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Generation of functional oligopeptides that promote
osteogenesis based on unsupervised deep learning of protein
IDRs
Mingxiang Cai1,2, Baichuan Xiao3, Fujun Jin2,3, Xiaopeng Xu4, Yuwei Hua5, Junhui Li1, Pingping Niu1, Meijing Liu3, Jiaqi Wu3, Rui Yue5,
Yong Zhang5, Zuolin Wang1✉, Yongbiao Zhang3✉, Xiaogang Wang2,3✉ and Yao Sun 1✉

Deep learning (DL) is currently revolutionizing peptide drug development due to both computational advances and the substantial
recent expansion of digitized biological data. However, progress in oligopeptide drug development has been limited, likely due to
the lack of suitable datasets and difficulty in identifying informative features to use as inputs for DL models. Here, we utilized an
unsupervised deep learning model to learn a semantic pattern based on the intrinsically disordered regions of ~171 known
osteogenic proteins. Subsequently, oligopeptides were generated from this semantic pattern based on Monte Carlo simulation,
followed by in vivo functional characterization. A five amino acid oligopeptide (AIB5P) had strong bone-formation-promoting
effects, as determined in multiple mouse models (e.g., osteoporosis, fracture, and osseointegration of implants). Mechanistically, we
showed that AIB5P promotes osteogenesis by binding to the integrin α5 subunit and thereby activating FAK signaling. In summary,
we successfully established an oligopeptide discovery strategy based on a DL model and demonstrated its utility from cytological
screening to animal experimental verification.
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INTRODUCTION
Peptide drugs are known to be highly selective, efficacious, and
well tolerated by patients,1 and very short peptide drugs
(oligopeptides) have been attracting increasing attention because
of their high bioavailability and low cost of synthesis.2–4 A variant
of the artificial intelligence method has been harnessed to
substantially increase the efficiency of peptide drug development
efforts5; these gains have been enabled by the abundant
databases of available protein sequence and spatial structural
information.6 However, these methods have been less impactful in
the field of oligopeptide drug development due to issues
including the relatively small amount of available data for
oligopeptide drugs and the fact that the very short lengths of
oligopeptides result in relatively few of the distinguishable
features that are exploited by common machine learning
approaches.7 Thus, the development of an automatic design
strategy for oligopeptide drugs would be useful.
A report by Stavros et al. explored the interesting concept of the

“no free lunch” theorem, which may yield insights that can help
overcome the present shortage of available datasets for functional
oligopeptides.8 For an increased amount of prior information to

support function-related inferences—and perhaps even enhance the
probability of successful drug discovery for oligopeptides—mining
could be performed based on functional subsequences from a set of
proteins with known functions related to a given process of interest.
For example, cardiology researchers interested in identifying
functional peptide sequences may be well served by narrowing
their attention (search space) to the subset of proteins with functions
in cardiogenesis. Extending this line of speculation, considering that
many proteins contain intrinsically disordered regions (IDRs) that lack
obvious structural features, we narrowed the range of protein
sequences for data mining to the IDR. Recent studies have begun to
reveal the biological functions of many IDRs, and there are now
many examples wherein the interactions between IDRs and their
target molecules are mediated by certain peptide motifs.9 Notably,
many of these IDR-resident motifs are <10 residues in length.10

However, whether IDR sequences can be applied in the develop-
ment of functional oligopeptides remains unknown.
In the present study, we explored the idea of using IDRs from a

subset of process-specific proteins as a potential dataset for deep-
learning-based identification of functional oligopeptides. Given
the difficulty of identifying potentially informative features for

Received: 8 September 2021 Accepted: 21 December 2021

1Department of Oral Implantology, School of Stomatology, Tongji University, Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai 200072,
China; 2The First Affiliated Hospital of Jinan University, School of Stomatology, Clinical Research Platform for Interdiscipline of Stomatology, Jinan University, Guangzhou 510630,
China; 3Key Laboratory of Big Data-Based Precision Medicine, School of Engineering Medicine, Beihang University, Beijing 100191, China; 4Guangzhou Laboratory, Bioland
Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510320, China and 5Institute for Regenerative Medicine, Shanghai East Hospital,
Shanghai Key Laboratory of Signaling and Disease Research, Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai
200092, China
Correspondence: Zuolin Wang (zuolin@tongji.edu.cn) or Yongbiao Zhang (zhangyongbiao@gmail.com) or Xiaogang Wang (xiaogangwang@buaa.edu.cn) or
Yao Sun (yaosun@tongji.edu.cn)
These authors contributed equally: Mingxiang Cai, Baichuan Xiao, Fujun Jin, Xiaopeng Xu.
These authors jointly supervised this work: Zuolin Wang, Yongbiao Zhang, Xiaogang Wang, Yao Sun.

