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Background: Growing evidence suggests that environmental air pollution adversely affects kidney health. To date, the association be-
tween carbon monoxide (CO) and mortality in patients with end-stage renal disease (ESRD) has not been examined. 
Methods: Among 134,478 dialysis patients in the Korean ESRD cohort between 2001 and 2014, 8,130 deceased hemodialysis pa-
tients were enrolled, and data were analyzed using bidirectional, unidirectional, and time-stratified case-crossover design. We exam-
ined the association between short-term CO concentration and mortality in patients with ESRD. We used a two-pollutant model, ad-
justed for temperature as a climate factor and for nitrogen dioxide (NO2), sulfur dioxide (SO2), ozone (O3), and particulate matter less 
than 10 μm in diameter as air pollution variables other than CO. 
Results: Characteristics of the study population included age (66.2 ± 12.1 years), sex (male, 59.1%; female, 40.9%), and comorbidi-
ties (diabetes, 55.6%; hypertension, 14.4%). Concentration of CO was significantly associated with all-cause mortality in the three 
case-crossover designs using the two-pollutant model adjusted for SO2. Patients with diabetes or age older than 75 years had a high-
er risk of mortality than patients without diabetes or those younger than 75 years. 
Conclusion: Findings presented here suggest that higher CO concentration is correlated with increased all-cause mortality in hemodi-
alysis patients, especially in older high-risk patients. 
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Introduction 

Ambient air pollution is comprised of a variety of factors. 

Since 1990, both morbidity and mortality have been contin-

uously increasing due to air pollution. In 2015, the number 

of deaths caused by exposure to particulate matter with 

aerodynamic diameter less than 2.5 μm (PM2.5) was estimat-

ed at 4.2 million, and it was the fifth-ranking mortality risk 

factor [1]. Interest in premature death due to PM2.5, ozone 

(O3), and carbon monoxide (CO) exposure has increased 

remarkably. PM2.5 and O3 exposure has been reported to 

be the cause of preventable deaths in Southeast Asia, and 

research predicts that this impact will more than double by 

2050 [2]. 

A linear relationship between PM2.5 concentration and 

the risk of incident chronic kidney disease (CKD) and 

progression to end-stage renal disease (ESRD) has been 

observed [3]. Recent studies have drawn attention to the 

increased risk of chronic disease caused by exposure to 

atmospheric CO. A time-series study conducted on the 

elderly population older than 65 years in the United States 

reported that short-term exposure to CO increased the risk 

of emergency hospitalization for cardiovascular disease 

[4]. A case-crossover study conducted on individuals be-

longing to similar age groups across seven Australian cities 

showed similar results [5]. An increase of 10 ppm in CO 

level elevated the relative risk of heart failure by 1.37-fold, 

while a 1 mg/m3 increase in CO level was associated with 

increased all-cause mortality and cardiovascular mortality 

[6–8]. In a large-scale cohort study conducted in the Unit-

ed States, higher CO concentration was associated with 

decreased glomerular filtration rate and increased risk of 

CKD and ESRD progression, similar to that observed in 

other studies [9]. 

However, few studies have examined the correlation 

between air pollution and prognosis of the dialysis-depen-

dent population. It is difficult to ascertain the impact of air 

pollution on health. Here, we conducted a case-control 

design study to overcome the limitations of time-series 

studies and confirm the transient and acute effects of caus-

ative factors in epidemiological studies. We analyzed the 

association between atmospheric CO concentration and 

mortality risk in patients undergoing hemodialysis. 

Methods 

Kidney Dialysis Registry of the Korean Society of Nephrol-
ogy and study population 

We used the Kidney Dialysis Registry database of the Ko-

rean Society of Nephrology (KSN), in which two-thirds of 

all dialysis patients in South Korea are registered. Included 

subjects were deceased patients who underwent mainte-

nance hemodialysis and whose address information could 

be confirmed. From 2001 to 2014, we enrolled 8,130 de-

ceased hemodialysis patients from the KSN [10]. The KSN 

registry has been used in various studies of dialysis patients 

in South Korea. The registry includes basic demograph-

ic information such as age and sex and information on 

underlying disease including hypertension and diabetes 

mellitus, causative diseases of ESRD, laboratory findings, 

dialysis adequacy, and currently applied dialysis modality 

[11]. 

