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Humans are constantly exposed to sequences of events in the environment. Those sequences fre-
quently evince statistical regularities, such as the probabilities with which one event transitions to
another. Collectively, inter-event transition probabilities can be modeled as a graph or network.
Many real-world networks are organized hierarchically and understanding how these networks are
learned by humans is an ongoing aim of current investigations. While much is known about how
humans learn basic transition graph topology, whether and to what degree humans can learn hi-
erarchical structures in such graphs remains unknown. Here, we investigate how humans learn
hierarchical graphs of the Sierpiński family using computer simulations and behavioral laboratory
experiments. We probe the mental estimates of transition probabilities via the surprisal effect : a
phenomenon in which humans react more slowly to less expected transitions, such as those between
communities or modules in the network. Using mean-field predictions and numerical simulations,
we show that surprisal effects are stronger for finer-level than coarser-level hierarchical transitions.
Notably, surprisal effects at coarser levels of the hierarchy are difficult to detect for limited learning
times or in small samples. Using a serial response experiment with human participants (n=100),
we replicate our predictions by detecting a surprisal effect at the finer-level of the hierarchy but not
at the coarser-level of the hierarchy. To further explain our findings, we evaluate the presence of a
trade-off in learning, whereby humans who learned the finer-level of the hierarchy better tended to
learn the coarser-level worse, and vice versa. Taken together, our computational and experimental
studies elucidate the processes by which humans learn sequential events in hierarchical contexts.
More broadly, our work charts a road map for future investigation of the neural underpinnings and
behavioral manifestations of graph learning.

I. INTRODUCTION

Humans perceive the world around them as a tempo-
ral sequence of consecutive events. Such a sequence can
be characterized by transition rules that specify which
event is followed by which other events. Transition rules
are probabilistic; given a history of events, there are mul-
tiple candidate subsequent events, and each candidate is
associated with a given transition probability. The pro-
cess whereby humans perceive and encode these transi-
tions is called statistical learning [1–3], and manifests in
many human activities. Some examples include learning
visual patterns [2, 4–7] or auditory sequences [3], acquir-
ing a first language [8], learning abstract relationships
between objects [9, 10], and understanding the structure
of social networks [11]. Statistical learning can be studied
by modeling events and their transitions using a transi-
tion graph or network : a mathematical object composed
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of nodes and edges that connect nodes. In such a tran-
sition graph, a node represents a unique event, and a
weighted edge between two nodes a and b represents the
probability that event b follows or precedes event a. Se-
quences can then be generated by following transition
rules defined by the transition graph. In experiments, as
humans perceive these sequences, they react to different
transitions with different amounts of time, which reveals
how the transition relations—and thus the underlying
statistical structure—are learned [6, 7].

Recent literature in statistical learning supports the
view that humans are sensitive to different graph struc-
tures underlying transition probabilities [1, 4, 12–14]. For
example, when displaying action cues drawn from transi-
tion graphs, humans can detect differences in individual
transition probabilities. Specifically, they react slower to
transitions with a lower probability and faster to tran-
sitions with a higher probability [7, 15]. This reaction
time slowing is sometimes referred to as a “surprisal
effect.” Surprisal effects are also observed in response
to mesoscale and global statistics of transition graphs.
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Figure 1. Schematic of the task design. (a) Example sequence of visual stimuli; each row is shown to the participant one
at a time. In this example, each row represents a unique color pattern of nine squares which corresponds to a unique node
in a transition graph. For each participant, a sequence of 1500 stimuli was drawn via a random walk on the same three-level
Sierpiński graph 3Sn

p (Methods). (b) A part of the transition graph that involves the nodes in panel (a). The mapping between
the color pattern in panel (a) and the node index in panel (b) was shuffled uniformly at random across participants so that
any systematic biases of reactions to certain color patterns would be balanced across nodes. (c) Hand placement; each of the
keys highlighted in green corresponds to a square in any row of panel (a). When the squares were highlighted in red in panel
(a), the participants were asked to press the corresponding keyboard input combinations, which were drawn from a total of 27
possible combinations that did not require coordination between the two hands.

