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Europium Luminescence: 
Electronic Densities and 
Superdelocalizabilities for a 
Unique Adjustment of Theoretical 
Intensity Parameters
José Diogo L. Dutra1,2, Nathalia B. D. Lima2, Ricardo O. Freire1 & Alfredo M. Simas2

We advance the concept that the charge factors of the simple overlap model and the polarizabilities 
of Judd-Ofelt theory for the luminescence of europium complexes can be effectively and uniquely 
modeled by perturbation theory on the semiempirical electronic wave function of the complex. 
With only three adjustable constants, we introduce expressions that relate: (i) the charge factors to 
electronic densities, and (ii) the polarizabilities to superdelocalizabilities that we derived specifically 
for this purpose. The three constants are then adjusted iteratively until the calculated intensity 
parameters, corresponding to the 5D0→7F2 and 5D0→7F4 transitions, converge to the experimentally 
determined ones. This adjustment yields a single unique set of only three constants per complex 
and semiempirical model used. From these constants, we then define a binary outcome acceptance 
attribute for the adjustment, and show that when the adjustment is acceptable, the predicted 
geometry is, in average, closer to the experimental one. An important consequence is that the terms 
of the intensity parameters related to dynamic coupling and electric dipole mechanisms will be 
unique. Hence, the important energy transfer rates will also be unique, leading to a single predicted 
intensity parameter for the 5D0→7F6 transition.

The theoretical foundation for the first lanthanide luminescence models began to burgeon in the late 
′ 20 s. Through the Point Charge Electrostatic Model, PCEM, Bethe estimated the magnitude of the crys-
talline electric field on the energy levels of the 4d and 4f orbitals1. In 1937, Van Vleck assigned the 
narrow spectral lines observed for the lanthanide ions to 4f transitions. Further, in this same article, 
Van Vleck addressed the nature of these electronic transitions and classified them as governed by elec-
tric dipole, magnetic dipole and electric quadrupole mechanisms2. Furthermore, eight years later, by 
semi-quantitative calculations, Broer and coauthors demonstrated that the electric dipole mechanism 
was sufficient to explain the observed experimental intensities3.

These were the works that inspired and gave support to Judd-Ofelt theory4,5. Indeed, in 1962, Judd4 
and Ofelt5 published, in an independent manner, their studies on the transitions between the electronic 
energy levels in the 4f sub-shell of lanthanide ions. In their articles, they both formulated essentially the 
same theory that quantitatively explains the radiative optical transitions in the lanthanide ions, in which 
they used Racah algebra to arrive at expressions for the oscillator strengths related to the forced electric 
dipole terms within 4fn configurations4,5. The calculation of intensity parameters through the Judd-Ofelt 
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theory depends on the contributions of two important terms that represent two mechanisms, each: (i) 
the forced electric dipole mechanism, and (ii) the dynamic coupling mechanism.

Calculation of the forced electric dipole mechanism depends on the odd parity crystal field parame-
ters. Until the early 80 s, these parameters were obtained from PCEM. However, at that time, reports in 
the literature suggested that the even-parity terms obtained by PCEM do not correspond to the observed 
crystal field splitting in lanthanide ions6–8. To overcome part of these discrepancies, in 1982, Malta intro-
duced the Simple Overlap Model—SOM9. The SOM model assumes two postulates: (i) the 4f energy 
potential is generated by charges, uniformly distributed in a small region located around the midpoints of 
the lanthanide–ligand chemical bonds, and (ii) the total charge in each region is equal to -geρ, where g is 
a charge factor, e is the fundamental electric charge, and ρ is a parameter proportional to the magnitude 
of the total overlap between the lanthanide ion and the ligand atoms.

While PCEM only treats the metal-ligand atom bonds as a purely electrostatic phenomenon, SOM 
introduces a correction to the crystal field parameters of PCEM in order to confer to it a degree of cova-
lency through a charge factor g. However, the SOM article9 did not provide equations for its calculation.

The calculation of intensity parameters through the Judd-Ofelt theory further depends on equations 
describing the dynamic coupling mechanism, which in turn depends on structural aspects (coordina-
tion geometry), and is thus sensitive to the chemical environment around the lanthanide ion through 
polarizabilities, α i, of the i directly coordinated atoms of the ligands10. So far, there are no expressions 
that allow the calculation of these polarizabilities. More recently, Malta and co-workers introduced the 
concept of the overlap polarizability of a chemical bond and proposed an ordinal scale of covalence for 
lanthanide complexes11. They also proposed an equation for calculating this new overlap polarizability11. 
However, this overlap polarizability is only a part of the polarizability itself, i.e. this equation does not 
fully quantify the polarizabilities α i.

Hence, to this day, the charge factors of the SOM model and the polarizabilities of the Judd-Ofelt 
theory do not have any mathematical expressions to allow them to be evaluated.