www.nature.com/boneresBone Research

© The Author(s) 2022

1
2
3
4
5
6
7
8
9
0
()
;,:

http://crossmark.crossref.org/dialog/?doi=10.1038/s41413-022-00193-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41413-022-00193-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41413-022-00193-1&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41413-022-00193-1&domain=pdf
http://orcid.org/0000-0002-4323-0506
http://orcid.org/0000-0002-4323-0506
http://orcid.org/0000-0002-4323-0506
http://orcid.org/0000-0002-4323-0506
http://orcid.org/0000-0002-4323-0506
mailto:zuolin@tongji.edu.cn
mailto:zhangyongbiao@gmail.com
mailto:xiaogangwang@buaa.edu.cn
mailto:yaosun@tongji.edu.cn
www.nature.com/boneres


oligopeptides, we envisioned that a natural language processing
(NLP) model—which would have no need for manual prioritization
of such features—would be a suitable approach to explore IDRs as
a dataset for oligopeptide mining and functional prediction/
elaboration. We elected to start our explorations using a basic
N-gram model for inferring the semantic patterns of the IDRs from
subsets of process-specific proteins to develop functional
oligopeptide drug candidates. We focused on osteogenesis and
used a simple model comprising an N-gram analysis of the
predicted IDRs from 171 osteogenesis-annotated proteins and a
Monte Carlo simulation to elaborate candidate 10-mer oligopep-
tides. After in silico evaluations, we synthesized and tested 28
candidate osteogenic oligopeptides, many of which exerted the
anticipated effects in assays with bone marrow stem cells. One of
these (AIB5P) effectively promoted osteogenesis both in vitro and
in vivo. Ultimately, we experimentally characterized AIB5P’s
osteogenic function: it binds to the integrin α5 subunit and
activates FAK signaling, and we showed AIB5P’s promising
therapeutic effects in studies with models of osteoporosis, fracture
healing, and implant osseointegration.

RESULTS
A deep learning-based strategy to screen for functional
oligopeptides
In our strategy, the IDRs from proteins with functional annotations
related to the promotion of bone formation were extracted and
used as input for a deep learning model to discover functional
oligopeptides. The workflow is shown in Fig. 1a. The deep learning
model comprised N-grams for mining the semantic pattern of
natural functional oligopeptides and used Monte Carlo simulation to
generate the new oligopeptides by extension (Fig. 1b). First, proteins
were retrieved from UniProt based on their annotated involvement
in bone formation using four osteogenic GO terms: “ossification”,
“osteogenesis”, “osteoblast development”, and “osteoblast differ-
entiation” (Fig. 1c). A total of 171 protein candidates were thus
collected. (Table S1 and File 1) The IDRs of the 171 proteins were
then identified using IUPred2A (File 2). The frequency distribution of
AA residents between the full-length protein sequences and the
IDRs showed a significant difference (Fig. 1d).

Deep-learning-based identification of candidate osteogenesis-
promoting oligopeptides
The N-grams mined semantic patterns among the IDRs and
converted semantic pattern learnings into word context probability
vectors. We then designed a Monte Carlo model to simulate the
extension process from a single amino acid to oligopeptides of
different lengths based on the probability vectors obtained from
the N-gram analysis. Starting from the ten amino acids with the top-
ranking frequency (Fig. 1d), oligopeptide candidates were obtained
by extension (Table S2). To improve the efficiency of functional
verification, we grouped the obtained oligopeptides by length and
constructed a clustering tree for each group (Fig. 2a). These trees
were divided into several subclusters (mainly composed of S/E or G/
P/A), and we selected the top-ranked oligopeptides in each
subcluster for functional verification (Fig. 2b).

AIB5P promotes osteogenic differentiation of BMSCs in vitro and
in vivo
We next selected an in vitro bone marrow mesenchymal stem cell
(BMSC) osteoblastic differentiation model to evaluate the osteo-
genic activity of these developed oligopeptides. Alizarin red
staining was used to test for osteogenesis-promoting activity. A
majority of the output candidate oligopeptides obtained from the
IDRs of osteogenic proteins could significantly accelerate BMSC
osteogenic differentiation (Figs. 3a and S1A). We also compared the
contribution of oligopeptides extracted from full-length protein
sequences and IDRs to promoting osteogenesis (Fig. S1B and Table

S3). The pentapeptide ESSES showed the strongest osteogenic
activity among all 28 tested candidate oligopeptides. Based on its
prominent function, we named this oligopeptide artificial
intelligence-developed bone-forming pentapeptide (AIB5P).
We evaluated the osteogenic effects of AIB5P in both BMSCs

and osteoblast osteogenic differentiation models. We found that
AIB5P exposure could accelerate the osteogenic process in both
cell types and that AIB5P showed much stronger effects on the
osteoblastic differentiation of BMSCs than osteoblasts, as indi-
cated by a much lower effective concentration of AIB5P on BMSCs
than osteoblasts (Fig. S2). We then systemically evaluated the
osteogenic activities in both mBMSCs and Human bone marrow
mesenchymal stem cells (hBMSCs), and bone morphogenetic
protein 2 was used as a positive control. As shown in Fig. 3b, AIB5P
exposure significantly upregulated the expression of the osteo-
genic markers Runx2, Osx, Alpl, and Ocn in mBMSCs and hBMSCs.
Consistently, ALP staining (Fig. 3c) and ARS staining (Fig. 3d)
indicated that AIB5P treatment strongly enhanced the differentia-
tion and mineralization of mBMSCs and hBMSCs. Previous studies
have shown that BMSCs expressing the leptin receptor are a major
source of stem cells contributing to bone formation in adult bone
marrow.11 We, therefore, used LepRtd-tomato reporter mice to
directly evaluate the osteogenic-promoting activity of AIB5P on
BMSCs in vivo. At the beginning of the oligopeptide injection, all
of the mice also received injection of calcein; this led to the
deposition of a green fluorescent marker layer on the bone
formation interface to indicate the starting point of treatment.12

Compared with the control treatment, 1.5 months of AIB5P
treatment (100 μg·kg−1) significantly increased the number of
newly formed osteocytes derived from LepR+ BMSCs on the inner
surface of the calcein deposit (Fig. 3e, f). We also found that the
expression of osteogenic markers in the LepR+ BMSCs sorted by
flow cytometry indicated AIB5P-mediated promotion of osteoblast
differentiation of BMSCs in vivo (Fig. 3g).