Ethics consideration 

Ethical approval was obtained from the Institutional Re-

view Board of Seoul National University Hospital (No. 

H-2004-048-1116). All methods were performed in accor-

dance with the relevant guidelines and regulations of the 

Declaration of Helsinki and received full internal approval. 

Variable ambient air pollution data, including CO concen-
tration 

Information on air pollution and climate (temperature), in-

cluding CO concentration, during the study period (2001–

2014) was collected from 89 monitoring sites located within 

seven cities and aggregated. Data included concentrations 

of CO, nitrogen dioxide (NO2), sulfur dioxide (SO2), O3, and 

particulate matter less than 10 μm in diameter (PM10). All 

data except O3 concentration were described as average 

values over 24 hours. The maximum value was reported for 

O3 level. All data were obtained from the Korean National 

Institute of Environmental Research. Collected data about 

weather and air pollution were used in the same manner 

as in the study population [12]. 
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Study design 

We applied case-crossover designs with different con-

trol period selections as shown in Fig. 1. Three models of 

case-crossover design that included bidirectional, unidi-

rectional, and time-stratified designs were used to estimate 

the association between short-term exposure to CO and 

mortality risk in hemodialysis-dependent patients by com-

paring the respective control selections. This statistical 

method evaluates the risk of exposure factors by compar-

ing exposure levels in the period when the event occurred 

(case period) with that when it did not occur (control pe-

riod) to reduce the influence of uncontrolled confounding 

factors between subjects. As the case and control subjects 

are identical, the effects of age, sex, genetic predisposition, 

socioeconomic status, and seasonality are controlled [13–

15]. Subject death was defined as the case period. 

The first design was the bidirectional method, which is 

a two-to-one matched case-control study that sampled 

control periods as the exposure 7 days before and 7 days 

after the date of the event. The second design was the uni-

directional method, which was selected as the exposure 7 

days before (pre-) or 7 days after (post-) the event day. The 

third design was a time-stratified design matched on the 

day of the week, which was selected with a 3-day exclusion 

period around the event day in the same month. Pollutant 

concentrations on the day of the event (lag 0) up to the pre-

vious 10 days (lag 10) were used to determine the exposure 

pattern with the strongest association. Daily CO concentra-

tions during the case and control periods were compared 

between the three case-crossover designs. We mainly used 

a two-pollutant model, adjusted for temperature as a cli-

mate factor and adjusted for SO2, NO2, O3, and PM10 as air 

pollution variables other than CO. 

Statistical analyses 

We used conditional logistic regression analysis via the 

Cox proportional hazard function for analysis. Data are ex-

pressed as the odds ratio (OR) and 95% confidence interval 

Figure 1. Comparison of the case-crossover designs. We conducted bidirectional, unidirectional (pre), unidirectional (post), and 
time-stratified case-crossover studies that sampled control periods as the exposure 7 days before and 7 days after the event day (he-
modialysis death).
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(95% CI). The conditional logistic model can be simplified 

by the following formula after matching for time-invariant 

individual risk factors: 

In this model, β1, β2, and β3 represent the vectors whose 

components denote the log odds of mortality associated 

with CO, temperature, and other air pollutants, respec-

tively, as confounders. Using the formula above, Yij є {0,1} 

represents the case status (case = 1, control = 0) of the jth 

observation of the ith strata, where αi is the constant term of 

ith strata. The ambient temperature, which is a stationary 

confounding factor, and air pollutants (PM10, NO2, SO2, and 

O3) were incorporated into each model. The CO effect was 

estimated based on its single lag daily mean, and we exam-

ined the association with single-day lags (from lag 1 to lag 

10) and multiday lags (moving average lag 0–1 to lag 0–10). 

