
Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering
and Parametrization
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Abstract

Background: The recent DREAM4 blind assessment provided a particularly realistic and challenging setting for network
reverse engineering methods. The in silico part of DREAM4 solicited the inference of cycle-rich gene regulatory networks
from heterogeneous, noisy expression data including time courses as well as knockout, knockdown and multifactorial
perturbations.

Methodology and Principal Findings: We inferred and parametrized simulation models based on Petri Nets with Fuzzy
Logic (PNFL). This completely automated approach correctly reconstructed networks with cycles as well as oscillating
network motifs. PNFL was evaluated as the best performer on DREAM4 in silico networks of size 10 with an area under the
precision-recall curve (AUPR) of 81%. Besides topology, we inferred a range of additional mechanistic details with good
reliability, e.g. distinguishing activation from inhibition as well as dependent from independent regulation. Our models also
performed well on new experimental conditions such as double knockout mutations that were not included in the provided
datasets.

Conclusions: The inference of biological networks substantially benefits from methods that are expressive enough to deal
with diverse datasets in a unified way. At the same time, overly complex approaches could generate multiple different
models that explain the data equally well. PNFL appears to strike the balance between expressive power and complexity.
This also applies to the intuitive representation of PNFL models combining a straightforward graphical notation with
colloquial fuzzy parameters.

Citation: Küffner R, Petri T, Windhager L, Zimmer R (2010) Petri Nets with Fuzzy Logic (PNFL): Reverse Engineering and Parametrization. PLoS ONE 5(9): e12807.
doi:10.1371/journal.pone.0012807

Editor: Mark Isalan, Center for Genomic Regulation, Spain

Received March 31, 2010; Accepted June 18, 2010; Published September 20, 2010
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Introduction

The inference of biological networks based on gene expression

measurements is a complex task. A range of approaches have been

developed for that purpose, which is in turn reflected by a range of

corresponding reviews [1–7]. Basic principles to derive relation-

ships between genes or proteins include ordinary differential

equations (ODE) [8–10], mutual information [11] and Bayesian

networks [12].

Predictions from the available methods are currently quite

unreliable as shown in several comparative studies on in silico

networks [13–16]. For instance, precisions of less than 30% have

been observed in [14] for all approaches investigated. This might

be due to the fact that most methods were developed to exploit

either (static) interventional datasets such as knockout experiments

or dynamic datasets such as time courses, but not both [4].

Whether the incorporation of a broad range of datasets can

increase the reliability of network reconstruction is explored by the

DREAM competitions that conduct blind assessments of network

reverse-engineering approaches [17]. The in silico part of

DREAM4 (2009) provided time course datasets together with

complex knockout, knockdown and multifactorial perturbation

datasets.

We present a network inference approach based on Petri Nets

with Fuzzy Logic (PNFL) [18]. Similar to ODEs but in contrast to

Bayesian or mutual information networks, PNFL enables a

simulation of the models. In contrast to the more detailed ODEs,

PNFL employs a simpler rule based discrete modeling system.

The simulation is important for the investigation and refinement

of mechanistic network models in order to capture the dynamic

behavior of systems in addition to their topology. In case of

DREAM4, we simulate to re-generate the provided datasets. The

objective of our inference approach is the reconstruction of

models by optimizing the agreement between all of the datasets

provided in the challenge and those generated by PNFL.

Heterogeneous datasets can thus be exploited and scored in a

unified way.

In the following, we briefly summarize the DREAM4 setting,

introduce Petri Nets and PNFL and outline our approach to

simulate and reconstruct PNFL models. Subsequently, we

describe the results we obtained in the DREAM4 in silico size

ten challenge.
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Methods

Setting of the DREAM4 in silico size ten challenge
Problem statement. The in silico part of DREAM4 aims at

the reconstruction of gene regulatory networks where effects are

propagated via directed transcription factor (TF, i.e. the effector

protein) R target gene relationships. TFs are synthesized from

their corresponding genes and can thus be themselves the targets

of other TFs. Other kinds of relationships (e.g. alternative splicing,

protein modification, transport, metabolic reactions) were not

considered.

The task is the automated reverse engineering of the directed

topology of five different networks with ten nodes per network.

The topology to be predicted merges genes and their products (i.e.

the TFs) into single nodes. All networks contain cycles, but no self

loops. No direct information on the edges is given. Instead,

networks are to be inferred from the provided gene expression

datasets (see below) alone. In a bonus round, participants used

their reconstructed networks to simulate dual knockout perturba-

tions. The problem statement, evaluation and datasets are

described in more detail on the DREAM website (http://wiki.

c2b2.columbia.edu/dream/index.php/D4c2).

Evaluation. After the challenge, submissions were evaluated

against the true topology based on the area under the precision-

recall curve (AUPR) and the area under the receiver-operator

characteristics curve (AUROC). We will focus our discussion on

the AUPR. Roughly speaking, an AUPR of 50% means that for

each correctly predicted edge an erroneous edge is predicted as

well. The sign of the edges (activation vs. inhibition) is not

considered in the DREAM4 evaluation. Dual knockout predic-

tions were compared against the true equilibrium values via the

mean squared error (MSE). The evaluation is described in more

detail in [19].

