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Transcriptomic analysis of mRNAs in human 
whole blood identified age-specific changes in 
healthy individuals
Yan Zhang, MMeda, Chonghui Liu, PhDb,* 

Abstract 
Older age is one of the most important shared risk factors for multiple chronic diseases, increasing the medical burden to 
contemporary societies. Current research focuses on identifying aging biomarkers to predict aging trajectories and developing 
interventions aimed at preventing and delaying the progression of multimorbidity with aging. Here, a transcriptomic changes 
analysis of whole blood genes with age was conducted. The age-related whole blood gene-expression profiling datasets were 
downloaded from the Gene Expression Omnibus (GEO) database. We screened the differentially expressed genes (DEGs) between 
healthy young and old individuals and performed functional enrichment analysis. Cytoscape with Cytohubba and MCODE was 
used to perform an interaction network of DEGs and identify hub genes. In addition, ROC curves and correlation analysis were 
used to evaluate the accuracy of hub genes. In total, we identified 29 DEGs between young and old samples that were enriched 
mainly in immunoglobulin binding and complex, humoral immune response, and immune response-activating signaling pathways. 
In combination with the PPI network and topological analysis, 4 hub genes (IGLL5, Jchain, POU2AF1, and Bach2) were identified. 
Pearson analysis showed that the expression changes of these hub genes were highly correlated with age. Among them, 3 hub 
genes (IGLL5, POU2AF1, and Bach2) were identified with good accuracy (AUC score > 0.7), indicating that these genes were the 
best indicators of age. Together, our results provided potential biomarkers IGLL5, POU2AF1, and Bach2 to identify individuals 
at high early risk of age-related disease to be targeted for early interventions and contribute to understanding the molecular 
mechanisms in the progression of aging.

Abbreviations: AUC = the area under the curve, BP = biological process, CC = cellular component, DEGs = differentially 
expressed genes, FC = fold change, GEO = Gene Expression Omnibus, GO = gene ontology, LOD = late-onset major depressive 
disorder, MF = molecular function, PPI = protein-protein interaction, ROC = receiver operating characteristic.
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1. Introduction
The elderly population has risen dramatically which cause the 
most serious social demographic and medical problem around 
the world.[1] Advanced age is one of the strongest risk fac-
tors for many chronic diseases that negatively impact health 
and quality of life.[2,3] An increasing body of evidence sug-
gests that age-related changes occur in a regulated manner.[4] 
Understanding the genetic expression changes that influence 
aging holds significant importance in mitigating the prevalence 
of chronic diseases and enhancing the health span of popula-
tions.[2,3,5] Therefore, the identification of age-related biomark-
ers that can predict health status, at an early stage, and screen 
individuals at high risk of age-related diseases to be targeted for 
interventions and diagnosis.

Over the last few years, multiple studies have reported that 
age-dependent changes in gene expression in different tissues 
may contribute to high susceptibilities to diseases.[4,6–8] Among 
these tissues, blood offers many advantages as a sample to iden-
tify potential biomarker signatures of aging, including conve-
nient acquisition, and reducing the burden of making multiple 
physiological and clinical assessments.[3,4] Moreover, biomark-
ers in blood samples may systematically reflect the age-related 
changes in the internal environment since blood flows through 
any organ. Thus, we identified blood transcriptomic signatures 
of aging to evaluate the health status of the elderly in the early 
stage.

Here, we identified the differentially expressed genes (DEGs) 
between healthy young and old individuals from human whole 
blood samples. Molecule functional and pathway analyses 
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were performed to predict the mechanisms that impact the 
health trajectories. Then, we established a protein-protein 
interaction (PPI) network to explore potential relationships 
among the DEGs and screened out key modules and hub genes. 
Combining the results of the receiver operating characteristic 
(ROC) curve and the expression analysis of hub genes, we val-
idate the correction between these genes and age. This study 
allowed us to identify transcriptomic-aging-signature, which 
will provide new insights into the mechanisms of aging, and 
provide potential targets for therapies aimed at extending 
health span.

2. Materials and Methods

2.1. Ethics approval

This study did not conduct experiments involving animals or 
humans; therefore, ethical approval was not required.

2.2. Microarray datasets processing

Three gene expression profiles (GSE123696, GSE123697, 
GSE123698) of whole blood in healthy young and old indi-
viduals with longitudinal tracking were available from the 
GEO database (https://www.ncbi.nlm.nih.gov/geo/). These 
datasets track 135 healthy adults in different age groups with 
3 years of follow-up. All data were based on the GPL15207 
platform Affymetrix Human Gene Expression Array. The 
probes were labeled with gene symbols according to the 

annotation information on GPL15207, and those genes with 
multiple probes were randomly picked one probe to obtain 
the gene expression matrix. To enhance the reliability of 
screening results, the data sets GSE16717 (including 50 old 
samples and 50 young samples), GSE49058 (including 10 
old samples and 10 young samples), and GSE67220 (includ-
ing 9 old samples and 11 young samples) were added as val-
idation data sets.