Results 

Baseline characteristics of the deceased 

We identified death events of 8,130 hemodialysis patients 

between 2001 and 2014 in seven metropolitan cities in 

South Korea. The average age at death was 66.21 ± 12.13 

years, and the proportion of males was 59.1%. The preva-

lence of diabetes and hypertension was 55.6% and 35.5%, 

respectively. The most common causative diseases of ESRD 

were diabetes (55.8%) and hypertension (14.4%), with un-

known causative disease in 13.1% of cases. Excluding “oth-

ers,” cardiovascular disease (35.5%) was the most common 

cause of death, followed by infection (20.3%) (Table 1). The 

numbers of deaths during the study period according to 

the city and information on climate and air pollution are 

presented in Table 2. In Seoul, Daegu, and Daejeon, CO 

concentrations of 1.002, 1.025, and 1.096 ppm, respectively, 

were found to be above the 90th percentile.  

Effect of CO exposure on mortality of hemodialysis pa-
tients 

In the single-pollutant model, we found a significant as-

sociation between CO exposure and all-cause mortality 

(bidirectional: OR, 1.20 [95% CI, 1.04–1.39]; unidirectional: 

OR, 1.45 [95% CI, 0.95–1.38]; and time-stratified: OR, 1.19 

[95% CI, 1.02–1.38]). In the two-pollutant model adjusted 

for temperature and other air pollutants including SO2 and 

PM10, there was a significant association between CO ex-

posure and all-cause mortality (Table 3). Associations were 

observed in the three case-crossover designs (bidirection-

al: OR, 1.45 [95% CI, 1.21–1.75], p < 0.001; unidirectional: 

OR, 1.44 [95% CI, 1.13–1.83], p = 0.003; and time-strati-

fied: OR, 1.44 [95% CI, 1.18–1.76], p < 0.001) in the model 

adjusted for SO2. Moreover, patients with comorbidities 

(diabetes) and older age (>75 years) had higher mortality 

after CO exposure in the model adjusted for SO2. Patients 

with diabetes (bidirectional: OR, 1.42 [95% CI, 1.11–1.81], 

p = 0.005; unidirectional: OR, 1.53 [95% CI, 1.11–2.12], p = 

Table 1. Baseline characteristics of the study population (2001–
2014)
Characteristic Deceased
Overall 8,130
Sex
  Male 4,804 (59.1)
  Female 3,326 (40.9)
Age at death (yr) 66.21 ± 12.13
  <75 6,323 (77.8)
  ≥76 1,807 (22.2)
Body mass index (kg/m2)
  Male 20.78 ± 3.71
  Female 20.80 ± 3.82
Comorbidity
  Diabetes 4,519 (55.6)
  Hypertension 2,885 (35.5)
Cause of kidney disease
  Diabetes 4,519 (55.6)
  Hypertension 1,179 (14.4)
  Glomerulonephritis 667 (8.2)
  Others 715 (8.8)
  Unknown 1,062 (13.1)
Cause of death
  Cardiovascular disease 2,887 (35.5)
  Peripheral vessel disease 359 (4.4)
  Infection 1,653 (20.3)
  Cancer 446 (5.5)
  Others 2,785 (34.3)

Values are presented as number only, number (%), or mean ± standard 
deviation.

= α1 + β1 × carbon monoxideij + 

β2 × temperatureij + β3 × air pollutantsij

log pij

1 – pij
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Table 2. Descriptive information on environmental variables and all-cause mortality during the study period