AIB5P enhances bone formation in vivo
We also conducted an experiment wherein wild-type mice were
given intravenous injection of 100 μg·kg−1 AIB5P every 3 days. After
1.5 months of this treatment, the femurs of the AIB5P-treated mice
were collected for dynamic histomorphometry measurements.
Compared with that of the vehicle control group, the bone
formation rate was significantly increased in the AIB5P treatment
group (Fig. 4a, b). Consistently, the AIB5P-treated mice presented
higher bone mass and mineralization levels, as revealed by von
Kossa staining of the femurs (Fig. 4c, d). Anti-DMP1 immunohisto-
chemical staining further indicated that the bone mineralization
levels were obviously enhanced in the AIB5P-treated mice (Fig. 4e, f).
Next, micro-CT was performed to evaluate whether AIB5P-

induced bone formation resulted in changes to bone mass.
Indeed, AIB5P treatment significantly increased the trabecular and
cortical bone mass of the mice (Fig. 4g). Consistently, quantitative
analyses, including BMD, BV/TV, Tb.N, and Tb.Th, all showed
significantly increased bone mass and density in the femurs of the
AIB5P-treated mice (Fig. 4h). The bone mass of the fifth lumbar
vertebrae (Fig. S3A) was significantly enhanced in the AIB5P
group. Notably, TRAP staining showed that the increase in bone
mass was not due to a decrease in either the number or surface
area of osteoclasts (Fig. S4). These in vivo results collectively
indicated that AIB5P treatment promotes bone formation and
increases bone mass. Moreover, AIB5P showed no obvious toxicity
effects in vivo, as demonstrated by analysis of serum biochemical
markers, including ALS, ALT, BUN, and CK (Fig. S5B). There were no
AIB5P treatment-related pathological changes in major organs,
such as the heart, lung, liver, spleen, or kidney (Fig. S5C). We
further analyzed the immune activity of oligopeptide injection and
found that one day after AIB5P injection, the number and
percentage of CD4+ T cells, CD8+ T cells, and B cells in the spleen
were not significantly different from those in the control group
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(Fig. S5D). Intravenous injection of AIB5P had no significant effect
on the body weight of mice. Taken together, these results
demonstrate that AIB5P is an effective osteogenic oligopeptide
that does not cause any obvious side effects.

AIB5P increases bone mass in a bone loss model
We investigated the effect(s) of AIB5P in an ovariectomy-induced
osteoporosis (OVX) model.13 We used human parathyroid
hormone (PTH), which is known to stimulate bone formation
(1–34), as a positive control in this model (80 μg·kg−1, every three
days, subcutaneous). Femurs were harvested from the OVX mice
that had received 1.5 months of AIB5P treatment (100 μg·kg−1,
every 3 days, intravenous). Micro-CT scanning showed that the

trabecular bone mineral density, cortical bone mineral density,
and bone volume of the AIB5P treatment group were all
significantly increased compared to those of the vehicle control-
treated OVX model animals (Fig. 5a, b). Both bone masses of the
fifth lumbar vertebrae (Fig. S3B) and the bone formation rate were
significantly enhanced in the AIB5P group (Fig. 5c, d). The
therapeutic effects of AIB5P on the OVX model were similar to
those conferred by PTH (Figs. 5a–d, S3A, B).

AIB5P accelerates bone healing in a fracture model
We next tested whether the osteogenesis-promoting effects of
AIB5P facilitate fracture bone repair. Briefly, one week after
fracture, AIB5P was injected intravenously into mice for two
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weeks; micro-CT scanning was performed at the end of the third
week. The data showed denser calli at the fractured position in the
AIB5P-treated mice than in the vehicle control mice (Fig. 5e, f).
Consistently, H&E and anti-DMP1 IHC staining revealed increased
coalesced cortical bone thickness and higher mineralization levels
in the fractured area of the AIB5P group (Fig. 5g, h).

AIB5P promotes osteointegration in a titanium implant model
We also established a mouse model of titanium implantation to
evaluate the effect(s) of AIB5P on implant osseointegration in mice.
We found that three weeks of AIB5P treatment significantly
promoted the osseointegration and surface bone thickness of
titanium implants compared to those of the vehicle control-treated
animals (Fig. 5i). The BV/TV and Tb.Th metrics of the bone around
the implants were substantially increased in the AIB5P group
(Fig. 5j). Both von Kossa staining (Fig. 5k) and Van Gieson staining
(Fig. 5l) showed that the bone mass and mineralization of the newly

formed bone covering the implant surface were obviously increased
in the AIB5P-treated mice compared to the controls. Together, these
results indicate that AIB5P could be used as a “therapeutic
oligopeptide” for the treatment of multiple bone diseases.