In 1994, we introduced the Sparkle Model to carry out semiempirical molecular orbital calculation 
of lanthanide complexes at the AM1 level12,13, making it also possible to calculate UV-Vis absorption 
spectra from the Sparkle Model geometry via INDO/S14. The model was improved in 200415 with the 
addition of Gaussian functions to the core-core repulsion and proved useful for the design of lumines-
cent complexes16,17. Subsequently, robust statistical methodologies were incorporated into the parame-
terization procedure, and the model has been since parameterized for a variety of existing and widely 
distributed semiempirical models, such as AM118, PM319,20, PM621, PM722, and RM123. We designed the 
Sparkle Models24–28 to predict mainly geometries—the most computing time intensive part of lanthanide 
complex computational chemistry. Indeed, once one has a fully optimized geometry, more advanced 
single point calculations on the complexes can then be carried out with more workability. The variety 
of Sparkle Model24–28 implementations is important because ligands in the complexes vary, and different 
semiempirical models tackle particular bonding situations differently: some more accurately than others. 
Therefore, having a palette of Sparkle Models to choose from, adds a strong value to the experimentalist. 
All are fully available in the MOPAC software29.

Recently, the RM1 model for lanthanides has been introduced30. In this model, the europium atom 
is now represented in the semiempirical calculation as an atom with a core depicting [Xe4f6]; while 
assigning to its semiempirical valence shell, three electrons and the following set of semiempirical atomic 
orbitals: 5d 6s 6p. The RM1 model for lanthanides so defined, does extend the accuracy of the previous 
Sparkle Models to types of coordinating bonds other than Eu-O and Eu-N; the most common ones for 
Eu being Eu-C, Eu-S, Eu-Cl, and Eu-Br.

Both the Sparkle Model and the RM1 model for the lanthanides are quantum chemical models, which 
generate electronic wave functions, and therefore yield a wealth of information. However, it is notewor-
thy that, up to now, the electronic wave functions of these models have not been directly used in the 
context of lanthanide luminescence.

Indeed, the last 20 years were fraught with publications about the development and application of 
theoretical methods to study the luminescent properties of lanthanide compounds, especially for systems 
containing europium ions. However, even now, less than 3% of published studies involving lanthanide 
ions make use of theoretical tools31.

In 2013, in order to better disseminate these theoretical tools, our group published an article show-
ing, systematically, the theoretical study of a simple system of europium32, and then released our new 
luminescence software package, LUMPAC31. This is the first and only software specifically designed for 
the study of luminescence properties of systems containing lanthanide ions. This first version, which is 
available via our homepage (www.lumpac.pro.br), was designed to be efficient and user-friendly. In the 
short time that it has been available, it is already in use by many experimental groups worldwide.

So far, in the first version of LUMPAC31 and other articles33–39, the charge factors gi and polarizabilities 
α i are frequently adjusted in order to reproduce the experimental intensity parameters Ω2

exp and Ω4
exp. 

During the adjustment procedure, the calculated intensity parameters (Ωλ
calc) from the optimized geom-

etry, obtained from one of our Sparkle Models, are compared with the experimental intensity parameters 
(Ωλ

exp).

http://www.lumpac.pro.br


www.nature.com/scientificreports/

3Scientific RepoRts | 5:13695 | DOi: 10.1038/srep13695

In this article, we advance the concept that the charges, gi, and polarizabilities, α i, for europium 
complexes, within SOM and Judd-Ofelt theory, can be effective and uniquely modeled by energy varia-
tions resulting from perturbations on the semiempirical electronic wave function of the complex. In our 
conceptualization, the charges will be determined from first order perturbation theory, and the polariz-
abilities from second order perturbation theory.

Results
Uniqueness of gi and αi. First, we carried out a series of tests to determine the uniqueness of the 
adjusted set of parameters gi and α i for some representative complexes. We found out numerically that 
the number of degrees of freedom is actually smaller than the theoretical maximum of 2Nc, where Nc is 
the coordination number of the complex, due to restrictions that result from the need to accommodate 
the geometry and the values of Ω2

exp and Ω4
exp in gi and α i. Nevertheless, the residual number of degrees 

of freedom is still quite large. Indeed, there is an enormous space of solutions for this problem, with 
drastically different values of gi and α i leading exactly to the same experimental values of both Ω2

exp and 
Ω4

exp. That was an unsettling finding because the different gi and α i imply in different predicted Ωcalc
6  

values, on which the radiative emission rate depends. Further, the contribution to the intensity parame-
ters from coupling dynamics (Ωλ

dc), which depends on α i, and from electric dipole (Ωλ
ed), which depend 

on gi, will also vary and be non-unique for any geometry and any two given values of Ω2
exp and Ω4

exp. 
Furthermore, Ωλ

ed, is used to predict the energy transfer rates via the multipolar mechanism, which will, 
in turn, be non-unique, depending on the gi and α i values chosen from the space of solutions to the 
problem of finding a set of gi and α i consistent with the two values Ω2

exp and Ω4
exp.

So, in this article, we introduce a way of determining the sets of gi and α i in a unique manner for any 
given complex, from which the geometry and the values of Ω2

exp and Ω4
exp are known.

Determining gi and αi uniquely from semiempirical calculations. In order to model the effect 
by the metal ion on the directly coordinated atoms of the ligands, we use first and second order pertur-
bations on the semiempirical wavefunction40, as fully described in the Supplementary Information which 
accompanies this article.

Accordingly, in this article, we postulate that the charge factors gi of the SOM model41 are equal to 
the following expression obtained from first order perturbation theory:

= . ( )g Q q 1i i

where Q will be a single parameter to be applied to all zero differential overlap, ZDO, electronic densities, 
qi, of all directly coordinated atoms i. The expression for the ZDO electronic density at any atom μ  of 
the complex, qμ is
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where i’ runs over all occupied molecular orbitals of the complex, p runs over all atomic orbitals of 
atom μ , and µ ′cpi  is the corresponding linear coefficient.