Specifically, humans react more quickly to cues drawn
from a graph with a community structure than a graph
without a community structure [6, 7, 16]. Further, hu-
mans react more slowly to individual transitions connect-
ing different communities than to transitions within com-
munities, even when the transition probabilities them-
selves are identical [7]. Additionally, reaction times in
response to previously unseen transitions vary in pro-
portion to the topological distance between nodes [16].
Together, these findings indicate that humans develop
a mental representation of transition graphs that differs
from the true transition structure, resulting in different
reaction times to elements with the same transition prob-
ability [16].

Notably, maximum entropy models of the statistical
learning process predict the above observations in hu-
man behavior [16]. The key parameter in such mod-
els, β, controls the rate of errors in memory when up-
dating the mental model of the transition graph [16].
These memory errors can lead to mental models that
solve problems about the transition structure more accu-
rately and flexibly than models without errors [17], be-
cause the memory errors intrinsically capture mesoscale
information that is not evident in the one-step transition
matrix. When considering how to expand such models to
real-world systems, it becomes important to acknowledge
that many real transition structures are hierarchically or-
ganized across more than two levels. Examples include
Wikipedia networks [18], email networks [19], the World
Wide Web, and the Semantic Web [20]. Building accu-
rate mental representations of these hierarchical struc-
tures is crucial for human problem solving [21] and is
evident from human behavior [22]. Some studies have
examined the learning of rules at different abstraction or
hierarchical levels in a task [23], and a recent work em-
ploying a classification task with two levels of abstraction

has shown that humans can learn hierarchical organiza-
tion in feature-based categorization tasks [24]. Yet, it
remains unclear how well the maximum entropy model
[16] can effectively capture the learning of hierarchy in
transition probabilities. One main challenge to modeling
this scenario is to define a relatively small, simple, and
multilevel hierarchical graph that humans could feasibly
learn within an experimental session.

In this study, we aimed to characterize processes that
underlie the learning of hierarchy in graphs which en-
code transition probabilities between stimuli. We mod-
eled sequences of stimuli as unbiased random walks on
the graph and used such sequences in the experiment
(Fig. 1). We then identified several theoretical and prac-
tical properties for a candidate graph to model stimulus
transitions: (1) hierarchical community structure with at
least three well-defined hierarchical levels, allowing us to
extend our prior study of modular graphs [16]; (2) sym-
metric transition probabilities such that the probability
of transitioning from a to b is the same as the proba-
bility of transitioning from b to a; (3) equal transition
probabilities between all connected nodes; and (4) small
graph size, so that humans can learn the graph structure
during a single experimental session. With these consid-
erations in mind, we selected the Sierpiński graph family
[25], which provides a natural definition of hierarchical
levels on nodes and edges [25]. Specifically, we chose a
three-level regularized Sierpiński graph (Fig. 2(a) Left
panel) to address the question of whether the maximum
entropy models of statistical learning can capture the sur-
prisal effect beyond the first two hierarchical levels of the
graph.

Prior work indicates that when humans learn modular
transition graphs, they are more surprised at the transi-
tions connecting modules than at the transitions within
modules [6]. This difference in surprisal represents a
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two-level hierarchical effect: Humans react faster dur-
ing transitions at the first level (finer level) than during
transitions at the second level (coarser level) [6]. A nat-
ural aim is to generalize this two-level modular surprisal
effect to a more general hierarchical graph. In such a gen-
eralization, we hypothesize that humans will react faster
during transitions that occur at a given hierarchical level
than during transitions that occur at a coarser hierarchi-
cal level. To test this hypothesis, we devise stochastic
computer simulations and leverage data from a human
experiment. We then use the maximum entropy model
of human perception to predict the surprisal effect on
several different Sierpiński graphs; we do so first analyt-
ically in an infinite time horizon, and then in a finite
time horizon using stochastic simulations. To validate
our predictions, we run a statistical learning experiment
that features a walk of 1500 steps—consistent with pre-
vious work [16]—on the transition graph 3S3

3 . We then
fit both the maximum entropy model and a linear mixed
effects model to the collected empirical data to test our
hypothesis at both the first and the second levels of the
graph’s hierarchy.