2.3. Differential expression selection

We used the “limma” package in R to screen DEGs between 
young (< 60 years old) and old (> 60 years old) samples. The 
threshold values of DEGs were P .value <0.05 and | log2 fold 
change (FC) | > 0.5. Volcano plots were presented by using the 
“ggplot” package in R to visualize the results of DEGs. The 
overlapping DEGs between the 3 profiles were identified by the 
online visualization software Jvenn (http://jvenn.toulouse.inra.
fr/app/example.html).

2.4. Functional and pathway enrichment analysis of DEGs

Gene ontology (GO) analysis of the overlapping DEGs under 
the 3 categories, molecular function (MF), cellular component 
(CC), and biological process (BP) was performed using the 
“ClusterProfiler” package. A P .value <0.05 was considered 
statistically significant. Pathway enrichment analysis was per-
formed using the ReactomePA R package.[9] The threshold value 
for significantly enriched terms was P .value <0.05.

Figure 1. Identification of DEGs. (A–C) Volcano plots of age-related DEGs were identified based on fold-change and P .value of genes with expression differ-
ences between young and old samples. The blue dots represent downregulated genes, the red dots represent upregulated genes, and the gray dots represent 
non-significant genes. (D) An overlap of 29 DEGs showed a similar stable trend in 3 datasets in the Venn diagram. DEGs = differentially expressed genes.

https://www.ncbi.nlm.nih.gov/geo/
http://jvenn.toulouse.inra.fr/app/example.html
http://jvenn.toulouse.inra.fr/app/example.html
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2.5. PPI network of DEGs establishment and hub genes 
identification

The protein interactions analysis was performed using the 
STRING database (http://string-db.org) with confidence > 0.4, 
and the PPI network was visualized by Cytoscape (v3.9.0). The 
CytoHubba plug-in in Cytoscape was used to calculate the con-
nectivity of network topology. The key module in the PPI net-
work was identified using the MCODE plugin (degree cutoff = 2, 
K-core = 2, max depth = 100, and node score cutoff = 0.2), and 
module genes were identified as hub genes.

2.6. ROC curve analysis of hub genes

To investigate the accuracy of identified hub genes in the 
GSE123696, GSE123697, and GSE123698 datasets, we per-
formed ROC curve analysis by the “pROC” package. The hub 
genes, with an area under the curve (AUC) of more than 0.7, 
were selected to verify their expression. Violin plots were used 
to visualize the expression profile of hub genes by using the 
“ggplot2” package.

2.7. Age correlation analysis of hub genes

The correlations of hub genes and ages were verified by 
using Pearson correlation and the results were shown using 
Scatterplots with the “ggplot2” package in R.

3. Results

3.1. Identification of DEGs between young and old whole 
blood samples

Three profiles (GSE123696, GSE123697, GSE123698) tracking 
the gene expression change in healthy young and old whole blood 

samples during 3 years follow-up were obtained from the GEO 
database. We screened DEGs with the criteria of P value <0.05 
and | log2FC | > 0.5. We obtained 76 DEGs from GSE123696, 
with 62 downregulated genes and 14 upregulated genes (Fig. 1A). 
In the gene chip GSE123697, 129 DEGs were obtained, con-
taining 117 downregulated and 12 upregulated genes (Fig. 1B). 
In addition, 65 DEGs were obtained from GSE123698, 55 of 
which were downregulated and 10 of which were upregulated 
(Fig. 1C). The Venn analysis (Fig. 1D) showed that expression 
changes of 29 genes remain fairly stable during the follow-up 
period, and thus were chosen as the candidate genes.

3.2. Functional enrichment analysis of DEGs

To explore the mechanisms and potential roles of the overlap-
ping DEGs, we performed functional and pathway enrichment 
analyses. GO enrichment analysis was used to enrich DEGs 
from biological process (BP), molecular function (MF), and CC, 
respectively. Regarding the BP, DEGs were significantly enriched 
in negative selection of T cells, humoral immune response, and 
differentiation of lymphocyte and mononuclear cells (Fig. 2A). 
Among them, a failure of T cell-negative selection was one of the 
critical contributors to chronic inflammation during aging.[10] 
Concerning MF, the most significant terms enriched with DEGs 
include peptidoglycan binding, immunoglobulin binding, and 
phosphatidylcholine binding (Fig. 2B). For CC, the GO terms 
enriched with DEGs were related to age-dependent chronic 
diseases, including circulating immune complexes, plasma 
membrane, and blood microparticles (Fig. 2C).[11–13] Moreover, 
several Reactome pathways related to immune senescence were 
significantly enriched, including interactions between lymphoid 
and non-lymphoid cells and their immunoregulatory functions, 
the Wnt signaling pathway, and FCGR activation[14–17] (Fig. 2D), 
suggesting that immunosenescence plays a pivotal role in threat-
ening the health of the elderly.