Likewise, we further postulate that the polarizabilities α i of Judd-Ofelt theory4,5 are given by:

α = ⋅ + ( )SE D C 3i i

obtained from second order perturbation theory, with constants D and C being the same for all directly 
coordinated atoms i of a given complex, and SEσ is the electrophilic superdelocalizability of any atom σ 
of the complex, originally introduced by Simas40,
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where i’ runs over all occupied molecular orbitals of the complex, p and q run over all atomic orbitals 
of atom μ , and σ ′cpi  and σ′cqi  are the corresponding linear coefficients. Our electrophilic superdelocalizabilty 
is therefore a generalization to an all valence electron method of the corresponding superdelocalizability 
of Fukui42.

In this sense, our electrophilic superdelocalizability40 is unique and differs from the one in the article 
by Lewis43 and also from the one in the article by Brown and Simas44 because these do not take into 
account the cross-products of the atomic orbitals for each molecular orbital. And it also differs even 
more from the delocalizability of Schüürmann45,46, DE(i), because not only, as Lewis43 and as Simas and 
Brown44, he does not take into account the cross-products of the atomic orbitals for each molecular 
orbital, but also because, instead, he uses a different denominator (see Eq. S56 of the Supplementary 
Information).
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As we carried out research for this article, we also tried to use the superdelocalizability of Lewis43 and 
of Simas and Brown44, and also the delocalizability of Schüürmann in Eq. (58). However, they all did not 
produce good fittings. Therefore, we stayed with our superdelocalizability as defined by Eq. (4) above.

Complete derivations of first order and second order perturbations on the semiempirical wavefunc-
tion of the lanthanide complex, leading to the ZDO electronic densities, to the electrophilic superdelo-
calizabilities Eq. (4), and to Eqs. (1) and (3), are fully presented in the Supplementary Information.

Parameters Q, D, and C are then adjusted for each complex in order to reproduce the various exper-
imentally obtained Ωλ

exp with λ  =  2, 4. And in the process of finding the optimal Q, D, and C parameters, 
we use the nonlinear optimization technique generalized simulated annealing47.

LUMPAC implementation. Both the charge factors from SOM41 and the polarizabilities from 
Judd-Ofelt theory4,5 introduced by Jørgensen and Judd10, to be used in Eqs (S10,S14), must be positive. 
Since the charge factors, as advanced in the present article, are being calculated from Eq. (1) as a product 
between the always-positive ZDO electronic densities at the directly coordinated atoms, and a multiplica-
tive constant Q, then this constant Q must always be positive as well.

Likewise, as the electrophilic superdelocalizability is always a negative quantity, and the polarizability 
must be a positive quantity. Then, from Eq. (3), SEi·D+ C >  0 and therefore, the following inequality must 
be always obeyed: C >  − SEi·D.

After a large number of simulations, we noted that the D and C parameters optimized to reproduce 
the experimental intensity parameters were almost always positive values. Therefore, we restricted the 
acceptable values of D and C to positive ones. Further justification of that can be arrived at, by comparing 
the homomorphic equations Eq. (3) and Eq. (S54) of the Supplementary Information, when it becomes 
clear that constant D can be interpreted as being (δβστ)2 of Eq. (S54), necessarily a positive value. Since 
SEi is negative because of the occupied orbital energies in its denominator, then the product SEi·D is a 
negative quantity. As such, the polarizability can only be turned positive by a positive C.

Moreover, we also noted that, very frequently, the optimized values of D and C obeyed approximately 
the following rule: D ≈  2C, the vast majority with values of D lying in the interval 1 <  D <  2.5C. For 
the cases where this ratio fell outside this range, the D/C ratio found by the non-linear optimization 
techniques tended to be invariably too small, close to zero. In these cases, the adjustment procedure has 
not usually been successful. Indeed, when D ≈  0 ≪  C, then the effect of the superdelocalizabilities on 
the polarizabilities is being zeroed and the polarizabilities of all atoms become essentially similar and 
approximately equal to C. In these cases, we regard such fittings to be devoid of physical meaning and 
discard them. So, there must be some truth in the fact that acceptable fittings always display a D/C ratio 
≈ 2 au−1, which adds to the strength of the methodology we are introducing in this article. We avail 
ourselves of this fact and define here a binary outcome acceptance attribute for the adjustment, that is: 
we consider the adjustment acceptable whenever D/C >  1 au−1, and unacceptable whenever D/C ≤ 1 au−1.

Accordingly, as starting guesses for the parameters in the non-linear optimization of Eq. (5), we then 
choose values subjected to the conditions Q >  0, D >  0, C>  −  SEi·D, and D ≈  2C.
Ω6

exp is rarely observed from emission spectra because it is always displaced towards longer wave-
lengths and it is also very weak. Thus, in the process of obtaining the fit, we chose to minimize the 
quadratic errors in Ω2

exp and Ω4
exp, while simultaneously minimizing Ω6

exp according to Eq. (5), below.

