hemichannels in breast
tumors and cells of the surrounding stroma provide a conduit for the secretion of extracellular ATP
that attracts TAMs and TANs (Figure 1). In turn, this cascade of events initiated by hemichannels
ultimately serves to enhance therapeutic resistance and breast cancer metastasis.

Figure 1. Connexin hemichannels and tumor-associated inflammatory cells in mammary tumor
progression. 1© Damage-associated molecular patterns (DAMPs), including ATP, that attract and
activate macrophages and neutrophils are released from ruptured cells at the necrotic core of the
tumor, and from tumor cells necrosing in response to therapy; 2© Vascular endothelial cells secrete ATP
through hemichannels in response to tumor-related stress, attracting macrophages and neutrophils.
Endothelial cells also secrete TNF-α, which promotes tumor growth and inflammation; 3© Tumor cells
may release ATP from hemichannels triggered to open by the cellular stressors intrinsic to tumor cell
physiology. This can activate local macrophages (i.e., tumor-associated macrophages (TAMs)) that in
turn produce pro-inflammatory cytokines. TAMs may also release neutrophil-recruiting ATP from
hemichannels. In addition, tumor cells express ectonucleases that convert ATP to adenosine, which
has immunosuppressive effects on tumor-associated neutrophils (TANs), TAMs, and T cells; 4© Breast
cancer cells and cancer-associated fibroblasts (CAFs) produce pro-inflammatory cytokines that attract
and activate TAMs and TANs. In turn, TAMs and TANs produce pro-survival and pro-growth signals
that promote tumor progression; 5© TAMs and TANs produce pro-angiogenic factors that stimulate
tumor vascularization; 6© TAMs aid metastatic tumor cells in intravasation; 7© TAMs and TANs may
chaperone tumor cells through the vasculature to sites of metastasis.

Additionally, it is important to recognize that the breakdown products of ATP also
impact mammary tumors. CD39 and CD73 are ectonucleases that convert ATP into ADP, AMP,
and adenosine [41]. In particular, adenosine generally has immunosuppressive effects on both innate
and adaptive immune cells [102]. With respect to cancer, CD39 and CD73 expression in tumors is
correlated with invasiveness and metastasis, and CD73 expression in cultured breast cancer cells
enhances invasion, migration, and adhesion [99,103]. Moreover, it was shown in a mouse 4T1.2 breast
tumor model that the inhibition of CD73 with CD73-targeted antibodies reduced growth of the
primary tumor and impaired metastasis to the lung [104]. These effects were found to occur through
the prevention of immunosuppression and the activation of adenosine receptors on the tumor cells.
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Although the effects of adenosine are generally considered anti-inflammatory, TAMs exposed to
adenosine may actually take on a pro-tumorigenic and pro-metastatic phenotype. Macrophages have
been shown to be able to “polarize” into either a pro-inflammatory “M1” phenotype or an alternative
“M2” regenerative phenotype, and adenosine promotes the polarization of macrophages into the
M2 phenotype [105,106]. Significantly, M2 macrophages stimulate tumor growth, angiogenesis, and are
correlated with a poor prognosis in patients [107,108]. Taken together with the preceding discussions,
this suggests that the purinergic modulation of leukocyte phenotypes determines whether TAMs and
TANs exhibit pro- or anti-tumor characteristics in breast cancer.

As evidenced by the extensive reviews published on the subject, there are a number of
connexin-based therapeutics in various phases of development for the treatment of diseases ranging
from stroke, to chronic wounds, to cardiovascular disease, and to cancer (see [54,109,110]). Here,
the discussion will focus on connexin-based therapeutics that are most likely to have an effect
on inflammation in breast cancer. As previously discussed, antibodies against the Cx43 second
extracellular loop also inhibit hemichannel function, and are anti-tumorigenic in a rodent glioblastoma
model [95]. To our knowledge, there is no direct evidence that this antibody has anti-inflammatory
properties, but its ability to inhibit hemichannel activity leaves open the possibility for the E2 antibody
to inhibit tumor infiltration and the activation of TAMs and/or TANs, potentially through the
disruption of extracellular ATP release [96].