Variable
City

Seoul Busan Daegu Incheon Gwangju Daejeon Ulsan
Number of deaths (all-cause mortality) 4,081 1,074 711 876 629 486 273
Number of monitoring sites 27 16 11 11 5 6 13
Sunlight (hr)
  50 Percentiles 6.00 7.30 7.20 7.10 6.20 6.40 7.20
  90 Percentiles 10.20 10.80 10.80 10.90 10.40 10.60 10.70
Temperature (°C)
  50 Percentiles 14.40 15.90 15.65 13.90 15.30 14.30 15.40
  90 Percentiles 25.40 25.20 26.80 24.60 26.00 25.40 25.70
Humidity (%)
  50 Percentiles 61.00 63.90 57.90 69.10 67.30 67.50 64.80
  90 Percentiles 81.30 85.58 79.28 89.00 84.10 85.10 83.80
PM10 (µg/m2)
  50 Percentiles 51.26 50.37 50.18 52.53 45.20 43.95 45.32
  90 Percentiles 96.37 88.49 88.49 93.26 86.95 81.10 80.43
CO (ppm)
  50 Percentiles 0.607 0.473 0.604 0.596 0.597 0.588 0.479
  90 Percentiles 1.002 0.786 1.025 0.958 0.976 1.096 0.772
NO2 (ppm)
  50 Percentiles 0.037 0.024 0.026 0.028 0.023 0.021 0.020
  90 Percentiles 0.056 0.037 0.041 0.046 0.035 0.035 0.031
SO2 (ppm)
  50 Percentiles 0.005 0.006 0.005 0.007 0.004 0.004 0.006
  90 Percentiles 0.008 0.009 0.01 0.011 0.006 0.008 0.010
O3 (ppm)
  50 Percentiles 0.053 0.056 0.051 0.055 0.048 0.018 0.024
  90 Percentiles 0.087 0.087 0.086 0.089 0.075 0.035 0.037
CO, carbon monoxide; NO2, nitrogen dioxide; O3, ozone; PM10, particulate matter less than 10 μm in diameter; SO2, sulfur dioxide.

Table 3. Comparison of results in case-crossover designs to study the association between carbon monoxide exposure and all-cause 
death in hemodialysis patients
Case-crossover design Criteria Model 1 Model 2 Model 3
Bidirectional (2 wk) Beta 0.374 0.237 0.235

SE 0.095 0.078 0.080
OR (95% CI) 1.45 (1.21–1.75) 1.27 (1.09–1.48) 1.29 (1.10–1.50)
p-value <0.001 0.002 0.001

Unidirectional (pre) Beta 0.365 0.204 0.214
SE 0.123 0.010 0.102
OR (95% CI) 1.44 (1.13–1.83) 1.23 (1.02–1.48) 1.24 (1.01–1.51)
p-value 0.003 0.04 0.04

Time-stratified (matched) Beta 0.366 0.267 0.214
SE 0.101 0.110 0.102
OR (95% CI) 1.44 (1.18–1.76) 1.31 (1.12–1.53) 1.25 (1.06–1.47)
p-value <0.001 0.02 0.04

CI, confidence interval; OR, odds ratio; SE, standard error.
Model 1: two-pollutant model adjusted for confounders of temperature and sulfur dioxide (SO2); Model 2: two-pollutant model adjusted for confounders 
of temperature and particulate matter less than 10 μm in diameter (PM10); Model 3: three-pollutant model adjusted for confounders of temperature, SO2, 
and PM10.
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0.01; and time-stratified: OR, 1.52 [95% CI, 1.17–1.97], p = 

0.002) or those aged >75 years (bidirectional: OR, 1.45 [95% 

CI, 1.14–1.84], p = 0.002 and time-stratified: OR, 1.44 [95% 

CI, 1.12–1.86], p = 0.005) had higher risks of mortality than 

patients without diabetes or individuals aged <75 years 

(Table 4). Control time sampling had significant differenc-

es, with bidirectional sampling of control time having the 

smallest p-value compared with the other two designs. 

The effect of CO on all-cause mortality in hemodialysis 

patients showed similar results in the two-pollutant model 

adjusted for PM10. In addition, patients with diabetes had 

higher risk of mortality than patients without diabetes in 

the two-pollutant model adjusted for PM10. Furthermore, 

in the three-pollutant model adjusted for SO2 and PM10, we 

observed a significant effect of CO in the case-crossover de-

signs (bidirectional: OR, 1.29 [95% CI, 1.10–1.50]; unidirec-

tional: OR, 1.24 [95% CI, 1.01–1.51]; and time-stratified: OR, 

1.25 [95% CI, 1.06–1.47]). We found a similar association 

of CO with all-cause mortality in the other two-pollutant 

models adjusted for NO2 and O3, respectively (Supplemen-

tary Table 1, available online). 