AIB5P interacts with integrin α5 to promote osteogenesis
Finally, to explore the mechanism(s) through which AIB5P promotes
osteogenesis, we analyzed the subcellular distribution of AIB5P
using immunofluorescence. Interestingly, we found that FITC-
labeled AIB5P was distributed on the cell surface of BMSCs
(Fig. S6). This finding indicates that AIB5P may function as a peptide
ligand of some cell surface receptor(s). Pursuing this hypothesis, we
performed a biotinylated peptide pulldown/MS assay to help
identify the target protein(s) that may interact with AIB5P (Fig. 6a).
Integrin α5 (Itga5) was identified as an interaction target of AIB5P in
BMSCs (Fig. 6b). The coverage of the identified peptides reached
28.1% of Itga5. We also verified the specific interaction between
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AIB5P and Itga5 with immunoblotting: AIB5P interacted with Itga5
but not with other examined integrin proteins (Fig. 6c).
We next used siRNAs to knock down Itga5 expression in BMSCs

to verify whether AIB5P osteogenic activity is mediated by Itga5
(Fig. 6d). Itga5 knockdown was successful, and we found that the
knockdown cells had a reduced extent of AIB5P-mediated
osteogenic marker gene induction compared to that of the
AIB5P-treated WT cells (Fig. 6e). Consistently, both ALP staining
(Fig. 6f) and ARS staining (Fig. 6g) also indicated that Itga5
knockdown blocked the osteogenic activities of AIB5P in BMSCs.

These results identify Itga5 as a functional receptor for AIB5P
in BMSCs.
Next, we analyzed the downstream pathways stimulated by the

AIB5P-Itga5 interaction and noted that the phosphorylation-
mediated activation of FAK and the FAK downstream kinases AKT
and ERK1/2 was increased upon AIB5P treatment (Fig. 6h). Finally,
we used chemical inhibition of FAK to confirm the functional
involvement of FAK activation in the observed AIB5P-induced
osteoblast differentiation. After pretreatment with the FAK inhibitor
PF-573228,14 AIB5P-induced ALP activity and calcium deposition
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were substantially decreased (Fig. 6i, j). Collectively, these results
reveal that the osteogenic effects of AIB5P result from its reception
by Itga5 and the attendant activation of FAK signaling (Fig. 6k).

DISCUSSION
The lack of sufficient datasets and informative features are two
major problems hindering AI-assisted oligopeptide drug develop-
ment. As the probable solution to a lack of sufficient datasets will
require long-term data acquisition efforts by the pharmaceutical
industry, at this stage, it is logical to focus on identifying effective
features. AlphaFold2 has very recently drawn extensive public
attention,15 and owing to its strong performance in predicting
protein structures, this powerful tool will soon be used in both
peptide and protein research, including peptide drug R&D.
However, notably, owing to the lack of rigid and nonvariable
three-dimensional structures for oligopeptides, the currently
available structural models of peptides are of limited utility for
the design of oligopeptide drugs. Additionally, the short
sequences of oligopeptides make it difficult to design distinguish-
able manual features. Therefore, end-to-end models where
effective features can be learned in small sample cases represent
one of the few apparently tenable options.
NLP algorithms have progressed rapidly with the rise of deep

learning, from the classic N-gram16 and RNN17 to the more
advanced Transformer18 and BERT.19 The more advanced models
have better long-distance semantic pattern mining ability, but
these also require more training data. Given the lack of available
data and long semantic patterns, we used a basic N-gram model
for oligopeptides to mine semantic patterns based on IDRs. An
N-gram model is essentially a conditional probability calculation
model that is somewhat similar to naive Bayes analysis, but it
calculates probability via a deep neural network. The model is
simple in principle, with no need for large training data, but is
highly efficient in inference performance, helping explain its wide
use in NLP tasks to date.20 Supporting the utility of an N-gram
model for oligopeptide drug discovery, we obtained multiple
oligopeptides with obvious bone formation-promoting bioactivity.
Although the dictum that “form follows function” is a central

tenet of structural biology, it is now quite clear that the
conformational malleability of IDRs enables them to perform very
specialized functions that cannot be accomplished by globular
proteins.9,21,22 Generally, IDRs exert the following functions as part
of the cellular signaling machinery: (1) recognize proteins and
nucleic acids, accelerate chemical reactions between bound
partners, and promote the accommodation of post-translational
modifications, alternative splicing, protein fusions, and insertions
or deletions23; (2) add complexity to regulatory networks24; and (3)
facilitate phase transition and heterochromatin functions in cells.25

A common functional module within IDRs is the so-called “linear
motif”, which is usually 3–10 amino acids long.26 The length of an
IDR linear motif is notably similar to that of an oligopeptide. We
utilized our artificial intelligence model to screen oligopeptides in
both IDRs and non-IDRs, and both regions recommended
oligopeptide candidates (length from three amino acids to ten
amino acids). Our model recommended more oligopeptides in
IDRs than in non-IDRs (361 vs. 244). Our use of an N-gram model
and subsequent analyses resulted in the identification of more
than twenty oligopeptides between 3 and 10 aa in length
(developed from IDR sequences of osteogenic proteins) that are
effective in promoting the differentiation of bone marrow stem
cells. Functional verification of the recommended peptides
showed that the peptides in the IDR showed better osteogenic
effects on BMSCs (Fig. S1). The most effective of these compounds
(AIB5P) was selected for subsequent experiments, which showed
their impressive osteogenic effects both in vivo and in vitro.
Integrin family proteins are important regulators of migration,