Gene expression datasets. The approach for dataset

generation was developed by Marbach et al. [20,17]. Five time

course (TC) datasets were provided. At the beginning of the TC,

strong perturbations were applied to the basal transcription levels

of about a third of all genes. Halfway through the TC the

perturbation was removed so that the network relaxed to the wild

type (WT) equilibrium state (5 TC * 20 measurements * 10

genes = 1000 values). All other datasets contained equilibrium

gene levels only. Ten single gene knockout (KO), knockdown (KD)

and multifactorial (MF) perturbations (3 * 10 perturbations * 10

genes = 300 values) were provided. Compared to the wild type

(WT), basal transcription levels of KO and KD target genes were

reduced to 0% and 50%, respectively. MF datasets were generated

by applying moderate perturbations to the basal activation levels

of all genes in the network. Thus, MF datasets could be regarded

as transcriptional variations between different individuals. Given

gene levels were scaled to be in the range [0, 1].

Petri Nets
The application of Petri net theory for modeling and analysis of

biological networks is well established in the field of systems

biology [21–24]. Petri nets are graph representations of networks

consisting of two types of nodes: places, representing entities like

proteins, genes, metabolites etc, and transitions, representing

reactions or, in general, state changes of entities. The state of an

entity is defined by the tokens that represent the marking of the

according place and the overall system state by the marking of the

Petri net. Directed edges (arcs) connect places to transitions (input

arcs) or transitions to places (output arcs). These arcs not only

depict which entities influence reactions or are influenced by them,

but they also exactly define the effects of a reaction, e.g. by

specifying the amount of substrate consumed and the amount of

product produced during a reaction (the firing of a transition). For a

detailed description of classical Petri nets see [25]. In addition,

there exists a wide variety of extensions of Petri nets [26]. A Petri

Net with Fuzzy Logic (PNFL) can be defined as an instance of a

hybrid functional Petri net (HFPN) [27].

In PNFL models of gene regulatory networks, the activity of a

target gene t is controlled by a single transition that discharges into

a single output place (see Fig. 1). The marking of this place

represents t’s numerical gene level lt. The relationship between an

effector place and a target place is called an effect. It is mediated by

an effect arc connecting an effector-gene place to the transition that

controls the target place.

Transitions are always enabled as each place always contains a

valid (real-valued) token. Firing a transition removes the old

marking on the target place via a target place-transition arc (Fig. 1).

After quantifying the effect strength based on the effector gene

level (via function c, see eq. 1–3), a new marking is assigned to the

target place by the output function o (eq. 4–6). The marking on

effector places remains unchanged (test arcs).

A transition, its output place and their connecting arcs can be

replaced by hexagonal nodes (Fig. 1) to simplify the representation.

In this reduced form, only hexagons and their connecting effect

arcs remain as all transitions and places are replaced. Effect arcs

will be attached to or detached from transitions during the net-

work reconstruction process (section Reconstruction) thus con-

necting different hexagonal nodes in the reduced Petri net

representation.

Modeling of gene regulatory relationships with PNFL
The evaluation of effects using fuzzy logic involves a three-step

procedure that consists of fuzzification, the application of effector

rules and defuzzification.

Figure 1. Petri Nets with Fuzzy Logic (PNFL). In Petri nets, states
such as effector (e) or target (t) gene levels are represented by places
and are depicted as circles. State changes are represented by transitions
and are depicted as boxes. Effect arcs (i.e. effector place-transition arcs)
define the effectors influencing a target gene via the transition. Firing
transitions leaves the marking of the effector places unchanged (test
arcs, dashed). After the application of rule tables re,t to effector gene
levels le (function c, eq. 1–3), the target gene levels lt are updated by the
output function o (eq. 4–6). In Fig. 6, Fig. 8 and Fig. 10, we represent a
transition and its output place as a simplified hexagonal node. The
reconstruction determines the topology ( = effect arcs) and the
parametrization ( = rule tables and combination operators) of PNFL
models.
doi:10.1371/journal.pone.0012807.g001

PNFL: Reverse Engineering
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Fuzzification. In a first step, the continuous gene level le M
[0,1] of an effector e is transformed (fuzzified) into the fuzzy value

,L(low,le), L(med,le), L(high,le). by triangular membership functions

(eq. 1, Fig. 2):

L(low,le)~
0, if(lew0:5)

1{2:le, otherwise

(

L(high,le)~
2:le{1, if(lew0:5)

0, otherwise

(

L(med,le)~1{L(low,le){L(high,le)

ð1Þ

Such membership functions are called fuzzy sets [28]. Contrary to a

classical set, where an object is either contained in the set or not

(two-valued logic, {0,1}), a fuzzy set assigns a degree of member-

ship from the interval [0,1] to each object. Thus, the fuzzy value

resulting from the fuzzification of a gene level le with respect to

three fuzzy sets SM{low, med, high} can be interpreted as a fuzzy

discretization.