We performed subgroup analysis to identify mortality risk 

according to factors related to hemodialysis, and patients 

with anemia (hemoglobin of <10 mg/dL) had increased 

risk of mortality (bidirectional: OR, 1.57 [95% CI, 1.12–2.22] 

and time-stratified: OR 1.49 [95% CI, 1.03–2.15]). However, 

there was no increased risk of mortality according to blood 

pressure or dialysis adequacy (Supplementary Table 2, 

available online). For sensitivity analysis, we performed 

further analysis according to cause of death. Similar to the 

risk of all-cause mortality, increased risks of cardiovascu-

lar and infection-related mortalities were observed in the 

two-pollutant model adjusted for PM10 (Supplementary 

Table 3, available online). 

Moving average 

The moving average from lag 10 to the event day (death) is 

shown in Fig. 2. The moving average in the three case-cross-

over designs was compared. In the case-crossover design 

adjusted for daily SO2 concentration, there was a significant 

association between CO exposure and mortality observed 

6 days (bidirectional), 4 days (time-stratified), and 8 days 

(unidirectional) before the event (Supplementary Table 4, 

available online). We observed a short lag effect of CO expo-

sure throughout the moving average. 

Discussion 

Air pollution is a global economic burden as it is known to 

directly increase morbidity and mortality in humans in ad-

dition to impact the climate and environment. The effects 

of air pollution on cardiovascular and respiratory disease, 

including stroke, have been studied [16–18]. Among the 

air pollutants, CO concentration varies according to region 

and season, although it is known to be higher in urban 

Table 4. Subgroup analysis stratified by variables, including factors related to hemodialysis
Variable Model 1 p-value Model 2 p-value
Diabetes
  Bidirectional 1.42 (1.11–1.81) 0.005 1.25 (1.02–1.53) 0.03
  Unidirectional (pre) 1.53 (1.11–2.12) 0.01 1.33 (1.06–1.65) 0.04
  Time-stratified (matched) 1.52 (1.17–1.97) 0.002 1.31 (1.07–1.59) 0.02
Elderly (>75 yr)
  Bidirectional 1.45 (1.14–1.84) 0.002 1.21 (0.87–1.70) 0.28
  Unidirectional (pre) 1.34 (0.98–1.83) 0.07 1.11 (0.68–1.63) 0.61
  Time-stratified (matched) 1.44 (1.12–1.86) 0.005 1.15 (0.81–1.63) 0.11
Hemoglobin < 10 mg/dL
  Bidirectional 1.57 (1.12–2.2) 0.01 1.16 (1.11–2.20) 0.01
  Unidirectional (pre) 1.30 (0.83–2.0) 0.24 1.42 (0.91–2.22) 0.12
  Time-stratified (matched) 1.49 (1.03–2.2) 0.03 1.60 (1.11–2.30) 0.01

Data are expressed as odds ratio (95% confidence interval).
Model 1: two-pollutant model adjusted for confounders of temperature and sulfur dioxide; Model 2: two-pollutant model adjusted for confounders of tem-
perature and particulate matter less than 10 μm in diameter.

606 www.krcp-ksn.org

Kidney Res Clin Pract 2022;41(5):601-610

https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl1.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl1.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl2.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl3.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl3.pdf
https://www.krcp-ksn.org/upload/media/j-krcp-21-228suppl4.pdf


Figure 2. Odds ratios of all-cause death associated with carbon monoxide exposure. The moving average (MA) from 10 days before 
to the event day (death, D-day) are highlighted and compared in the three case-crossover designs using two-pollutant models adjusted 
for confounders of temperature and air pollutant (PM10, SO2).
CI, confidence interval; PM10, particulate matter less than 10 μm in diameter; SO2, sulfur dioxide.
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areas [19]. A number of studies have been conducted on 

the effects of short-term exposure to elevated CO levels in 

patients with chronic diseases [20]. These effects have also 

been studied in patients with CKD; however, few studies on 

the effects of CO exposure on dialysis patients have been 

conducted. 