Collectively, our results show that human learners re-
spond to a graph’s coarser-scale structure more slowly
than to a graph’s finer-scale structure. Further, our
findings indicate that to detect learning on coarser-scale
structures, an experimenter might need to collect signif-
icantly more samples than they would to detect learning
on finer-scale structures. Notably, we also observed a
striking negative across-subjects correlation between the
surprisal effect at the coarser scale and the surprisal ef-
fect at the finer scale, indicating that participants who
learned the coarser-scale structures well tended to learn
the fine-scale poorly, and vice versa. This result inter-
estingly suggests the existence of a trade-off in learning,
whereby participants learn one hierarchical level at the
expense of learning the other hierarchical level. Taken
together, our results comprise a body of work that serves
as a starting point in the investigation of how humans
learn hierarchical graphs.

II. METHODS

A. Experimental Setup for the Probabilistic
Sequential Motor Learning Task

In this study, we used a serial response task to probe
how humans learn hierarchical transition structure from
a sequence. During this task running on Amazon’s Me-
chanical Turk platform, human participants were shown
a sequence of stimuli and asked to respond to each stim-
ulus. The probability of a transition between any two
consecutive stimuli was governed by a transition graph.
To perform the task, human learners were asked to re-
spond to each transition as quickly and as accurately as
possible. The presentation of stimuli was self-paced, and
the next stimulus was not displayed until a correct re-

sponse was given to the previous stimulus. Participant
reaction times were then a proxy for learning; swifter re-
action times indicated better learning than slower reac-
tion times. This study was approved by the Institutional
Review Board of the University of Pennsylvania. Written
informed consent was obtained from all participants, in
accordance with the Declaration of Helsinki.

In our experimental paradigm adapted from [7], the
participants were instructed to respond quickly and ac-
curately to a sequence of stimuli in a probabilistic sequen-
tial motor task (Fig. 1). During the task, each stimulus
was a horizontal row of nine squares, with a unique com-
bination of squares highlighted in red. Each square in
the stimulus mapped to a key on the keyboard. Partici-
pants were told that their goal was to press the keys that
were highlighted in red as quickly and accurately as pos-
sible. The squares from left to right corresponded to keys
‘a’, ‘s’, ‘d’, ‘f’, ‘space’, ‘j’, ‘k’, ‘l’, and ‘;’. The first four
keys corresponded to the four fingers on the left hand
starting from the fifth finger; the last four keys corre-
sponded to the four fingers on the right hand, starting
from the index finger; and the ‘space’ key corresponded
to the thumb, with participants being given the option
to choose whichever thumb (left or right) suited them
best. Participants were instructed to keep their hands in
a fixed position in order speed up their responses. If a
participant’s keypress was correct, there would be a de-
lay of 50 ms before the pattern of squares changed to the
next one. If a participant’s keypress was incorrect, the
message ‘Error!’ would be displayed below the stimu-
lus, and would remain on the screen until the participant
pressed the correct key(s). If there was no response for
over one minute, the experiment would end.

Each stimulus corresponded to 1 of 27 unique key-
board input combinations. The combination comprised
either a single key or two keys. Single keys could be
any key listed above except ‘space’. Two-key combina-
tions were either two keys from the same hand, or one
key from one hand and the other key from the thumb.
This configuration gives 28 unique keyboard input com-
binations. The graphs used to generate sequences had
only 27 nodes; accordingly, for each participant, one key-
board input combination was not seen. We randomly ex-
cluded either ‘d’+‘space’ or ‘k’+‘space’ (but not both) in
all participants. These specific combinations were chosen
because the right middle finger and thumb combination
(‘k’+‘space’ in our setup) yielded the slowest average re-
action time in prior work [7], and we assumed a similar
phenomenon to apply to the left hand. Thus, each unique
stimulus had a unique combination of red/grey outlines,
which mapped to a unique key press and unique node
in the underlying graph (Fig. 1). The keyboard input
combinations were assigned to nodes in the ground truth
graph at random across all participants.