Application of effector rules. Based on the discretization

defined by fuzzy sets, the properties of regulatory relationships are

modeled by rule tables re,t (Fig. 3) in analogy to Boolean network

models. Rule tables (as used in DREAM4) define three levels of

effect strength for both activation (+++, ++, +) and inhibition

(222, 22, 2). A rule table re,t:SRS maps each effector set EMS

to a corresponding target set TMS. The application of a rule by the

sum-product logic [29] results in a fuzzy rule consequent C:

C(T ,le,re,t)~
X
E[S

L(E,le), if(re,t(E)~T)

0, otherwise

�
ð2Þ

Applying eq. 2 to all sets TMS results in a fuzzy value ,C(low,le,re,t),

C(med,le,re,t), C(high, le,re,t). describing e’s effect on the target gene t,

i.e. it is a fuzzy discretization of the proposed effect.

Defuzzification. By center of gravity defuzzification we

obtain a continuous rule consequent c:

c(le,re,t)~
0:C(low,le,re,t)z0:5:C(med,le,re,t)z1:C(high,le,re,t)

C(low,le,re,t)zC(med,le,re,t)zC(high,le,re,t)
ð3Þ

with the centers of gravity at 0, 0.5 and 1. Note that due to our

choice of fuzzy sets and rule tables the value of the denominator

always equals to one. An example calculation involving eq. 1–3 is

shown in Fig. 4.

Combination of effects. If several effectors regulate a target

gene, their combined effect on the target can be modeled by

logical operations [30]. We model two kinds of dependent

regulation by the minimum of the effects (AND operator) or the

maximum of the effects (OR operator). The average (MEAN)

models the independent regulation of a target by its effectors.

Dependent and independent regulation are described in Fig. 5.

The combination logic currently used in PNFL allows only a single

operator (either AND, OR or MEAN) to be selected per target gene

regardless of the number of effectors, see eq. 4 and eq. 6.

PNFL simulation
Before simulation, gene levels are initialized to their wild type

levels as provided by DREAM4. Let t be a gene targeted by n

effectors e1,…,en. In each simulation step, updates u of the levels of

all genes are computed from the continuous rule consequents

cj~c(lej
,rej ,t):

u(c1,:::,cn)~

1, if (n~0)

c1, if (n~1)

op(c1,:::,cn), otherwise

8><
>: ð4Þ

with op M {AND, OR, MEAN}. Subsequently, u is applied to the

gene levels lt of all target genes via the output function o (eq. 5) at

once.

lt~o(lt,c1,:::,cn)~
0, if(bt~0)

a:bt
:u(c1,:::,cn)z(1{a):lt, otherwise

�
ð5Þ

Figure 2. Fuzzification and defuzzification. We use triangular
membership functions to fuzzify the continuous gene levels of an
effector e into fuzzy sets. As shown by the magenta arrow, a continuous
gene level of le = 0.25 is fuzzified into the fuzzy value ,L(low,le) = 0.5,
L(med,le) = 0.5, L(high,le) = 0.0.. This can be reversed by defuzzification
without loss of information.
doi:10.1371/journal.pone.0012807.g002

Figure 3. Rule tables. Given fuzzy effector gene levels, we describe the behavior of the targets by rule tables. Rule tables define sign and strength
of effects. Fully active strong (222, A) or medium (22, B) inhibitors result in low target activity, which is in contrast to weak inhibitors (2, C). The
corresponding strong (+++), medium (++) and weak (+) activator rule tables are constructed by exchanging high by low and low by high in the target
column.
doi:10.1371/journal.pone.0012807.g003

PNFL: Reverse Engineering
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The scaling parameter a (Table 1) aligns the PNFL generated time

courses to the provided time courses. The transcription rate

parameter bt tunes the transcription rate of gene t, with bt = 1 for

the wild type transcription rate.

Knockout, knockdown and double knockout data. Gene

perturbations are simulated by reducing the transcription rate bt.

In case of a knockout or knockdown simulation, bt of the

perturbed gene t is set to 0 or 0.5, respectively. Similarly, double

knockout simulations can be performed.

Time course data. Time course datasets were provided by

DREAM4 to show the impact of strong gene perturbations

(about a third of all genes) on a network as well as the relaxa-

tion to the wild type equilibrium state after removing the

perturbations.

A perturbation is represented as an additional (hidden, i.e.

unobserved) node in the network. During reconstruction, we infer

perturbation targets together with effector targets, as both were not

disclosed in the challenge. Initially, we use eq. 6 instead of eq. 4 for

all genes t directly affected by the perturbation. For a time course i,

eq. 6 includes the perturbation term c(lpi
,rpi ,t) with lpi

:1, where pi

is an additional perturbation effector with corresponding rules rpi ,t.

The perturbation is disabled halfway through the time course via

switching back to eq. 4 thereby allowing the network to return to its

wild type state. The reconstructed networks thus consist of 15

variables: 10 genes and 5 perturbation variables for the 5 different

time courses.

ui(c1,:::,cn,c(lpi
,rpi ,t

))~
c(lpi

,rpi ,t
), if (n~0)

op(c1,:::,cn,c(lpi
,rpi ,t

)), otherwise

(
ð6Þ

Multifactorial data. DREAM4 also provided equilibrium

values for multifactorial (MF) perturbations. Here, the basal

transcription levels of all genes in the network were perturbed, but

to a lesser degree compared to the time course perturbations. In

contrast to the time courses, we do not compute additional rule

consequents for the MF data. Instead, we test how well MF target

gene levels can be generated if the PNFL wild type rules are

applied to the provided MF effector gene levels. The MF target

gene levels are thus approximated, as the basal activation changes

are not reflected in the PNFL rules.