′ = (Ω − Ω ) + (Ω − Ω ) + (Ω ) ( )F 5resp
calc calc calc
2 2

exp 2
4 4

exp 2
6

2

Discussion
We decided to test the methodology advanced in this article on all europium complexes whose crystal-
lographic structures could be obtained from the Cambridge Crystallographic Database48–50, and whose 
values of Ω2

exp and Ω4
exp have been published. Thirteen very different complexes obeying this criterion 

were found, and are listed in Table 1.
To exemplify how the new methodology functions, consider the crystallographic structure of the 

complex of CSD code GIPCAK, Eu(BTFA)3(4,4-BPY)(EtOH), shown in Fig. 1, where BTFA stands for 
4,4,4-trifluoro-1-phenyl-2,4-butanedione, and 4,4-BPY for 4,4′ -bipyridine. We then carried out a single 
point Sparkle/RM1 calculation in order to obtain the ZDO electronic densities and electrophilic super-
delocalizabilities at the directly coordinating atoms of the ligands to be used in the fitting procedure. We 
also carried out single point RM1 model for Eu(III) calculations to obtain the ZDO electronic densities 
and electrophilic superdelocalizabilities, so that we can now compare the electronic properties results, at 
the crystallographic geometry, from a Sparkle Model with those from the RM1 model for Eu(III), which 
has valence orbitals at the europium ion center.

Results are presented in Table 2, which shows the values for Q, D, and C for both Sparkle/RM1 and 
RM1 model for europium calculations, together with values, at the directly coordinated atoms of the 
ligands, of ZDO electron densities, electrophilic superdelocalizabilities, and the corresponding charge 
factors g and polarizability α  values. Note that the ratio D/C is 2.13 au−1 for the Sparkle/RM1 case and 
2.43 au−1 for the RM1 for Eu(III) case.
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Observe that the present fitting naturally groups the polarizabilities of the directly coordinated atoms 
in same ligand groups. That is, the oxygen atoms from one of the BTFAs, BTFA3, have similar Sparkle/
RM1 polarizabilities of 6.78 Å3 and 6.87 Å3; the oxygen atoms from BTFA2 also have similar polarizabil-
ities of 1.30 Å3 and 1.23 Å3; and for polarizabilities of the oxygen atoms of BTFA1 the values are 0.183 Å3 
and 0.0517 Å3. Further, the polarizability of the oxygen from the coordinated ethanol is 4.59 Å3, and of 
the nitrogen atom of 4,4-BPY the value is 1.89 Å3, both being intermediary values. This grouping of 
polarizabilities is in line with what had been the practice until now, and implemented in version 1.0 of 
LUMPAC31. Note that this same grouping also naturally occurs in the RM1 model for Eu(III) for the 

CSD Code Complexa Ω2
exp (10−20 cm2) Ω4

exp (10−20 cm2) Reference

854429b (EMIm)2[Eu(PIC)4(H2O)2]PIC 16.7 7.7 53

DEVHOC Eu(ISOVIND)3(H2O)(EtOH) 40.9 17.5 54

EWOCOJ Eu(FOD)3(PHEN) 19 2.6 55

GIPCAK Eu(BTFA)3(4,4-BPY)(EtOH) 28.8 6.7 56

LOLXAN Eu2(CYN)6(BPY)2 7.17 8.96 57

OTOYEC Eu(BMDM)3(TPPO) 37.2 3.1 58

QAMLEX Eu(TFNB)3(PHEN) 46.3 7.8 59

QAMLIB Eu(PFNP)3(PHEN) 49 8.2 59

RATKUU Eu(DMB)3(DMA) 51 6.7 54

VENLEH (BEIm)2[Eu(PIC)5] 12 10.3 38

VENLIL (BBIm)2[Eu(PIC)5] 9.6 9.2 38

YETTOH Eu(PBI)3(PHEN) 15.66 1.53 60

YETTUN Eu(PBI)3(H2O)(EtOH) 16.47 14.29 60

Table 1.  Europium complexes with crystallographic structures available from the Cambridge Structural 
Database, CSD, and that have published values of Ω2

exp and Ω4
exp. aLigands are identified by the usual 

abbreviations. EMIm =  1-ethyl-3-methylimidazolium; PIC =  picrate; ISOVIND =  2-isovaleryl-1,3-
indandionate; EtOH =  ethanol; FOD =  6,6,7,7,8,8,8-heptafluoro-2,2-dimethyl-3,5-octadionate; 
PHEN =  1,10-phenanthroline; BTFA =  4,4,4-trifluoro-1-phenyl-2,4-butanedione; 4,4-BPY =  4,4′ -bipyridine; 
CIN =  hydrocinnamate; BPY =  2,2′ -bipyridine; BMDM =  methoxy-dibenzoyl-methane; 
TPPO =  triphenylphosphine oxide; TFNB =  4,4,4-trifluoro-1-(2-naphthyl)butane-1,3-dione; 
PFNP =  4,4,5,5,5-pentafluoro-1-(2-naphthyl)pentane-1,3- dione; DMB =  dimethylbenzamide; 
DMA =  dimethylacetamide; BEMIm =  1-butyl-3-ethylimidazolium; BBIm =  1-butyl-3-methylimidazolium; 
PBI =  3-phenyl-4-benzoyl-5-isoxazolonate. bCambridge Crystallographic Data Centre deposited CSD entry.