The remainder of the discussion will focus on connexin-mimetic peptides due to the non-specific
action and limited therapeutic potential of small molecule connexin channel inhibitors (Table 1).
As mentioned, aCT1 is a Cx43-mimetic peptide that blocks hemichannels and reduces inflammation
in a wound healing context [47,48]. While the effects of aCT1 on inflammation in breast cancer have
not been directly explored, prior work has shown that aCT1 enhances the activity of tamoxifen on
ER-positive breast cancer cells, and lapatinib on HER2-positive breast cancer cells [111]. These effects
were attributed to enhanced GJ coupling. However, since aCT1 also blocks hemichannel activity,
it is not possible to conclude the extent to which hemichannel inhibition contributes to the enhanced
efficacy of tamoxifen and lapatinib. Similar to the effects on breast cancer cells, aCT1 was shown to
induce sensitivity to the front-line glioblastoma therapeutic, temozolomide, in resistant cell lines [112].
Given that aCT1 is anti-inflammatory in other contexts and shows inherent anticancer properties,
we speculate that aCT1 could also reduce the leukocyte infiltration of mammary tumors and inhibit
tumor progression.

Other connexin-based compounds that target hemichannel function could also potentially reduce
TAM and TAN load in breast cancer. Gap junction peptide 26 (Gap26) and Gap27 are mimetics of the
Cx43 extracellular loops, and over short time periods specifically inhibit Cx43 hemichannels [113].
In cell culture and organotypic models these peptides can prevent astroglial activation (a marker of
neuroinflammation), and Gap27 was found to reduce swelling in a model of spinal cord injury, although
it was not further analyzed for its effect on inflammation specifically [36,114,115]. More recently,
Gap26 was shown to inhibit the expression of pro-inflammatory cytokines in enteric glia, reduce
inflammatory infiltrates in the lungs of mouse models of asthma, and reduce animal mortality in a
mouse model of sepsis [116–118]. Conversely, the treatment of rat corneal wounds with Gap27 actually
increased the accumulation of inflammatory cells [119]. Taken together, these studies largely point to
the potential of these peptides to inhibit inflammatory infiltrates in breast cancer, but caution must be
taken with these peptides in therapeutic setting as these peptides may have pleiotropic effects on other
connexin isoforms [54].

Gap19 is another Cx43-mimetic peptide that, uniquely, contains a sequence from the intracellular
loop of Cx43. The initial report on Gap19 was a comprehensive study that showed that
Gap19 selectively inhibited Cx43 hemichannels—not GJ communication or other membrane channels—by
blocking Cx43 cytoplasmic loop/tail interactions, and decreased infarct size in mouse myocardial
ischemia-reperfusion injuries [120]. Subsequent work showed that the peptide also selectively inhibited
Cx43 hemichannels in astrocytes [121]. More recently, Gap19 was shown to reduce serum levels of
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pro-inflammatory cytokines in mouse models of acetaminophen-induced liver injury and non-alcoholic
steatohepatitis [122,123]. Conversely, in a mouse model of sepsis, Gap19 was surprisingly found to
increase macrophage hemichannel activity and decrease animal survival [118]. Overall, Gap19 shows
promise as a therapeutic given its highly selective inhibition of Cx43 hemichannels, but may not be ideal
as a means to limit TAM and TAN recruitment and function in tumors due to its hemichannel-activating
effect in macrophages.

Table 1. Connexin-based therapeutics.

Name Effects References Clinical Trials

Extracellular
loop 2 (E2)
antibody

Blocks hemichannels without affecting gap
junctional (GJ) communication; enhances
animal survival and tumor regression in a
glioblastoma model; promotes
anchorage-independent growth, migration,
and invasion of cultured breast cancer cells

[94–96] None

α-connexin
carboxyl-
terminal
peptide 1
(aCT1)

Increases GJ size and gap junctional
communication, and concomitantly reduces
hemichannel population and cell-extracellular
communication; improves wound healing;
enhances the activity of targeted therapeutics
in breast cancer cells; sensitizes chemoresistant
glioblastoma cells to temozolomide

[23,47,48,55,56,111,112]

NCT02652572—Phase I—venus
leg ulcers;
NCT02652754—Phase I—diabetic
foot ulcers;
NCT02666131—Phase III—diabetic
foot ulcers;
NCT02667327—Phase III—diabetic
foot ulcers

Gap junction
peptide 26
(Gap26)

Blocks hemichannels over short time periods
(minutes) and gap junctional communication
over long time periods (>30 min); reduces
astroglial activation; reduces inflammation;
reduces animal cell death due to sepsis