Differences between the PNFL and DREAM MF gene levels

can be due to three reasons: (1) the inferred effects or their

parametrization are inadequate: this should be corrected by the

reconstruction method, (2) noise and (3) the MF changes to the

basal transcription levels. Reasons (1) and (2) apply equally to all of

the datasets. For reason (3) we did not account for, so deviations

will be somewhat larger than for the other datasets. Therefore, we

use lower weights for MF data in the objective function (Table 1).

Figure 4. Fuzzy effect calculation example. In this example, the gene level of effector e is le = 0.125. It is transformed (fuzzified, panel A) into the
fuzzy gene level L by application of eq. 1. In panel B, the rule table re,t (Fig. 3C) is applied to describe the influence of e onto its target gene t by the
rule consequent C. C is derived by eq. 2, yielding the fuzzy value ,0, 0.25, 0.75. (panel B). The real valued influence of e onto t, c(le, re,t) = 0.875, is
calculated by defuzzification (panel C). Such a calculation is performed for all effectors of the target gene t individually. The influences are combined
by eq. 4 or eq. 6 (not shown here, see text).
doi:10.1371/journal.pone.0012807.g004

Figure 5. Combinatorial gene regulation. The regulatory logic of
different transcription factors (TFs) regulating a target gene used in
DREAM4 was disclosed after the challenge. TFs are assumed to bind to
cis-regulatory modules (CRMs) to regulate the expression of target
genes. Individual CRMs act as enhancers (red) or repressors (blue) of
gene regulation. The bound states of different CRMs (e.g. by TFs 4 and
10) are mutually independent. A complex of TFs regulating a given CRM
can be represented as AND operator. TFs 1 and 7 are mutually
dependent to form the complex and regulate the gene. In turn, a
complex of TFs controlling a repressing CRM can be implemented by
the OR operator (not shown). The effects of several CRMs on the activity
of the target gene are averaged (MEAN operator). In contrast to the
arbitrary combination of operators in the DREAM4 approach, PNFL
selects only a single operator (AND, OR or MEAN) per target gene (see
Methods and Results). The depicted regulation of gene 3 was taken
from network 5 (see Fig. 10A).
doi:10.1371/journal.pone.0012807.g005

PNFL: Reverse Engineering
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Reconstruction
Overview. We construct PNFL models by inferring and

parametrizing relationships between genes via appropriate rule

tables. Starting from a randomly initialized PNFL model our

reconstruction approach (Fig. 6) proceeds via four steps: (1)

The topology and parametrization of the initial network are

modified by the application of moves. (2) After each move, data is

simulated by PNFL and (3) compared to the original data via an

objective function. Finally, (4) we use a simulated annealing

protocol to decide if a given move should be accepted or rejected.

The network optimization thus targets at the best possible

agreement between the DREAM4 provided and PNFL simu-

lated datasets.

Note that the networks discussed here always include 10 genes

and the PNFL models always contain one place and one transition

for each gene. Topological changes of the PNFL models only

involve attachment or detachment of input arcs.

Move set and move probabilities. Starting from a

population of randomly initialized networks, the reconstruction

proceeds one network modifying move at a time. Each move

modifies a single target gene. After a move, data is generated by

PNFL and compared against the DREAM data (Fig. 6). We

implemented moves on individual networks that add or remove

effects (i.e. effect arcs), switch the effect combination logic op M
{AND, OR, MEAN} and increase or decrease the effector

strength via selecting the corresponding rule tables r M {+++, ++,

+, 2, 22, 222}. Each network in the population evolves both

independently by the moves mentioned before but also by a set of

crossover moves. The crossover moves copy effect strength,

combination logic or effects between two individuals.

During reconstruction, particular moves are selected from the

move set with a move probability that is proportional to the past

move acceptance probability for that move.

Objective function. The quality of the reconstructed

networks is evaluated by an objective function dist. It is based on

the Pearson correlation coefficients rt of the target genes t and a

regularization term. Lower values of dist indicate a better

agreement between the DREAM dataset vectors xt and the

PNFL dataset vectors yt and thus better PNFL models. The

vectors xt and yt are formed by the concatenation of all four

kinds of datasets (10 knockout, 10 knockdown, 100 time course,

10 multifactorial values per gene). An additional vector w =

(wKO,…,wKO, wKD,…,wKD, wTC,…,wTC, wMF,…,wMF) weights the

data points with dataset specific weights (Table 1). All three vectors

Table 1. Parameters used for PNFL based reconstruction.