adhesion, survival, and differentiation of BMSCs.27–29

Our mechanistic analysis indicated that the AIB5P-integrin FAK
signal mediates the differentiation of BMSCs. Integrin α5 is highly
expressed in BMSCs and is closely involved in the bone formation
process.30,31 Silencing of the expression of integrin α5 abrogated the
osteoblast differentiation of BMSCs, whereas its overexpression by
lentivirus markedly promoted osteogenesis in vivo.32,33 Notably,
stimulating integrin α5 could induce osteogenesis of BMSCs by
peptide ligand,34 monoclonal antibody SNAKA5132 or chemical
compounds.35 In this study, we found that the oligopeptide AIB5P
could regulate the osteogenesis of BMSCs by directly binding to
integrin α5. Silencing integrin α5 and inhibiting its downstream
kinase FAK completely inhibited the osteogenic activity of
oligopeptides, indicating that the AIB5P-integrin α5-FAK signal
mediates the differentiation and osteogenesis of BMSCs. Thus, our
findings further highlight that stimulating integrin α5 is a promising
strategy for oligopeptide-induced osteoblast differentiation and
bone formation.
This study systematically explored the osteogenic activity of AIB5P

in vivo and in vitro, but there are still some shortcomings, such as
the detection of the lowest effective dose of AIB5P and the further
modification of oligopeptides to reduce the injection frequency.
Currently, some strategies have been proven to be effective in
prolonging the serum residence time of peptide drugs, such as
peptide acylation (as seen in the GLP-1 agonist Victoza), insertion of
albumin-binding peptide elements in the peptide backbone,
conjugation to albumin-binding antibody fragments (AlbudAbTM
technology) and polyethylene glycol (PEG)-ylation.36 Since AIB5P
contains a small number of amino acids, changes in the function of
oligopeptides can be easily generated by amino acid substitutions.
We are currently using amidation, PEG modification, and cyclized
peptides to prolong the serum residence time of AIB5P peptides.
In summary, we have developed a natural language processing

N-gram model to learn functional oligopeptides from the IDRs of
proteins with functional annotations related to bone formation. It
should be straightforward to substitute proteins with functional
annotations for any biological process of interest for the bone-
formation-related set of proteins we examined in this study. The
diverse functions of IDRs indicate that focusing discovery efforts on
these sequences can be an effective form of input to yield functional
oligopeptides. Thus, we envision that our DL-based discovery strategy
can substantially accelerate the development of oligopeptide drugs
for the treatment of many clinical indications in the near future.

MATERIALS AND METHODS
A subset of proteins promoting bone formation
To obtain proteins characterized by bone formation, we down-
loaded all proteins listed in the GO terms of ossification,
osteogenesis, osteoblast development, osteoblast differentiation,
and osteoblast proliferation from UniProt (https://www.prot.org/
downloads). We retained 171 of them by further confirming their
ability to promote bone formation (Table S1).

IDR prediction
We submitted all protein sequences to IUPred2A37 to identify
intrinsically disordered protein regions (IDRs) under the module of
“long disorder” with the parameter “context-dependent predic-
tions (default ANCHOR2)”. We kept those continuous sequences
with IUPred scores larger than 0.5 as the IDR for each protein. We
also divided the IDR into two parts based on the presence or
absence of disordered binding regions, which were supported by
the ANCHOR score. However, no improvement was detected for
functional peptide exploration (data not shown) with or without
disordered binding regions.

Functional peptide learning using a deep neural network
N-gram model. To obtain the potential functional peptide, we
employed a deep learning method based on the N-gram model.
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First, we trained the model by taking the word vectors (under the
current circumstance of a protein sequence, word vectors refer to
amino acid vectors) of context as inputs. We then used the trained
model to generate the probability distribution of the next word
and thus referred to the corresponding conditional probability.
More specifically, the N-Gram model computes each conditional
probability (p) by using the formula below:

pðωk jcontextðωkÞÞ ¼ F iωk ; v contextðωkÞð Þ; θð Þ
where F indicates the deep neural network, θ those parameters to
be optimized in F, iωk the serial number of the k-th word ωk in the
set of amino acids, and v(context(ωk)) the word vector presenta-
tion of the context(ωk) of ωk. Each layer of the model is described
as follows:

Input layer. In this layer, every word was mapped into a word
vector with a length of m. Notably, the word vectors were
initialized randomly before training and were iterated during the
training process.

Projection layer. As input of the hidden layer, all word vectors
were joined into a long vector in this layer. For instance, if
contextðωkÞ ¼ ωk�nþ1; � � � ;ωk�1f g, then v contextðωkÞð Þ ¼
v ωk�nþ1ð Þ; � � � ; v ωk�1ð Þ½ � where the vector dimension of context
with n–1 words is m(n–1). Additionally, context with words less
than n–1 can be padded as the normal vector.

Hidden layer. For extraction of the deep features, outputs of the
projection layer were delivered into such a layer. We designed a
hidden layer with a size of 128 and employed a tanh function for
activation.

Output layer. Designed for distributary, this layer changed the
output of the hidden layer into a vector with a size of N, where N is
the number of possible results we set.

Softmax layer. With the results of the output layer as input, this
layer normalized the results and output a new vector, of which
each item was the probability of the corresponding results.