[36,113,116–118] None

Gap junction
peptide 27
(Gap27)

Reduces astroglial activation; reduces swelling
after spinal cord injury; increases inflammation
in corneal wounds

[36,115,119] None

Gap junction
peptide 19
(Gap19)

Selectively inhibits hemichannels and reduces
cardiac infarct size; reduces serum levels of
pro-inflammatory cytokines due to liver injury;
increases macrophage hemichannel activity
and decreases animal survival in a rodent
sepsis model

[118,120,122,123] None

Peptide 5 (P5)

Reduces astroglial activation and swelling after
spinal cord injury; neuroprotective in stroke
models; inhibits hemichannels and improves
animal survival in models of sepsis and hepatic
ischemia-reperfusion injury; inhibits
inflammatory infiltrates into damaged retina

[52,115,118,124–127] None

Juxtamembrane
peptide 2
(JM2)

Inhibits hemichannels and GJ communication,
and promotes microtubule polymerization;
inhibits hemichannel-mediated ATP release
and reduces inflammation from the foreign
body response

[30,49] None

Another extracellular loop peptide, termed Peptide 5 (P5), has also shown efficacy in reducing
inflammation. It was shown to reduce swelling in response to spinal cord injury as well as reduce
the number of activated astrocytes in the injury [52,115]. Subsequent work with P5 in stroke models
showed neuroprotective effects, but whether this was related to reduced inflammation was not
explored [124–126]. In a separate study, P5 was shown to inhibit hemichannel-mediated ATP and high
mobility group box 1 (HMGB1) release from cultured macrophages, and improved animal survival in
models of sepsis and hepatic ischemia-reperfusion injury [118]. Finally, in a rat model of light-induced
retinal damage, P5 inhibited inflammatory infiltrates [127]. To our knowledge, no work in cancer has
been performed testing this peptide as a therapeutic, but its effectiveness in reducing inflammation
points to its potential in modulating the pro-tumorigenic and pro-metastatic effects of TAMs and TANs.

Finally, a peptidomimetic of the Cx43 c-terminal juxtamembrane region (JM2) demonstrated
chemotherapeutic potential. As discussed above, JM2 was shown to inhibit hemichannel-mediated
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ATP release from endothelial cells and reduce inflammation surrounding a submuscular silicone
implant in rats [30]. A detailed study of the molecular biology of JM2 revealed that the peptide inhibited
the trafficking of Cx43 to the cell surface, thereby inhibiting both Cx43 hemichannel and GJ channel
function [49]. Relevant to this discussion, it was found that JM2 impaired Cx43 trafficking by promoting
the unrestrained and irrelevant polymerization of microtubules. Indeed, an in vitro assay showed
that JM2 enhanced microtubule polymerization to an even greater degree than paclitaxel. These data
suggest that, like aCT1, JM2 may inhibit the TAM and TAN infiltration of breast cancer lesions through
its inhibitory effect on hemichannel ATP release, but also possesses intrinsic anticancer properties.
In summary, a number of promising therapeutic candidates are described for anti-inflammatory
properties that have not yet been adopted for testing in cancer. We note that in the case of cancer,
in which systemic administration is the preferred delivery route, the rapid degradation of peptides
in blood may hamper preclinical studies. However, strategies to protect peptides from proteolysis
may improve clinical relevance (e.g., cyclization, L- to D-amino acid replacement, or conjugation to
macromolecules) [128].

6. Conclusions

The sciences of connexin hemichannels and inflammation in breast cancer have independently
grown into their own distinct disciplines over the recent past, but have not yet intersected.
Nevertheless, the potential connection is undeniable. Mammary tumors possess the pathophysiological
states known to trigger connexin hemichannel opening and ATP release; extracellular ATP is a
potent chemoattractant for, and activator of, leukocytes; TAMs and TANs are linked to tumor
immunotolerance, angiogenesis, treatment resistance, metastasis, and generally poor prognosis
in patients. Future studies should be aimed at dissecting the possible roles of hemichannels in
mammary tumor-associated inflammation. Finally, whether connexin-based therapeutics modulate
tumor-associated inflammation should be explored. Connexins can be somewhat difficult targets
because drugs that affect hemichannels usually also impact GJ communication and vice versa,
but hopefully this line of research will produce new chemotherapeutics that reduce the malignancy,
resistance, and metastasis of breast cancers.
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