The sequence of stimuli each participant saw was deter-
mined by a walk on a Sierpinski triangle graph (see later
section on Ground Truth Graph Construction). Each
walk was made from a combination of random and Hamil-
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tonian walks on the graph [4]; the latter being commonly
included in tasks of this kind to allow an assessment of
the effects of recency [4, 7]. Specifically, the first 700
steps of the 1500-step sequence were drawn from random
walks; the subsequent 800 steps comprised eight 100-step
sequences, each of which comprised a random walk se-
quence of length 73 followed by a Hamiltonian walk se-
quence of length 27. The number 27 was to ensure that
the Hamiltonian walk covered all nodes.

We collected 208 participants, but we excluded the first
10 participants because the experiment was a preliminary
test run, and then we excluded 98 participants for not
completing the task, leaving 100 participants. All anal-
yses were done on these 100 participants after the ex-
clusion criteria. As per the experiment instruction, par-
ticipants were financially compensated only if they com-
pleted the entire experiment. But after receiving some
data, we relaxed our compensation policy to remunerate
a base $10 amount to any participant who finished at
least 300 steps of the graph learning section of the exper-
iment, or who after the experiment emailed us confirming
that they had made a reasonable attempt and hence to
voice a complaint regarding compensation. In addition,
if the participant completed the task with a performance
accuracy that was ≥ 90%, they would receive a bonus
of $1.5. To ensure performance quality, we included a
quiz before the task to test participant’s understanding
of the task, and they had to pass the quiz in order to pro-
ceed to the task. One participant did not disclose their
age; the remaining 99 participants’ ages have a mean
of 37.4, a standard deviation of 9.5, a minimum of 22,
and a maximum of 64. Most participants reported their
sex assigned at birth as male (37/63 female/male) and
their gender as man (38/62 women/men). The reported
race/ethnicity of the participants was as follows: 11 were
African-American/Black; 3 were Asian/Asian-American;
5 were Hispanic/Latino; and 81 were White. Four indi-
viduals were left-handed, and 96 were right-handed.

B. Ground Truth Graph Construction: Sierpiński
Family

Sequences of stimuli were drawn from walks on an un-
derlying graph from the Sierpiński family. This section
introduces the mathematical formalism for constructing
Sierpiński family graphs. The Sierpiński family is a graph
generalization of the famous fractal fixed set Sierpiński
triangle [25]. One major feature of the Sierpiński family
is its recursive generation, in that each larger Sierpiński
graph contains many smaller Sierpiński graphs, resulting
in a self-similar pattern (see Fig. 3(a) from left to right).
Because we aim to extend prior work that employed a
modular graph [7] featuring two hierarchical levels, here
we opt for a family of graphs that has nearly the same
degree for every node and a tunable number of hierar-
chical levels, on the backbone of a relatively simple and
symmetric graph topology. Notably, the self-similarity of

the Sierpiński family can satisfy these aims.
We denote a generic unregularized Sierpiński graph

with Sn
p , where p is the base, or number of nodes in the

community at the finest level of the graph, and n is the
power, or number of hierarchical levels. We define our
convention of level in a bottom-up manner. The finest
level is indexed by 1 and the coarsest level is indexed by
n. The structure of the Sierpiński graph is self-similar:
There are p communities at each level of the graph, ex-
cept that at level 1 each individual node is a community.
We expound the details on communities of the Sierpiński
graph in the next section. A mathematical definition of a
generic Sierpiński graph is given as follows. Each node in
a Sierpiński graph Sn

p has a unique index in the form of a
natural number such that node j belongs to an index set
{0, 1, 2, ..., pn − 1}. We can also represent each index as
a unique base-p expansion written in the form sn...s1|p
where si ∈ {0, 1, 2, ..., p− 1} for any i. The set of indices
V (Sn

p ) written as a base-p expansion is then [25]:

V (Sn
p ) = {sn...s1 | ∀j ∈ {1, ..., n}, sj ∈ {0, ..., p− 1}}.