Figure 1. Perspective view of the crystallographic geometry of complex Eu(BTFA)3(4,4-BPY)(EtOH), 
GIPCAK. Red spheres represent oxygen atoms, blue spheres represent nitrogen atoms, and green sticks 
represent fluorine. The largest sphere in the center represents the europium atom.
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electronic properties of this same complex (see Table 2). While before, and also in LUMPAC, that had to 
be done by hand, here the groupings naturally emerge from the quantum chemical calculations.

Table 3 presents the Q, D, and C parameters for similar fittings for all 13 complexes considered, with 
the electronic densities and superdelocalizabilities computed by single point (using the 1SCF keyword 
of MOPAC) Sparkle/AM1, whereas Table 4 shows corresponding results computed by single point RM1 
model for Eu(III).

Noticeably, a general trend is followed in both Tables 3 and 4 for the quantities Q, D, and C, with all 
fittings having resulted being acceptably good, except for complex QAMLIB where the errors in both 
Ωcalc

2  and Ωcalc
4  are larger. The same happens when we examine the fittings for the RM1 model for Eu(III), 

also at the crystallographic geometries.
For both models, the error in Ωcalc

2  for complex QAMLEX is mildly acceptable, but the error in Ωcalc
4  

is not. However, the impact of Ωcalc
4  in Arad is much smaller, which makes this situation slightly less 

Sparkle/RM1 RM1 model for Eu(III)

Ligand Atom

Q =  0.0537 au−1 Q =  0.0927 au−1

D =  25.5 au−1·Å3 D =  31.4 au−1·Å3

C =  12.0 Å3 C =  12.9 Å3

D/C =  2.13 au−1 D/C =  2.43 au−1

q (au) SE (au) g α  (Å3) q (au) SE (au) g α  (Å3)

N2 (4,4-BPY) 5.50 − 0.395 0.296 1.89 5.22 − 0.344 0.484 2.15

O3 (BTFA1) 6.67 − 0.461 0.358 0.183 6.32 − 0.399 0.586 0.413

O4 (BTFA1) 6.73 − 0.466 0.362 0.0517 6.35 − 0.412 0.588 0.0081

O5 (BTFA2) 6.76 − 0.418 0.363 1.30 6.37 − 0.351 0.591 1.94

O6 (BTFA2) 6.67 − 0.420 0.358 1.23 6.35 − 0.380 0.589 1.01

O7 (BTFA3) 6.71 − 0.203 0.361 6.78 6.32 − 0.193 0.587 6.87

O8 (BTFA3) 6.73 − 0.196 0.362 6.97 6.36 − 0.189 0.590 7.03

O9 (EtOH) 6.53 − 0.289 0.351 4.59 6.28 − 0.270 0.582 4.48

Table 2.  Sparkle/RM1 and RM1 model for Eu(III) ZDO electronic densities q and electrophilic 
superdelocalizabilities for each atom directly coordinated to europium(III), in complex Eu(BTFA)3 
(4,4-BPY)(EtOH), CSD code GIPCAK, together with corresponding charge factors g and polarizabilities 
α from the fitting. Calculated values for the intensity parameters agreed with the experimentally 
determined ones in both cases, where Ω2

exp =  28.8 ×  10−20 cm2 and Ω4
exp = 6.7 ×  10−20 cm2.

CSD code Q D C D/C Ωcale
2 Ω2

exp Ω4
exp Ω4

exp Ω6
exp

854429a 0.0454 19.9 11.1 1.79 16.7 16.7 7.70 7.7 0.149

DEVHOC 0.0338 38.6 19.7 1.96 40.9 40.9 17.5 17.5 0.338

EWOCOJ 0.260 33.3 16.7 1.99 18.7 19 3.70 2.6 1.25

GIPCAK 0.0537 25.5 12.0 2.13 28.8 28.8 6.70 6.7 0.246

LOLXAN 0.0416 16.4 10.9 1.50 7.17 7.17 8.97 8.96 0.0917

OTOYEC 0.271 58.0 29.2 1.99 37.1 37.2 4.33 3.1 1.18

QAMLEX 0.296 49.0 24.2 2.03 45.4 46.3 10.9 7.8 2.04

QAMLIB 0.297 52.6 26.7 1.97 38.7 49 7.57 8.2 1.88

RATKUU 0.0546 60.2 27.6 2.18 51.0 51 6.71 6.7 0.206

VENLEH 0.0372 17.6 10.3 1.71 12.0 12 10.3 10.3 0.153

VENLIL 0.0177 22.2 10.7 2.08 9.60 9.6 9.22 9.2 0.126

YETTOH 0.277 39.8 18.6 2.13 15.3 15.66 3.04 1.53 1.37

YETTUN 0.0729 29.0 14.0 2.06 16.5 16.47 14.3 14.29 0.307

Table 3.  Fitted Q, D, and C values for all complexes studied, with electronic densities and electrophilic 
superdelocalizabilities computed by single point (1SCF) Sparkle/RM1 at the crystallographic geometries, 
together with calculated and experimental Ωλvalues†. †Units are: Q (au−1); D (au−1·Å3); C (Å3); D/C 
(au−1); Ω λ(10−20 cm2). aCambridge Crystallographic Data Centre deposited CSD entry.
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important. Assuming that the crystallographic geometries are correct, these inaccurate fittings may have 
resulted from the Sparkle/RM1 electronic properties, from incorrect experimental values of Ω2

exp and 
Ω4

exp, or from an intrinsic inadequacy of the whole model. That is open to investigation. Nevertheless, for 
all other complexes the obtained fittings were very good.