Monte Carlo Model. As mentioned above, based on the maximum
probability value in the probability vector of the softmax layer, the
N-gram model refers to the most likely result. However, there are
some drawbacks to this inference process. For instance, if we obtain
a vector with a maximum value of 0.4 and a second value of 0.39,
the N-gram model will recommend a result corresponding to 0.4 as
the output. However, the result corresponding to 0.39 with almost
equal possibility is omitted. Furthermore, such an inference process
is similar to a greed-based method, with a so-called optimized
result as the output for each call. Thus, the combination of
optimized results for each call never means a global optimum. In
addition, such a process can obtain only one result but more
possible results to be chosen according to our needs.
Considering these factors, we introduced the Monte Carlo

simulation method to obtain more natural results. Instead of taking
the maximum value as a result, the Monte Carlo method takes the
probability vector of the softmax layer as input and then generates
many results by throwing the dice, of which each face presents a
potential result with the corresponding probability in the prob-
ability vector.
Taking one word as a start, we first called the N-gram model to

obtain the probability vector and then used Monte Carlo simulation
to generate the next protentional words. Splicing the input word
and these protentional words as a new word for the next input, we
repeated the process above until the length of eventual output.
Finally, all these simulation results were sorted by their products of
conditional probability in each cycle, and the top 100 oligopeptide

candidates, composed of the amino acids with probability larger
than random events (> 1/20 for 20 types of human amino acids),
were sent for cluster tree construction.

Hierarchical clustering based on Levenshtein distance
To further excavate functional oligopeptides from deep-learning-
based oligopeptides, we applied hierarchical clustering based on
the Levenshtein distance between any two equal-length oligo-
peptides. The main reasons included the following: 1) homo-
genous sequences are more likely to obtain similar scores in the
NLP model, which makes certain homogenous sequences tested
multiple times; 2) clustering among sequences of different lengths
may introduce large deviations, as the missing parts in the short
ones will be treated as arbitrary amino acids; and 3) clustering has
the ability to discover new information. Briefly, we first used the
“adist” function to calculate the Levenshtein distance between any
two oligopeptides of the same length. Second, we clustered these
oligopeptides using the “hclust” function. Third, we plotted the
dendrogram using the phylogram and ggtree packages. Finally,
based on the results of hierarchical clustering, we chose the top
three oligopeptides in every group as candidates in the
subsequent experimental validations. All the analyses were
integrated into a homemade R script.

Synthesis of oligopeptide
Peptides with purity >99% were ordered from China Peptides Co.,
Ltd., each 500mg. HPLC and MALDI data were provided with
lyophilized peptides. Peptides used in the in vitro assay were
dissolved in saline to a final concentration of 0.1 mg·mL−1 stock
solutions and stored at –80 °C for no more than two weeks. The
random sequence AGLAS peptide and human BMP-2 (Accession #
NP_001191) were synthesized as controls for in vivo assays.

Cell culture and treatments
Mouse primary BMSCs were isolated from 8- to 12-week-old
C57BL/6 mice following previously reported protocols.38 hBMSCs
(American Type Culture Collection ATCC) were obtained from
ATCC. BMSCs were cultured in 5% CO2 at 37 °C in α-MEM (Gibco)
supplemented with 10% FBS (Gibco, Carlsbad, CA) and 1%
penicillin and streptomycin (Life Technologies). For determination
of the osteogenic activities of the peptides, mouse BMSCs,
osteoblasts, and MC3T3-E1 cells were cultured in cell culture
plates overnight at a density of 2 × 105 cells per mL and then
treated with the indicated concentrations of peptides in
osteogenic induction medium for different days. The osteogenic
induction medium was renewed every other day.

Animals
All animal studies were carried out in accordance with the
guidelines of the Institutional Animal Care and Use Committees of
Tongji University. Hauschka Ha/ICR female mice were used in this
study as wild-type mice to generate osteoporosis, bone fracture
and implant osteointegration models. Other mice used in this
study included LepRtd-tomato mice (LepR-Cre mice38 cross loxp-
Tomato mice39).

ALP and ARS staining
ALP staining was assayed using a BCIP/NBT Alkaline Phosphatase
Color Development Kit (Beyotime) according to the manufac-
turer’s instructions. Briefly, BMSCs that differentiated for 7 days
were fixed with 4% paraformaldehyde (PFA) for 10 min. Then, the
cells were washed and soaked in ALP staining buffer for 10 min at
RT. For ARS staining, BMSCs that differentiated for 21 days were
washed with PBS two times and fixed with 4% PFA for 10min at
RT. Then, the cells were soaked in ARS staining buffer for 10 min at
RT. All images of the plates were acquired by an Olympus
microscope, and quantitative data were collected through ImageJ.
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Administration of AIB5P to wild-type/LepRtd-tomato mice
Briefly, AIB5P was intravenously injected in 12-week-old Hauschka
Ha/ICR female mice or LepRtd-tomato female mice at a dose of
100 μg·kg−1 every three days. The mice were sacrificed after
1.5 months of treatment.

Micro-CT analysis
The distal femurs of mice from each group were scanned ex vivo
using a micro-CT system (micro-CT50, Scanco Medical, Switzer-
land). For visualization of all bone mass changes in the distal
femur, the total femur at a voxel size of 14 μm was scanned and
reconstructed. Furthermore, 100 slices of trabecular bone
underneath the growth plate (1.4 mm), 50 slices of vertebral
body (0.7 mm) and 50 slices of the cortex bone area (0.7 mm) at
a voxel size of 14 μm were reconstructed for the statistical
analysis. For callus analysis of fracture models, the callus of
25 slices above and below the fracture line was selected as the
region of interest. In the micro-CT slice scan interface, the bone
tissue outside the cortical bone of each slice near the fracture
line was judged to be callus. Sigma= 1.2, supports= 2 and
threshold= 200 were used to calculate the following para-
meters: BV/TV, Tb.Th, Tb.Sp Tb.N, and BMD. The fifth lumbar
vertebrae in the control and WT mice were compared by micro-
CT analysis.