(1)
If there is an undirected edge between node i and node j,
we write eij|p ≡ (i, j)|p ∈ E(Sn

p ), and the set of edges for
Sn
p are then defined using base-p expansions of the node

indices [25]:

E(Sn
p ) = {(sijk, sjik) | k ∈ {0, ..., n− 1},

s ∈ V (Sn−k−1
p ), i, j ∈ {0, ..., p− 1}},

(2)

where sij and sji are base-p expansions of the part or
the entirety of the decimal representations of the node
indices, and k indexes consecutive identical digits in a
sequence which is abbreviated as jk (when k = 0, jk is
an empty sequence).

C. Definition of Communities in a Sierpiński Graph

A community—which in some contexts is interchange-
able with “cluster” or “module”—is often abstractly de-
fined as a densely connected subgraph within a larger
graph [26]. The graphs in the Sierpiński family have by
definition a set of nested communities due to their self-
similar construction. During graph construction, new hi-
erarchical levels are added by making replicas of a seed
Sierpiński graph created at the previous step. This seed
Sierpiński graph has its own community structure; hence,
each replica will create a new community at each new
hierarchical level. This construction process creates a
nested community structure. We will first define a notion
of community in a Sierpiński graph and then explain how
this definition fits the general definition [26, 27] widely
used in several contexts.

We define level-l, the most fine-grained community
level, as a set of nodes sn...sl+1sl...s1 ∈ V (Sn

p ) that share
the same leading n− l digits in their base-p expansions.
Thus, each level-l community can be indexed by the trun-
cated string sn...sl+1 (base-p expansion); alternatively,
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Figure 2. Predictions of human learning and its dependence on hierarchy in the structure of transition probabil-
ities between stimuli. Here we use a validated model of human perception to predict how humans will respond to sequential
information drawn from a graph topology [16]. A key indicator of human learning is a slowing of reaction time at the boundary
between clusters in the graph. This slowing is referred to as the cross-cluster surprisal (CCS), which we show here for self-loop
regularized level-3 Sierpiński graphs with different bases. (a) Visualizations of Sierpiński graphs of base three, four, and five
with a power of three. Nodes are shown in pink and edges are shown in green, except for the self-loop edges that are shown in
black, because they do not belong to any well-defined edge level. The saturation of the green indicates the level of the hierarchy
at which the edge is defined; we refer to this level as the edge level in the color bar label. We use a bottom-up convention for
levels, meaning that the finest level is level-1 and the level value increases as the scale increases. (b) The cross-cluster surprisal
(CCS) for the corresponding Sierpiński graphs in panel (a) as a function of β: the rate of error in memory when updating the
mental model of the transition graph. The β value at which the cross-cluster surprisal peaks is marked for both levels of the
graph’s hierarchy.

one can use a decimal index instead, which is simply the
base-10 expansion of sn...sl+1. As a result, there are pn−l

communities at level-l of the graph, such that each of the
communities contains pl nodes.

Given a generic Sierpiński graph Sn
p , any hierarchical

level l, and fixed parameters p, n, l, each of the pn−l com-
munities has p1 + ... + pl edges inside it, but only p or
p−1 edges connecting the nodes inside it to other commu-
nities. Consequently, the number of within-community
edges is in the order of pl, which grows with level l, but
the number of between-community edges is either p or
p−1, which stays constant. Thus, the communities at any
level of a generic Sierpiński graph Sn

p are more densely
connected inside each of them, compared to the sparse
connections between them. This connection structure is
consistent with definitions of community structure used
in other contexts[26, 27].