We then decided to verify what would happen if the crystallographic geometries were not available. To 
simulate this situation, we then optimized the geometry of the complexes by both RM1 model for Eu(III) 
and Sparkle/RM1, and carried out the fittings. Results are presented in Tables 5 and 6.

In Table  5, five of the geometries clearly seemed to have been incorrectly predicted and the model 
could not properly carry out the fitting. For all these five cases (complexes of CSD codes GIPCAK, 
QAMLIB, VENLEH, VENLIL, and YETTUN) the ratio D/C was found to be close to zero after the fitting 
attempt. One other borderline case, where the ratio D/C was found to be 1.00 au−1, was OTOYEC. 
Despite Ωcalc

2  being close to Ω2
exp, the same could not be said of Ωcalc

4 . Hence the ratio D/C seems to truly 

CSD code Q D C D/C Ωcale
2 Ω2

exp Ωcale
4 Ω4

exp Ωcale
6

854429a 0.0442 23.3 11.6 2.00 16.7 16.7 7.70 7.7 0.151

DEVHOC 0.0292 39.8 18.5 2.15 40.9 40.9 17.5 17.5 0.227

EWOCOJ 0.315 36.6 16.7 2.19 18.0 19 5.15 2.6 1.62

GIPCAK 0.0927 31.4 12.9 2.43 28.8 28.8 6.75 6.7 0.277

LOLXAN 0.0435 25.2 13.0 1.93 7.17 7.17 8.96 8.96 0.0979

OTOYEC 0.292 68.4 30.8 2.22 36.3 37.2 6.78 3.1 1.14

QAMLEX 0.315 54.5 24.3 2.24 44.3 46.3 12.7 7.8 1.99

QAMLIB 0.315 59.8 28.0 2.14 40.9 49 12.8 8.2 1.80

RATKUU 0.0550 46.7 20.0 2.34 51.0 51 6.68 6.7 0.173

VENLEH 0.0402 20.1 10.6 1.90 12.0 12 10.3 10.3 0.158

VENLIL 0.0239 24.4 10.7 2.27 9.61 9.6 9.20 9.2 0.121

YETTOH 0.314 39.0 16.9 2.30 15.0 15.66 3.46 1.53 1.52

YETTUN 0.0855 32.6 14.3 2.28 16.5 16.47 14.3 14.29 0.283

Table 4.  Fitted Q, D, and C values for all complexes studied with electronic densities and electrophilic 
superdelocalizabilities computed by single point (1SCF) RM1 model for Eu(III) at the crystallographic 
geometries, together with calculated and experimental Ωλ values†. †Units are: Q (au−1); D (au−1.Å3); C 
(Å3); D/C (au−1); Ω λ (10−20cm2). aCambridge Crystallographic Data Centre deposited CSD entry.

CSD code Q D C D/C Ωcale
2 Ω2

exp Ωcale
4 Ω4

exp Ωcale
6

854429a 0.0753 27.0 14.4 1.88 16.7 16.7 7.69 7.7 0.140

DEVHOC 0.179 21.9 16.8 1.30 40.9 40.9 17.5 17.5 0.371

EWOCOJ 0.153 62.6 29.5 2.12 19.0 19 2.76 2.6 0.380

GIPCAK 0.127 0.0536 4.63 0.0116 28.8 28.8 6.67 6.7 0.166

LOLXAN 0.0688 36.4 19.5 1.87 7.17 7.17 8.97 8.96 0.166

OTOYEC 0.259 44.2 23.8 1.86 37.2 37.2 3.74 3.1 0.506

QAMLEX 0.296 50.9 25.3 2.01 46.0 46.3 9.31 7.8 1.50

QAMLIB 0.298 0.0033 8.74 0.0004 40.6 49 22.2 8.2 0.889

RATKUU 0.0275 47.6 24.4 1.95 51.0 51 6.65 6.7 0.149

VENLEH 0.0019 0.0047 4.11 0.0011 12.7 12 9.19 10.3 0.111

VENLIL 0.0016 0.0600 3.92 0.0153 10.2 9.6 8.31 9.2 0.160

YETTOH 0.192 28.6 14.4 1.99 15.6 15.66 2.18 1.53 0.542

YETTUN 0.0016 0.0026 4.28 0.0006 18.9 16.47 4.64 14.29 0.193

Table 5.  Fitted Q, D, and C values for all complexes studied, with electronic densities and electrophilic 
superdelocalizabilities computed by Sparkle/RM1 at Sparkle/RM1 fully optimized geometries, together 
with calculated and experimental Ωλ values†. The cells corresponding to geometries which led to 
unacceptable theoretical intensity parameters are painted gray. †Units are: Q (au−1); D (au−1·Å3); C (Å3); 
D/C (au−1);Ω λ (10−20cm2). aCambridge Crystallographic Data Centre deposited CSD entry.
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function as a compass in pointing to the acceptability of the fit. We are simply presenting these fits in 
Table 5 to illustrate the cases when we needed to reject the fits as devoid of physical meaning. The cells 
in the lines corresponding to these fits have been painted gray, so as not to be confused with the other 
acceptable ones.