Figure 2. Enrichment analysis of DEGs. (A–C) The bar plots show the DEGs enriched in the top 10 GO categories of BPs, MFs, and CCs, respectively. The 
x-axis stands for a number of enriched genes. (D) The top 10 Reactome pathways enrichment of DEGs. BP = biological process. BP = biological process, CC 
= cellular component, DEGs = differentially expressed genes, MF = molecular function.

http://string-db.org
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3.3. PPI network establishment and hub genes 
identification

To explore the interactive relationships involved in DEGs, 
a PPI network with 13 nodes and 16 edges was constructed 
(Fig. 3A). The module analysis of the network was performed 
using the “MCODE” plug-in of Cytoscape, only one mod-
ule with 7 genes and 10 edges was obtained (Fig. 3B). Then 
we used 3 topological methods of the CytoHubba program 
in Cytoscape to screen hub genes. There are 4 genes in all 
3 methods, including Bach2, IGLL5, Jchain, and POU2AF1 
(Fig.  3C), suggesting they may play vital roles in the aging 
process. Therefore, these 4 hub genes were selected for further 
research.

3.4. Correlation analysis between expression of hub genes 
and chronological age

In order to better understand the role of 4 hub genes in the 
process of aging, we performed a Pearson analysis between 
hub gene expression and age. Correlation analysis showed 
that the mRNA expression levels of IGLL5, POU2AF1, Jchain, 
and Bach2 in human blood samples were negatively correlated 
with chronological age (Fig. 4), suggesting that these genes may 
restrain the procession of aging.

3.5. Analysis of expression and ROC curve of hub genes

The violin plots were used to visualize the expression of IGLL5, 
POU2AF1, Jchain, and Bach2 in the 3 datasets. As shown in 

Figure  5 and Supplementary Figure 1 (http://links.lww.com/
MD/K939), the expression levels of 4 hub genes were signifi-
cantly decreased in elderly individuals compared to the young 
group. To further evaluate the diagnostic performance of these 
hub genes in the degree of aging, ROC curves of GSE123696, 
GSE123697, and GSE123698 were performed. The AUC values 
of 3 hub genes (IGLL5, POU2AF1, and Bach2) were steadily 
higher than 0.7 in 3 datasets, while Jchian was lower than 0.7 
in GSE123698 (Fig. 6). These results indicated that the genes 
IGLL5, POU2AF1, and Bach2 possessed more significant assess-
ment values in aging than Jchian.

4. Discussion
Aging is the greatest risk factor for the prognosis of most 
chronic diseases that decrease patients’ quality of life, including 
cancer, depressive disorder, and respiratory diseases. Increasing 
evidence suggests that aging affects dynamic changes in gene 
expression which interferes regulation of cell-signaling path-
ways and can increase diseases.[4,18,19] Therefore, the iden-
tification of age-associated gene expression signatures by 
transcriptomic analysis was conducted to identify individuals 
whose health deteriorates rapidly with aging.

In this study, we used transcriptomic analysis to identify 29 
overlapping DEGs between 3 profiles according to age. We per-
formed functional and biological pathway enrichment analysis of 
these DEGs to explore the mechanisms that impact the progres-
sion of aging. We found that these genes were mainly enriched 
in the regulation of immune response and activation of inflam-
matory pathways, which not only lead to poor health but also 

Figure 3. The 4 hub genes screened from the PPI network. (A) The PPI network of DEGs was constructed by using The STRING database. (B) The node gene 
cluster was identified by the MCODE plug-in in Cytoscape. (C) The key modules genes (hub genes) were screened by 3 algorithms Degree, MCC, and MNC.

http://links.lww.com/MD/K939
http://links.lww.com/MD/K939
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can threaten the quality of life in older persons. To explore the 
potential relationships among DEGs and identify age-related bio-
markers, we performed a PPI network and acquired 4 hub genes 
(IGLL5, Jchain, POU2AF1, and Bach2). Combined with their 

high correlations of chronological age, we speculated that IGLL5, 
Jchain, and POU2AF1 might be the key genes to accelerate the 
procession of aging. Moreover, ROC curves of hub genes showed 
that down-regulated expressions of IGLL5, POU2AF1, and Bach2 

Figure 4. Explorations between chronological age and hub genes. (A) The correlation between mRNA expression of IGLL5 and age in 3 datasets. (B) The 
correlation between mRNA expression of POU2AF1 and age in 3 datasets. (C) The correlation between mRNA expression of Jchain and age in 3 datasets. (D) 
The correlation between mRNA expression of Bach2 and age in 3 datasets.
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possess better assessment values in the procession of aging than 
Jchain. These results were accomplished to offer new insights into 
understanding the mechanisms of aging from the transcriptomic 
level and potential targets for anti-aging intervention.