To examine the association between short-term CO ex-

posure and all-cause mortality in hemodialysis patients, 

we used three model case-crossover designs that can sig-

nificantly reduce the impact of confounding factors. More-

over, we compared the results of various selection schemes 

in the case-crossover design and found no difference in the 

association between CO exposure and death in hemodi-

alysis patients. Among patients undergoing hemodialysis, 

mortality risk was higher in those with diabetes or those 

aged >75 years. Our study showed that short-term expo-

sure to elevated ambient CO level can increase the risk of 

death in patients with ESRD, with older adults and those 

with concomitant diabetes being more susceptible. The 

moving average is commonly used with time-series data to 

smoothen short-term fluctuations. The results suggest that 

CO has a mediating effect on the death of hemodialysis pa-

tients. A study conducted in South Korea using case-cross-

over time-stratified analysis demonstrated a correlation 

between CO exposure and cardiovascular and all-cause 

mortality in those with manual occupations or aged 65 to 

74 years [21]. A 2-year prospective observational study of 

256 elderly hemodialysis patients in Taipei showed that 

the risk of stroke and cardiovascular disease was higher in 

patients living in areas with severe air pollution or in those 

with lower serum albumin level. Researchers have attribut-

ed this to protein-energy wasting syndrome [22]. In Aus-

tralia, an analysis using a case-crossover model involving 

1,158,891 patients found that the elderly (aged >65 years) 

had an increased risk of hospitalization for all types of car-

diovascular disease [5]. These findings are consistent with 

our results, which showed that elderly patients are vulnera-

ble to outcomes caused by short-term exposure to elevated 

CO concentration. Although the type of cardiovascular 

disease could not be identified, the main causes of death in 

our study subjects were cardiovascular disease and infec-

tion. Consistent with previous studies on the risks of car-

diovascular disease, our study demonstrates the potential 

for increased risk of cardiovascular disease in hemodialysis 

patients due to CO exposure. 

There are many hypotheses about the mechanism by 

which ambient CO affects the organs in the human body. 

It has been reported that exposure to CO concentration 

much higher than ambient increases carboxyhemoglobin 

level, resulting in myocardial ischemia [23]. With regard to 

CO poisoning, a correlation between reduction in ejection 

fraction and degree of CO exposure has been observed [24]. 

Some studies have also found an increased risk of long-

term arrhythmia after CO poisoning [25]. The first mecha-

nism to be considered is that the binding capacity of CO to 

hemoglobin is more than 200 times higher than that of ox-

ygen [26]. There is a possibility that organ ischemia can oc-

cur due to elevated carboxyhemoglobin level in a vulnera-

ble group with cardiovascular risk. Although the study was 

conducted on peritoneal dialysis patients, researchers sug-

gested a relationship between CO exposure and secondary 

hyperparathyroidism [27]. Considering studies that show a 

correlation between CO exposure and uremic pruritus [28], 

it is highly likely that CO exposure has an additional effect 

on ESRD patients. 

Although most studies on air pollution and risk of infec-

tion have focused on the relationship between fine par-

ticulate matter and respiratory infection, air pollution has 

also been shown to be associated with peritoneal-related 

infections and pneumonia [29]. Some investigators have 

proposed mechanisms for adverse responses, including 

cardiac dysfunction, CO-dependent reactive oxygen sig-

naling events, and interference with homeostasis [30]. A 

recent hypothesis is that exposure to air pollutants through 

the respiratory tract stimulates the lung autonomic nervous 

system (ANS), leading to oxidative stress that causes ANS 

imbalance and systemic vasculature damage, including the 

heart [31]. However, contrary to these theories, there are 

also claims that CO has a protective effect. Researchers in 

Hong Kong found that exposure to CO reduces the risk of 

hospitalization for respiratory infections [32]. In addition, 

animal studies have reported a protective effect of CO ex-

posure against acute kidney injury and sepsis [33,34].  

The method used in our study has the advantage of 

low risk of bias as the influence of confounding factors is 

reduced. In addition, the results were compared in three 

models. However, our study has some limitations. We ac-

counted for known confounders but could not exclude the 

possibility of residual confounders (either those unmea-

sured or unknown). Our database did not contain informa-
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tion on time spent in traffic or outdoors, which can result 

in misclassification of exposure. 

In conclusion, our findings are consistent with the notion 

that limited exposure to CO is associated with various ad-

verse outcomes and high mortality in patients with ESRD 

dependent on hemodialysis. These results suggest that 

avoidance of CO exposure could be correlated with sur-

vival benefit among hemodialysis patients and provide an 

important clue to improve patient survival. 
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