The fact that the fits are acceptable when we use crystallographic geometries, and sometimes are not 
when we use Sparkle Model geometries, suggests that the adjustments seem to fail when the predicted 
geometries are not sufficiently accurate. This indicates that the choice of the semiempirical model to 
carry out the geometry optimization is a crucial step in this process. Since the RM1 model for Eu(III) is 
a more accurate model in terms of obtaining geometries, we expect that the fits will be more successful 
in this case. And that is corroborated by the results in Table  6, which shows fits from both geometric 
and electronic properties from RM1 model for Eu(III) calculations. This time, only one fit needed to be 
rejected due to the fact that the ratio D/C was close to zero: the fit for complex DEVHOC.

Accordingly, results presented in Tables 5 and 6 do reinforce the fact that excellent geometries are an 
important requirement for the fitting to be successful.

The robustness of the fitting can be strengthened by the relative similarity and stability of parameters 
Q, D, and C across all tables. Indeed, for example, for complex RATKUU, the values of Q in Tables 3 to 6 
are: 0.0546 au−1, 0.0550 au−1, 0.0275 au−1, and 0.193 au−1. The corresponding values of D are: 60.2 au−1.
Å3, 46.7 au−1.Å3, 47.6 au−1.Å3, and 47.5 au−1.Å3. And the corresponding values for C are: 27.6 Å3, 20.0 Å3, 
24.4 Å3, and 22.1 Å3.

In all cases studied, with either crystallographic or theoretically optimized geometries, only a sin-
gle minimum could be found in the fit given the constraints imposed on the problem: Q >  0, D >  0, 
C >  − SEi·D, and D ≈  2C, a result consistent with the uniqueness of the fits being introduced here. Such 
uniqueness makes possible eventual future interpretations of the meanings of the quantities Q, D, and C.

In the Supplementary Information, we present tables with results for both single point calculations at 
the experimental geometries, as well as for fully optimized geometries, for all the other Sparkle Models: 
Sparkle/AM1, Sparkle/PM3, Sparkle/PM6, and Sparkle/PM7.

We now have enough data to test the hypothesis that a geometry, closer to the crystallographic one, 
will tend to produce more acceptable fittings as measured by the binary outcome acceptance attribute for 
the adjustment represented by D/C, where D/C >  1, for acceptable fittings and D/C ≤  1 for unacceptable 
ones. For all complexes, we measured the difference between the theoretically predicted coordination pol-
yhedron (Eu(III) included) and the crystallographic one, by means of their minimized root-mean-square 
deviation, RMSD, corrected for the number of atoms. The minimization was performed on the polyhedra 
by translation and rotation, via the Kabsch algorithm51 employing a freely available Python script (http://
github.com/charnley/rmsd).

Table 7 shows all RMSD values for all complexes considered, computed between the crystallographic 
coordination polyhedra and the theoretically predicted ones, for all semiempirical models taken into 
consideration. When the theoretical intensity parameter adjustment resulted unacceptable, we painted 
the respective cell gray. As a result, we have 27 gray cells and 51 other ones. The mean RMSD of the gray 
cells is 0.525 Å and the mean RMSD of the 51 other cells is 0.367 Å. This indicates that, indeed, when 

CSD code Q D C D/C Ωcale
2 Ω2

exp Ωcale
4 Ω4

exp Ωcale
6

854429a 0.0863 33.9 15.2 2.23 16.7 16.7 7.72 7.7 0.261

DEVHOC 0.312 0.0009 7.66 0.0001 28.8 40.9 28.6 17.5 1.15

EWOCOJ 0.187 52.8 22.2 2.38 19.0 19 3.02 2.6 0.610

GIPCAK 0.0403 22.5 10.4 2.17 28.8 28.8 6.70 6.7 0.197

LOLXAN 0.0614 57.9 25.2 2.30 7.16 7.17 8.95 8.96 0.186

OTOYEC 0.290 34.5 18.8 1.84 36.6 37.2 6.56 3.1 0.675

QAMLEX 0.314 49.5 22.6 2.19 45.7 46.3 10.4 7.8 2.04

QAMLIB 0.313 49.2 23.4 2.10 48.7 49 9.68 8.2 1.82

RATKUU 0.193 47.5 22.1 2.15 50.9 51 6.99 6.7 0.415

VENLEH 0.0480 18.4 10.6 1.73 12.0 12 10.3 10.3 0.181

VENLIL 0.0438 20.4 10.2 2.01 9.60 9.6 9.19 9.2 0.137

YETTOH 0.242 28.4 13.2 2.15 15.4 15.66 2.66 1.53 1.02

YETTUN 0.126 13.2 10.0 1.32 16.5 16.47 14.3 14.29 0.310

Table 6.  Fitted Q, D, and C values for all complexes studied. with electronic densities and electrophilic 
superdelocalizabilities computed by RM1 for Eu(III) at RM1 for Eu(III) fully optimized geometries, 
together with calculated and experimental Ωλ values†. The cells corresponding to geometries which led 
to unacceptable theoretical intensity parameters are painted gray. †Units are: Q (au−1); D (au−1.Å3); C 
(Å3); D/C (au−1); Ω λ (10−20cm2). aCambridge Crystallographic Data Centre deposited CSD entry.

http://github.com/charnley/rmsd
http://github.com/charnley/rmsd
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the error in the geometry of the theoretical coordination polyhedron is larger, the theoretical intensity 
parameter adjustment tends to result unacceptable. We now turn to quantify the statistical significance 
of this statement by verifying whether the mean RMSD of the gray cells, 0.525 Å, is truly larger than the 
mean RMSD of the other cells, 0.367 Å. The t-statistic for both sets of data is 3.089, which, for 26 degrees 
of freedom, does indicate that the mean for the gray cells is indeed larger than the mean for the regular 
cells within a 99.8% confidence level.