IGLL5, encoding one of the immunoglobulin lambda-like 
polypeptides, frequently occurs in the mutation in cancer, includ-
ing lymphoma, multiple myeloma, and chronic lymphoblastic 
leukemia.[20–22] Although the mutation rate of IGLL5 did not 

Figure 5. The expression level of 4 hub genes. (A) IGLL5 expression levels in old and young groups in 3 datasets. (B) POU2AF1expression levels in old and 
young groups in 3 datasets. (C) Jchain expression levels in old and young groups in 3 datasets. (D) Bach2 expression levels in old and young groups in 3 
datasets.



7

Zhang and Liu • Medicine (2023) 102:49 www.md-journal.com

change with age,[23] Yao et al have shown that the low expres-
sion level of IGLL5 is a good diagnostic in elderly patients with 
late-onset major depressive disorder which increases the risk of 
suicide and disability in olds.[24] Therefore, we speculated that 
IGLL5 has a vital role in staying healthy for elders. Our study 

found that IGLL5 showed a down-regulated level in elders with 
a great ROC score (AUC value > 0.7), further illustrating the 
potential of IGLL5 as a biomarker of health for elders.

POU2AF1 (POU domain class 2-associating factor 1), a 
transcriptional coactivator, plays a vital role in B-cell responses 

Figure 6. Age-specific effect of 4 hub genes. (A) ROC curve analysis of IGLL5 in 3 datasets. (B) ROC curve analysis of POU2AF1 in 3 datasets. (C) ROC curve 
analysis of Jchain in 3 datasets. (D) ROC curve analysis of Bach2 in 3 datasets. AUC = the area under the ROC curve, ROC = receiver operating characteristic.
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to antigens and regulates other host defense-related genes.[25] 
The expression of POU2AF1 is associated with the severity of 
emphysema in chronic obstructive pulmonary disease patients 
which is one of the serious respiratory diseases that threaten the 
health of the elderly, whose prevalence increases with age.[26,27] 
In our study, we found that the expression level of POU2AF1 
was negatively correlated with age, suggesting that POU2AF1 
was a critical contributor to weakened respiratory defenses in 
the old group.

The transcription factor Bach2, which belongs to the BTB and 
CNC homology (Bach) family, is reported to regulate aging in 
various ways.[28] As a highly sensitive DNA damage responder, 
the expression level of Bach2 was down-regulated during 
aging.[29] Moreover, Bach2 has been reported to affect immu-
nosenescence since its expression was negatively associated with 
age in human immune cells.[30] Our study also suggested that 
Bach2 mRNA was decreased in elders with the highest AUC 
value, which supports the previous results.

Immunoglobulin J polypeptide (Jchain/IGJ), as a plasma 
cell-restricted gene, has been recognized as an important prog-
nostic marker of immune-mediated diseases.[31,32] Recently, 
studies reported that the gene expression trajectories of Jchain 
were highly correlated with deleterious processes of senescence. 
The expression of Jchain increased steadily in organs respon-
sible for generating adaptive immune cells, such as the spleen, 
bone, and marrow, this may be associated with the origin of 
the age-related inflammation.[33] Instead, we found that Jchain 
mRNA in blood decreased with the age of the healthy persons, 
this reflected a regression of the body immunity with age may 
be caused by adaptive immune cell loss. The result further indi-
cated that appropriately improving levels of adaptive immune 
cells may effectively delay aging effects.

Altogether, we identified 29 age-associated mRNAs that 
might create a causal environment for age-associated diseases. 
Functional and pathway analyses of these genes may further 
shed light on the mechanisms of aging. Finally, we screened 4 
key genes (IGLL5, Jchain, POU2AF1, and Bach2) which were 
more likely to maintain a healthy body in older age. In addition, 
these hub genes not only were new aging biomarker candidates 
but also highlighted important mechanisms of aging and pro-
vided potential targets for pharmacological intervention.

Nevertheless, this study has several limitations. At present, 
our findings were based on publicly microarray data and ver-
ified the expression levels of the identified hub genes in inde-
pendent datasets, without experimental or clinical confirmation. 
In the future, experiments will be needed to explore the roles 
and molecular mechanisms of these genes in the aging process. 
Moreover, the profiles we used only tracked gene expression in a 
fixed population which may cause bias in the results. Therefore, 
multiple datasets will be needed to improve the integrity and 
reliability of the results. Notwithstanding these limitations, the 
results of this study provide some new insights into the mecha-
nisms and potential interventional targets of aging.
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