Double-labeling analysis
We investigated the impact of AIB5P on the bone formation rate.
Xylenol orange and calcein labeling was performed. Briefly, first,
10 mg·kg−1 xylenol orange was injected into the mice via
intraperitoneal injection, and calcein was injected after 2 weeks
at a dose of 10 mg·kg−1.12 Then, 12 h after the injection of
calcein, all mice were sacrificed. The femurs were collected and
fixed in 4% PFA solution for 24 h. Then, the samples were
embedded in light-cured resin (EXAKT 7200 VLC, Germany) for
13.5 h before hard tissue sectioning was performed with a hard
tissue sectioning and grinding system (EXAKT micro section and
grinding system, Germany). The thicknesses of all slides were
controlled between 15 μm and 20 μm. The slides were rinsed and
counterstained with DAPI (Sigma, USA). Images were obtained
under a confocal microscope (Leica image analysis system,
Q500MC). Bone dynamic histomorphometric analyses for MAR
and BFR/BS were performed according to the standardized
procedures published by the American Society for Bone Mineral
Research.40

Hematoxylin and eosin staining
The femurs from the mice of the control or AIB5P-treated groups
were fixed with 4% PFA solution, decalcified in 10% EDTA for
21 days, embedded in paraffin and sectioned at a thickness of
4 µm. Finally, hematoxylin and eosin (H&E) staining was performed
according to the manufacturer’s protocol.

von Kossa staining
Hard tissue sectioning was performed on distal femurs from the
mice of the control or AIB5P-treated groups embedded in light-
cured resin. The femurs were collected and fixed in 4% PFA
solution for 24 h. Then, the samples were embedded in light-
cured resin (EXAKT 7200 VLC, Germany) for 13.5 h before hard
tissue sectioning was performed with a hard tissue sectioning
and grinding system (EXAKT micro section and grinding system,
Germany). The thicknesses of all slides were controlled between
15 μm and 20 μm. The slides were exposed to strong light until
the mineralized bone turned black after applying 2% silver
nitrate solution. Then, the slides were rinsed with distilled water
and quickly dipped into 5% sodium thiosulfate. The sections
were viewed under a light microscope, and the mineral
apposition rate was determined by bone dynamic histomorpho-
metric analysis.

Immunohistochemistry
Bilateral femurs were dissected, fixed with 4% PFA, and embedded
in paraffin. For detection of DMP1 in the matrix, the slides were
incubated with an anti-DMP1 antibody (monoclonal, 8G10.3)
diluted 1:300 in goat serum overnight at 4 °C, followed by rinsing
and incubating with a rabbit anti-mouse secondary antibody
(MXB, KIT-9706, China) for 30 min. The immunoreactivity to
antibodies was visualized using a DAB kit following the
manufacturer’s instructions. The sections were counterstained
with methyl green and viewed under a light microscope.

Toxicity assays
To detect the toxicity of AIB5P to important viscera, we treated
wild-type mice with 10mg·kg−1 control peptide or AIB5P at a
frequency of once every three days for one and a half months.
Serum, heart, lung, liver, spleen, and kidney were collected after
administration. The organs were sliced after embedding in
paraffin. H&E staining was performed for histopathological
analysis. Serum was used for ELISA detection to detect the
expression of biochemical factors.

Van Gieson staining
The sections from the implant model were fixed with 4% PFA solution
and then decalcified in 10% EDTA for 21 days. Paraffin embedding
and sectioning at a thickness of 4 µm were performed. Finally, Van
Gieson staining was performed according to the manufacturer’s
protocol. Briefly, the dewaxed slices were stained in hematoxylin for
~3min and then washed with water for 10min. After dying with Van
Gieson staining solution for 2min, the sections were rapidly
differentiated for several seconds with 95% ethyl alcohol’s semen.
Then, the sections were dehydrated in absolute ethyl alcohol, made
transparent in xylene, and sealed. Finally, imaging was performed.

Quantitative real-time PCR (q-PCR) assay
The total RNA was isolated from tissues or cells with RNAiso Plus
reagent (TaKaRa). cDNA was synthesized using a PrimeScript™ RT
reagent Kit with gDNA Eraser (Perfect Real Time) (TaKaRa). q-PCR
was conducted with a SYBR Premix Ex Taq II kit (TaKaRa). The
levels of mRNAs were normalized to that of the housekeeping
gene Gapdh. All q-PCR procedures, including the design of the
primers, validation of PCR conditions and quantification, were
performed according to MIQE guidelines. Gene-specific primer
sequences are listed in Supplementary Table 4.

Therapeutic evaluation of AIB5P in a mouse model of osteoporosis
For the bone loss rescue analysis, 12-week-old female ICR mice
were ovariectomized. After 3 months, all OVX mice were divided
into the following four groups (six mice per group): the sham,
OVX, OVX+ PTH, and OVX+ AIB5P groups. In the OVX or OVX+
AIB5P group, the OVX mice were treated with a control peptide
and AIB5P at a dose of 100 μg·kg−1 every three days. For the OVX
+ PTH group, the OVX mice were intraperitoneally injected with
PTH at a dose of 80 μg·kg−1 every 3 days. First, 75% ethanol was
used to prepare the injection site. Then, we placed an aseptic
needle under the abdomen, right or left quadrant at an angle of
30°. The needle was aspirated to ensure that it was placed
correctly, and the solution was slowly injected. One month after
drug administration, all mice were sacrificed.