This result does reinforce the fact that the choice of the semiempirical model to carry out the geom-
etry optimization is truly a crucial step in this process, because one needs an accurate geometry for an 
acceptable adjustment of the theoretical intensity parameters.

Moreover, if one does not possess the crystallographic geometry and computes the geometries of the 
complex by two theoretical methods, and one of them leads to an acceptable adjustment, and the other 
does not, it is likely that the geometry of the one, which yielded the acceptable adjustment, will be closer 
to the crystallographic geometry.

Conclusions
In this article, we advanced a procedure for fitting, in a unique manner, the theoretical intensity param-
eters Ωλ

calc to reproduce the experimentally obtained Ωλ
exp from either crystallographic geometries, or 

from geometries obtained from Sparkle Model or RM1 calculations on complexes. Thus, we now have a 
procedure, which is seemingly a robust one, and that leads to a unique set of g and α  necessary for the 
prediction of the intensity parameters. The relative stability of the Q, D, and C parameters for the same 
complex when the semiempirical method employed is varied, as can be seen from Tables 3 to 6, as well 
as from the tables in the Supplementary Material, further strengthens the uniqueness of the adjustment 
being advanced in this article. In addition, in the absence of crystallographic geometries, these can be 
obtained from either one of the Sparkle Models24–28, or from the more accurate RM1 model for 
lanthanides30,52.

The model contains a built in quality control index, the ratio D/C, which suggests that, in general, 
something seems not to be correct with the geometry vis a vis the intensity parameters when the value 
of this ratio is close to zero. Besides, for the adjustment to occur in a perfect manner, a requirement 
of the whole luminescence model seems to be that the geometry and intensity parameter values must 
be consistent with each other. In the absence of crystallographic geometries, one can try to optimize 
the complex with different Sparkle Models or with the RM1 model for lanthanides until a good fit is 
obtained. That is because each Sparkle Model underlying semiempirical method, AM1, PM3, PM6, PM7, 
or RM1, treats every type of ligand differently, and one method may be better for some ligand charac-
teristics than others.

As an additional evidence of consistency of our model, we showed that semiempirical methods that 
lead to an acceptable theoretical intensity parameter adjustment, also tend to produce more accurate 
geometries, likely closer to the true crystallographic one.

CSD Code Sparkle/AM1 Sparkle/PM3 Sparkle/RM1 Sparkle/PM6 Sparkle/PM7 RM1

854429a 0.001 0.327 0.328 0.351 0.265 0.556

DEVHOC 0.440 0.253 0.437 0.488 0.674 0.545

EWOCOJ 0.309 0.239 0.395 0.496 0.850 0.198

GIPCAK 0.419 0.727 0.401 0.344 0.458 0.336

LOLXAN 0.181 0.227 0.146 0.236 0.228 0.158

OTOYEC 0.303 0.317 0.320 0.395 1.118 0.228

QAMLEX 0.297 0.256 0.349 0.314 0.583 0.165

QAMLIB 0.380 0.349 0.304 0.299 0.798 0.211

RATKUU 0.301 0.275 0.344 0.332 0.380 0.257

VENLEH 0.763 0.358 0.427 0.725 1.248 0.220

VENLIL 0.715 0.574 0.566 0.608 0.605 0.201

YETTOH 0.375 0.260 0.412 0.426 0.254 0.328

YETTUN 0.573 0.896 0.795 0.586 0.758 0.379

Table 7.  RMSD values for all complexes considered between the crystallographic coordination 
polyhedra geometries and the fully optimized theoretical ones for all semiempirical methods available 
for lanthanide complexes†. The cells corresponding to geometries which led to unacceptable theoretical 
intensity parameters (see Tables 5, 6 of this article and S13 to S16 of the Supplementary Material) are 
painted gray. †Units are Å. aCambridge Crystallographic Data Centre deposited CSD entry.
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The uniqueness of the adjustment has a number of very good consequences for luminescence research, 
since, as mentioned before, a unique set of parameters Q, D, and C will lead to a single predicted Ωcalc

6  
value. Further, the contribution to the intensity parameters from dynamic coupling, (Ωλ

dc), which depends 
on α i, and from electric dipole (Ωλ

ed), which depends on gi, will also be unique for any given geometry 
and any two given values of Ω2

exp and Ω4
exp. Furthermore, Ωλ

ed, which is used to predict the energy transfer 
rates via the multipolar mechanism, will be also unique.

Methods
All Sparkle calculations were carried out using MOPAC201229, and all RM1 model for europium cal-
culations were carried out by a modified version of the same software. Calculations were done either 
at the crystallographic geometry, or by fully optimizing the geometry at the particular level of theory, 
when great care was taken to ensure that no imaginary vibrational frequencies were present. A modified 
version of LUMPAC was then coded to implement the new methodology being advanced in this article, 
and will be made available as a new version at http://www.lumpac.pro.br. This modified version was used 
to obtain the results presented in Tables 2 to 7 and Tables S1 to S16 of the Supplementary Information.
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