Parameter descriptions Equation Values/Lists of valuesa

Rule tables r: effect strength 2 (M), (W, S), (W, M, S)b

Combination operators 4, 6 (MEAN), (OR, AND), (OR, AND, MEAN)

Update ratio a 5 0.4, 0.5, 0.6

Regularization parameter reg 7 0.005, 0.002, 0.001, 0.0005, 0.0002

Weight time course wTC 7 1

Weight knockout wKO 7 8

Weight knockdown wKD 7 6

Weight multifactorial wMF 7 4

Simulated annealing
parameter k

8 0.02

aParameters from lists are randomly selected for ensemble predictions (see
Submission).
bDegrees of effect strength, W = weak = (+,2), M = medium = (++,22) and
S = strong = (+++,222).
doi:10.1371/journal.pone.0012807.t001

Figure 6. Overview network reconstruction. To reconstruct the original network (A) we mimic the DREAM4 data generation process (ARB). The
knockout (KO) of gene 1 is depicted as an example data set in the lower panels. Our reconstruction starts from a randomly initialized population (C)
and proceeds through network changing moves. After each move, data is generated by PNFL (D) and compared against the DREAM data (B). We
implemented moves on single networks in the population and crossover moves that copy features between pairs of networks. Thereby, favourable
features are propagated throughout the population, which eventually leads to improved networks (E) and corresponding datasets (F). Note that - in
contrast to the PNFL simulation (D,F) - only equilibrium values were given for knockout experiments in DREAM4 (B). Edges denote effect strength
(thickness) and sign (activation = red, inhibition = blue).
doi:10.1371/journal.pone.0012807.g006

PNFL: Reverse Engineering
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are of length 130. The weighted rt is calculated based on the

weighted covariance and the weighted mean (not shown). A model

coefficient r is calculated as the average of the gene coefficients rt.

In addition, we introduced a regularization parameter reg. It allows

us to control |Network|, i.e. the number of edges ( = effect arcs) in

the models.

dist~½1{r(x,y,w)�2zreg:DNetworkD ð7Þ

Note that DREAM4 provided only equilibrium values for the

knockout, knockdown and multifactorial datasets. Only for the

time course datasets gene levels for different measurements were

available and are used for the calculation of dist.

Simulated annealing. We employ simulated annealing to

decide if a network changing move is accepted or rejected. That is,

we always accept moves that improve the network with respect to

the objective function dist. We accept inferior networks with a

probability p calculated from the Boltzmann distribution

parametrized by k (Table 1). Essentially, moves that only slightly

increase dist are accepted more frequently, especially if the

temperature T is high. T decreases linearly during the

Figure 7. Evaluation of the in silico challenge comprising five
networks of ten genes. Panel A shows the prediction performance of
the directed unsigned topology as the area under the precision recall
curve (AUPR). In a bonus challenge, steady-state level predictions of
dual knockout experiments were evaluated by the mean squared error
(MSE, panel B). Our performance is shown in green.
doi:10.1371/journal.pone.0012807.g007

Figure 8. PNFL reconstruction of network 5 (AUPR = 76%).
DREAM4 evaluated our predictions (panel A) in terms of correct
(colored solid), missed (black) and surplus (dotted) edges. For
simulation, we also infer three levels of effect strength (edge thickness)
for both activation (red) and inhibition (blue). Targets regulated by
multiple effectors are parametrized by the kind of regulation, i.e.
dependent (AND, OR) vs. independent (MEAN). Incorrect predictions are
more frequent when effector gene levels are low in the wild type (e.g.
genes 4, 5, 6 and 9). In panels A and B we compare the provided DREAM
data to the PNFL simulation for the knockout of gene 8.
doi:10.1371/journal.pone.0012807.g008

PNFL: Reverse Engineering
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reconstruction run from one to zero.

p~e
{k:Df=T ,T[½1::0� ð8Þ

Submission. The DREAM4 submission format required to

rank effects by their prediction confidence. We therefore chose a

consensus approach to predict an ensemble of networks.

Consensus prediction approaches have been successfully applied

to network reconstruction before [31]. We carry out 100

reconstruction runs with different parameter settings (Table 1)

and random seeds. Ranking is based on the effect prediction

confidence calculated as the fraction of networks that included the

given effect. This automated approach was the same for each of

the submitted nets. No manual processing was performed. For the

visualization and description of effects or networks, we assume an

effect to be predicted if the prediction confidence is 50% or above.

Results

Size of the model space
The number of possible models m depends on the number of

genes g = 10, the number of time courses tc = 5, the number of rule

tables r = 6 (Fig. 3) and the number of combination operators

|op| = 3 (eq. 4). The number of models m depends on the number

of time courses tc because each time course introduces an

additional perturbation variable. As we do not restrict the number

of effectors, a gene can be affected by zero, one or up to

n = g21+tc = 14 variables, i.e. 9 other genes (as self interactions

were not allowed) and 5 perturbation variables (eq. 6).

m~ 1zn:rzDopD:
Xn

k~2

n

k

� �
:rk

" #g

ð9Þ

In the given setting, the size of the model space is 1.2*10123. Thus,

a heuristic search strategy is necessary to detect high scoring

networks.

Reconstruction run time
The most time expensive steps are the simulations needed to

calculate the objective function after each move. Each move

requires 35 simulations, i.e. 5 time courses, 10 knockouts, 10

knockdowns and 10 multifactorials. A typical reconstruction run

consists of 2500 moves (1ms per move and network) on a

population of 25 individual networks and takes about a minute on

a single processor core. During the run, the individuals in the

population usually converge to a single network with only minor

variations (data not shown).

Relative contribution of the different datasets
The contribution of the different datasets to the prediction of

networks is given by dataset specific weights. The weights were

derived manually based on randomly generated PNFL models.

The relative contributions of the individual datasets amount to

KO = 29% (wKO*10 data points = 80; compare eq. 7 and Table 1),

KD = 21% (wKD*10 = 60), TC = 36% (wTC*100 = 100) and

MF = 14% (wMF*10 = 40). While the combination of KO+KD

accounts for half of the total dataset weights, the largest individual

portion stems from the TC data.