Bone fracture model
An established fracture model was generated in 12-week-old female
ICR mice. Briefly, after anesthesia with isoflurane inhalation, a
surgical blade was used to transect the middle diaphysis of the
femur. In addition, the fracture site was stabilized by inserting a 0.7-
mm sterile needle. The periosteum adjacent to the fracture site was
carefully protected to avoid human interference. The fractured mice
were injected with AIB5P at a dose of 100 μg·kg−1 every three days
from the first weekend after surgery. The mice were sacrificed
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3 weeks post-fracture, and the femur fracture specimens were fixed
in 4% paraformaldehyde overnight at 4 °C.

Implant osteointegration model
A titanium implant osteointegration model in the femurs of 12-
week-old female ICR mice was established to evaluate the
therapeutic potential of AIB5P for promoting osseointegration.
Briefly, after anesthesia with isoflurane inhalation, a 1.5 cm incision
was made directly above the femur. The fascia and muscle were
separated, and the middle part of the thigh was exposed to drill a
1.5 mm loophole with a low-speed handset. The muscles and skin
were sutured after the titanium nail, which was 1.5 mm in
diameter and length of 3 mm, was inserted into the notch. AIB5P
administration was performed from week 2 to week 4 after the
surgery at a dose of 100 μg·kg−1 every 3 days.

Western blot assay
The protein concentration was quantified by the BCA Protein Assay
Kit (Beyotime) and normalized. Approximately 30 µg of protein
extracts was analyzed by electrophoresis using a 12% SDS–PAGE
gel and electroblotted onto polyvinylidene fluoride membranes
(Millipore). The membranes were blocked with 5% BSA and
incubated with specific primary antibodies overnight at 4 °C with
gentle rotation. A horseradish peroxidase-labeled secondary anti-
body was added, incubated for 1 h with shaking and visualized
using an enhanced chemiluminescence reagent (Millipore). The
primary antibodies included anti-GAPDH (#200306-TE4, 1:2 000),
anti-FAK (#860324, 1:1 000), anti-p-FAK (#381143, 1:1 000), anti-
ITGB1 (#R24729, 1:1 000), anti-ITGA5 (#R24725, 1:1 000), and anti-
ITGB3 (#384730, 1:1 000) from Zen BioScience and anti-AKT (#4691,
1:1 000), anti-p-AKT (#4060, 1:1 000), anti-ERK (#4695, 1:1 000), and
anti-p-ERK (#4370, 1:1 000) from Cell Signaling.

Biotinylated peptide pulldown assay
Biotinylated peptide pulldown assays were performed following
previously reported protocols with brief modifications.41 Briefly,
BMSCs were cultured in 100mm cell culture dishes to 90%
confluence. Then, the cells were washed once with ice-cold PBS,
and 500 μg C-terminal biotinylated AIB5P was added to the dishes
and incubated for 1 h at 4 °C. The cells were then incubated with
2 mmol·L−1 DTSSP solution on ice for 2 h to perform crosslinking.
Next, the reaction was stopped by the addition of 20 mmol·L−1

Tris-HCl. Then, the total proteins were extracted by 1mL of IP lysis
buffer (Thermo) on ice for 10 min. Dynabeads MyOne Streptavidin
C1 (Invitrogen) was added to the protein lysates and mixed
thoroughly. After incubation at 4 °C overnight with gentle rotation,
magnetic separation was used to pull down the peptide-protein
complexes. After the complex was washed four times with lysis
buffer, the purified proteins were separated by SDS-PAGE, the
protein band was digested with trypsin, and the peptide
fragments were identified by LC/MS/MS (Q Exactive, Thermo
Scientific).

Immunofluorescence assay
BMSCs were incubated with 10 μg·mL−1 FITC-tagged AIB5P for 2 h,
and then, Hoechst 33342 (Beyotime) was added to the plate to
label the nuclei. Finally, the cells were rinsed two times with ice-
cold PBS and visualized under a confocal laser scanning
microscope (Zeiss, LSM700).

Cell transfection
JetPRIME transfection reagent (Polyplus) was used for siRNA
transfection. Briefly, 110 pmol siRNA was added to 200 μL of
jetPRIME buffer and vortexed for 10 s. Then, 4 μL of jetPRIME
transfection reagent was added to the buffer, vortexed for 1 s,
spun down and incubated for 10min at RT. Finally, the
transfection complex was added to the 6-well plate and incubated
for 6 h. Then, the medium was changed, and the cells were

cultured for 48 h before sampling. Scramble (TTCTCCGAA
CGTGTCACGT) and Itga5 siRNAs (CACUGUUCCUCAUCUUCAAGA)
were synthesized by IBSBio (Shanghai, China).

Statistics
All statistical analyses were performed with SPSS v16.0. Significant
differences between two groups were determined by unpaired
Student’s t test (two-tailed). Significant differences among multi-
ple groups were determined by one-way ANOVA with Dunnett’s
multiple comparisons test. All numerical data are expressed as the
mean ± s.e.m. P < 0.05 was considered statistically significant. *P <
0.05, **P < 0.01, ***P < 0.001, ****P < 0.000 1, n.s., not significant.

Study approval
This study was approved by the Ethics Committee and the
Institutional Animal Care and Use Committee of Tongji University
(2019-TJ2019015). All animals were bred according to the National
Institutes of Health’s Guide for Care and Use of Laboratory Animals.
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