DREAM4 evaluation results
The overall results of the in silico size ten challenge as reported

by the DREAM organizers are depicted in Fig. 7. The network

topology was predicted by 29 different teams. In terms of the

AUPR, our PNFL based reconstruction approach (81% AUPR

averaged over 5 networks) outperformed the second best team by

20 percentage points. Our approach performed best on four of the

five networks and second best on the remaining network. In an

additional challenge, steady state gene levels in response to double

knockout mutations were predicted. This evaluated the ability to

predict the behavior of networks under previously unseen

experimental conditions. Only 7 teams participated in the double

knockout predictions (Fig. 7B) where PNFL also was the top

performer.

Reconstruction of network 5
Our reconstruction of network 5 (Fig. 8A) achieved an AUPR of

76%. The panels B and C in Fig. 8 compare the provided data

(DREAM) to the PNFL simulation for the knockout of gene 8.

Genes up (e.g. gene 7) or down regulated (e.g. gene 1) are captured

correctly in the PNFL simulation. To simplify the representation

of networks, transitions and the corresponding output places

(compare Fig. 1) are merged into single nodes depicted as

hexagons.

Network 5 demonstrates the utility of the multifactorial data

(Fig. 9) for network reconstruction. According to personal

communication at the joint RECOMB/DREAM conference

2009, several participants neglected to utilize this kind of data.

The four-gene cycle (genes 5R6R8R7R5, Fig. 8A) in network 5

is an example for a difficult network motif that our approach

predicts correctly only if the multifactorial data is included.

Figure 9. Generation of multifactorial (MF) data for an effect in network 5. In network 5, gene 6 is the only effector for gene 8 (see Fig. 8).
Effectors are initialized by the provided MF gene levels (A). Subsequently, individual PNFL transitions are applied to compute the MF gene levels for
the targets (C). The objective function compares the target gene levels of the provided MF data (B) to the PNFL outputs (C).
doi:10.1371/journal.pone.0012807.g009
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Incorrect predictions were more likely when the effector gene

levels were low in the wild type (e.g. genes 4, 5, 6 and 9 in network

5). Here, predictions frequently contain shortcuts with respect to

the true topology (Fig. 8, correct: 5R6R9, predicted 6r5R9;

correct: 9R1R2, predicted: 1r9R2; see also Fig. 10, correct:

9R10R3, predicted: 10r9R3). This leads to two errors: As the

effect 6R9 can not be directly observed in the given data it is

missed as it is already ‘explained’ by an incorrectly predicted

surplus effect (here: 5R9). Such a missing observation can for

instance be due to knockouts or knockdowns exhibiting no

substantial effect because of low wild type gene levels.

Reconstruction of network 1
The reconstruction of network 1 (Fig. 10A) achieved a very high

AUPR of 92%. Here, we predicted 14 out of 15 effects correctly.

For a correct reproduction of time course data (e.g. time course 2

in Fig. 10, compare panels B and C) we also infer perturbation

target genes. According to our reconstruction, the perturbation p2

in time course 2 affects genes 3 and 7.

Network 1 was selected to demonstrate the capability of PNFL

to represent oscillating network motifs. Oscillations require cycles

that seem to pose no particular difficulty for the PNFL based

reconstruction. Each of the three nested cycles contained in

network 1 (genes 3«4, 3«7, 3R7R4R3) was resolved correctly.

In addition, genes 3, 4 and 7 were recognized as an oscillation

generating network motif. The removal of the perturbation

triggers oscillations for instance in gene 7, which was picked up

clearly in the PNFL simulation (Fig. 10, panels B and C).

Validation of effect signs
The validation described in this and the following subsections is

based on supplementary material posted after the completion

of DREAM4 (http://gnw.sourceforge.net/resources/DREAM4%

20in%20silico%20challenge.zip). It for instance enables the

validation of the signs of the effects in the models, i.e. if a target

is activated or inhibited by a given effector. Effect signs are

determined by the effector rule tables (see Application of effector

rules) selected during PNFL reconstruction. Sign predictions can

only be evaluated for correct effector-target predictions. Here, the

signs were predicted correctly in 100% of the cases.

Validation of the regulatory logic
Logical operations are used by both PNFL and DREAM4 to

combine the effects of multiple effectors on a given target gene.

Thereby, dependent (AND, OR) and independent (MEAN) kinds of

regulation are distinguished (see Fig. 5). In the DREAM4 setting,

arbitrary combinations of these operators are possible. For

instance, the activation state of gene 3 in network 1 (Fig. 5) is

described by a combination of AND and MEAN operators. This is

not possible by PNFL as it currently allows only one operator per

target gene. Note that this does not apply to the effect signs, which

are assigned to each effect separately by PNFL as well as

DREAM4.

A rigorous comparison between PNFL and DREAM4 logic is not

possible if more than one operator is involved as in Fig. 5. We then

consider PNFL and DREAM4 regulatory logics as approximately

equal if the operator that combines the majority of terms is

predicted by PNFL. In the example of Fig. 5, MEAN (combining

three terms, i.e. the three CRMs) would be correct whereas AND

(combining two terms, i.e. TF1 and TF7) and OR (not used here)

would be incorrect. According to this, our predictions are correct in

13 out of the 18 targets (72%) regulated by multiple effectors. Three

of the five mismatches are explained by topological errors. Here, the

corresponding target genes are connected to single effectors in the

PNFL models and to multiple effectors in the DREAM4 network.

Thus, if the predicted topology permits the inference of the

regulatory logic it is correct in 87% ( = 13/15) of the cases.

Validation of time course perturbation targets
The time courses emerge from perturbations that affect a

specific subset of target genes. The PNFL based simulation of the

Figure 10. PNFL reconstruction of network 1 (AUPR = 92%).
Shown is our reconstruction of network 1 (A) and the data of time
course 2 as provided by DREAM (B) or simulated by PNFL (C). Time
course data shows how the network responds to the application and
removal of perturbations. In addition to effector targets (eq. 4), we also
predict perturbation targets (eq. 6). According to our reconstruction,
perturbation p2 in time course 2 affects genes 3 and 7.
doi:10.1371/journal.pone.0012807.g010
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time courses thus required the prediction of the targets of a

perturbation (see Time course data). The evaluation of our

prediction performance on inferring the time course perturbation

targets resulted in an AUPR of 73%. The performance difference

to the prediction of effector targets (AUPR of 81%) is due to the

fact that each perturbation corresponds to a single time course.

The remaining four time courses (and all of the KO, KD and MF

datasets) do not provide any information with regard to the targets

of a selected perturbation.

Discussion

We presented a method for network reconstruction that uses

Petri Nets with Fuzzy Logic (PNFL) for modeling and simulation.

This approach was the best performer (Fig. 7) in the in silico size ten

challenge of the 2009 DREAM4 assessment of reverse engineering

methods. Why did it work so well?

Our approach optimizes models to achieve the best possible

agreement between PNFL generated datasets and the datasets

provided in the DREAM4 challenges. To get the most out of the

data, we employ specific simulation approaches for each of the

available datasets. This allows us to exploit and score heteroge-

neous datasets in a unified way. We further reduce the model

complexity severely to avoid the risk of overfitting. Ideally, only a

single network should be able to reproduce the data. The model

space is still huge, requiring a heuristic, population based search

strategy. It avoids local minima traps and thus improves the

convergence of networks and also the agreement between PNFL

and DREAM datasets. The resulting PNFL models accurately

predict the network behavior even under new experimental

conditions not seen during model building. This was demonstrated

in the double knockout challenge (Fig. 7B).

Incorrect predictions might result when the effector gene levels

are low in the wild type. Knockout experiments, for instance,

provide only little topological information in such cases. This is

particularly frequent in network 2 (data not shown) where different

network topologies generate similar data and our reconstruction

does not converge to a single network. Indeed, no team achieved a

good prediction performance for network 2. In case of genes with

low wild type expression, over-expression instead of knockout

experiments should be performed.

Several of the participating teams focused on the knockout (KO)

datasets and neglected to exploit the time course (TC),

multifactorial (MF) and knockdown (KD) data in their recon-

struction (personal communication at the joint RECOMB/

DREAM conference 2009). We found that only the combination

of all provided datasets enabled us to predict particularly difficult

network motifs. An example is the unusual four-node cycle in

Fig. 8A that is predicted correctly only when using the MF data

(Fig. 9). In general, cycles and nested cycles pose no particular

difficulty to our PNFL based approach (e.g. Fig. 10A). The time

course shown in Fig. 10 demonstrates that our reconstruction also

resolves and recognizes oscillating network motifs.

The reconstruction of PNFL models reliably determines a range

of mechanistic details that go beyond the graph topology evaluated

in DREAM. Our models distinguish activation from inhibition,

dependent from independent regulation as well as strong, medium

and weak degrees of effect strength. Such intuitive assertions are

sufficient to specify, visualize and thus comprehend executable

models and their parameters. This is a characteristic feature of

fuzzy logic modeling [18]. Similarly intuitive notions are more

difficult if not impossible to obtain from ODE, mutual information

or Bayesian models. Nevertheless, both PNFL and ODE enable

the detailed simulation of models. Simulation models can facilitate

an iterative cycle of model improvements based on the comparison

between in silico and laboratory experiments.

Acknowledgments

We acknowledge Florian Erhard for the stimulating discussions on the

PNFL system. We thank all reviewers for their suggestions, which

substantially improved the manuscript.

Author Contributions

Conceived and designed the experiments: RK TP LW RZ. Performed the

experiments: RK. Analyzed the data: RK TP LW RZ. Wrote the paper:

RK. Implemented the software: RK.

References

1. de Jong H (2002) Modeling and simulation of genetic regulatory systems: a
literature review. J Comput Biol 9(1): 67–103.

2. Brazhnik P, de la Fuente A, Mendes P (2002) Gene networks: how to put the
function in genomics. Trends Biotechnol 20(11): 467–72.

3. Bansal M, Belcastro V, Ambesi-Impiombato A, di Bernardo D (2007) How to
infer gene networks from expression profiles. Mol Syst Biol 3: 78.

4. Markowetz F, Spang R (2007) Inferring cellular networks–a review. BMC
Bioinformatics 8 Suppl 6: S5.

5. Li H, Xuan J, Wang Y, Zhan M (2008) Inferring regulatory networks. Front
Biosci 13: 263–75.

6. Hecker M, Lambeck S, Toepfer S, van Someren E, Guthke R (2008) Gene
regulatory network inference: data integration in dynamic models-a review.

Biosystems 96(1): 86–103.

7. Sima C, Hua J, Jung S (2009) Inference of gene regulatory networks using time-

series data: a survey. Curr Genomics 10(6): 416–29.

8. de la Fuente A, Brazhnik P, Mendes P (2002) Linking the genes: inferring

quantitative gene networks from microarray data. Trends Genet 18(8): 395–8.

9. Gardner TS, di Bernardo D, Lorenz D, Collins JJ (2003) Inferring genetic

networks and identifying compound mode of action via expression profiling.
Science 301(5629): 102–5.

10. Nachman I, Regev A, Friedman N (2004) Inferring quantitative models of
regulatory networks from expression data. Bioinformatics 20 Suppl 1: i248–56.

11. Margolin A, Nemenman I, Basso K, Wiggins C, Stolovitzky G, et al. (2006)
ARACNE: An Algorithm for the Reconstruction of Gene Regulatory Networks

in a Mammalian Cellular Context. BMC Bioinformatics 7(Suppl 1): S7.

12. Friedman N, Linial M, Nachman I, Pe’er D (2000) Using Bayesian networks to

analyze expression data. Journal of Computational Biology 7(3): 601–620.

13. Soranzo N, Bianconi G, Altafini C (2007) Comparing association network

algorithms for reverse engineering of large-scale gene regulatory networks:

synthetic versus real data. Bioinformatics 23(13): 1640–7.

14. Hache H, Lehrach H, Herwig R (2009) Reverse Engineering of Gene

Regulatory Networks: A Comparative Study. EURASIP J Bioinform Syst Biol
2009: 617281.

15. Michoel T, De Smet R, Joshi A, Van de Peer Y, Marchal K (2009) Comparative

analysis of module-based versus direct methods for reverse-engineering
transcriptional regulatory networks. BMC Syst Biol 3: 49.

16. Zou C, Denby KJ, Feng J (2009) Granger causality vs. dynamic Bayesian

network inference: a comparative study. BMC Bioinformatics 10: 122.

17. Marbach D, Prill RJ, Schaffter T, Mattiussi C, Floreano D, et al. (2010)
Revealing strengths and weaknesses of methods for gene network inference. Proc

Natl Acad Sci U S A 107(14): 6286–91.

18. Windhager L, Zimmer R (2008) Intuitive Modeling of Dynamic Systems with
Petri Nets and Fuzzy Logic. German Conference on Bioinformatics, Lecture

Notes in Informatics P-136: 106–115.

19. Prill RJ, Marbach D, Saez-Rodriguez J, Sorger PK, Alexopoulos LG, et al.

(2010) Towards a rigorous assessment of systems biology models: the DREAM3
challenges. PLoS One 5(2): e9202.

20. Marbach D, Schaffter T, Mattiussi C, Floreano D (2009) Generating realistic in

silico gene networks for performance assessment of reverse engineering methods.
J Comput Biol 16(2): 229–39.

21. Sackmann A, Heiner M, Koch I (2006) Application of Petri net based analysis

techniques to signal transduction pathways. BMC Bioinformatics 7: 482.

22. Heiner M, Koch I, Will J (2004) Model validation of biological pathways using
Petri nets–demonstrated for apoptosis. Biosystems 75(1–3): 15–28.

23. Chen L, Qi-Wei G, Nakata M, Matsuno H, Miyano S (2007) Modelling and

simulation of signal transductions in an apoptosis pathway by using timed Petri
nets. Journal of Biosciences 32(1): 113–127.

24. Marwan W, Wagler A, Weismantel R (2008) A mathematical approach to solve

the network reconstruction problem. Mathematical Methods of Operations
Research 67(1): 117–132.

PNFL: Reverse Engineering

PLoS ONE | www.plosone.org 9 September 2010 | Volume 5 | Issue 9 | e12807



25. Murata T (1989) Petri nets: Properties, analysis and applications. Proceedings of

the IEEE 77(4): 541–580.
26. Chaouiya C (2007) Petri net modelling of biological networks. Brief Bioinfor-

matics 8(4): 210–219.

27. Matsuno H, Tanaka Y, Aoshima H, Doi A, Matsui M, et al. (2003) Biopathways
representation and simulation on hybrid functional Petri net. In Silico Biol 3(3):

389–404.
28. Zadeh LA (1965) Fuzzy sets. Information and Control 8: 338–353.

29. Mendel LM (1995) Fuzzy logic systems for engineering: a tutorial. Proceedings

of the IEEE 83(3): 345–377.

30. Istrail S, Davidson EH (2005) Logic functions of the genomic cis-regulatory

code. Proc Natl Acad Sci U S A 102(14): 4954–9.

31. Marbach D, Mattiussi C, Floreano D (2009) Combining multiple results of a

reverse-engineering algorithm: application to the DREAM five-gene network

challenge. Ann N Y Acad Sci 1158: 102–13.

PNFL: Reverse Engineering

PLoS ONE | www.plosone.org 10 September 2010 | Volume 5 | Issue 9 | e12807