D. Maximum Entropy Model

The maximum entropy model, as used in prior work on
modular graph learning [15, 16], explains how humans
may build their mental model of a transition graph as
they react to transitions between two consecutive stim-
uli. This model captures systematic variation in reac-
tion times through a time integration that balances the
trade-off between expected recall distance and recall in-
efficiency (see SM for details). According to the model,
learning occurs by estimating the transition probabil-
ity for each edge on a transition graph A by normal-
izing mental counts of edge traversals (i.e., transitions):

Â = ñij/
∑

k ñik where ñij is the mental count of tran-
sitions from node i to node j. Let xt be the index of
the node visited at time t, then at time t+1, the mental
count is added to the edge that connects node xt−∆t and
node xt+1 where ∆t is drawn from a geometric distribu-
tion density function f(∆t;β) = Ce−β∆t parameterized
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Figure 3. Predictions of human learning and its dependence on hierarchy in self-loop regularized base-3
Sierpiński graphs that encode transition probabilities between stimuli. Here again we use a validated model of
human perception to predict how humans will respond to sequential information drawn from a graph topology [16]. (a) Vi-
sualizations of Sierpiński graphs of power three, four, and five with a base of three. Nodes are shown in pink and edges are
shown in green, except for the self-loop edges that are shown in black, because they do not belong to any well-defined edge
level. The saturation of the green indicates the level of the hierarchy at which the edge exists; we refer to this level as the edge
level in the color bar label. (b) The cross-cluster surprisal (CCS) for corresponding Sierpiński graphs in panel (a) as a function
of β, which is the rate of error in memory when updating the mental model of the transition graph. The β value at which the
cross-cluster surprisal peaks is marked for all levels of the graph’s hierarchy.

by β:

ñxt−∆t,xt+1
(t+ 1) = ñxt−∆t,xt+1

(t) + 1, (3)

where C is the normalizing constant that depends on
whether it is in an infinite-time horizon or a finite-time
horizon. We call f(∆t;β) the memory error distribution
and its parameter β memory error parameter because
f(∆t;β) affects the count ñij(t+ 1) by placing non-zero
weights on nodes visited many steps before. Therefore,
the last visited node i = xt−∆t could be any node visited
in the random walk history, thereby rearranging the or-
der of history when counting and creating “errors.” In
the SM, we explain why we elected to use the geometric
distribution as the memory error distribution.

Given our model, we first define the underlying ground
truth transitional graph A such that each entry Aij cor-
responds to the probability that if node i appears at time
t, then node j will appear at time t + 1, for any non-
negative integer-valued t. We then consider two result-
ing learned transition probability matrices. The first is
a mean-field prediction in an infinite-time horizon, and
the second is a stochastic simulation in a finite-time hori-
zon. The mean-field prediction in an infinite-time hori-
zon takes the asymptotic form of Â = (1 − e−β)A(I −

e−βA)−1. To obtain the finite-time version of the learned

transition probability matrix Â, we instead use the finite
geometric distribution f(∆t;β) given permissible recall
distances at each time-step, and normalize ñij(T ) after
T time-steps of learning in Eq. (3). Refer to the original
study [16] that devised the model for derivation details.

E. Definition of Edge Levels and Cross-Cluster
Surprisal in a Sierpiński Graph

In this paper, we use the phrase “cross-cluster sur-
prisal” (CCS) effect to describe a phenomenon that reac-
tion times to transitions between-community are larger
than reaction times to transitions within-community [6],
and we use the term “surprisal” to indicate the slow-
ing of reaction time reflective of people’s expectations of
a structure more broadly. From a complementary per-
spective, the cross-cluster surprisal effect can also be de-
fined based on the predicted mental representation of a
two-level modular graph [16]. Specifically, a cross-cluster
surprisal effect occurs when the ratio of average within-
community transition probabilities to average between-
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Figure 4. Using the maximum entropy model to estimate the cross-cluster surprisal for individual human
participants. When fitting the maximum entropy model to the human reaction time (rt) data, we estimate three separate
parameters as specified by the linear relation rt = r0 + r1a(β), where r0 is intercept, r1 is slope, and β is the rate of error
in memory when updating the mental model of the transition graph. (a) Histogram of the intercept r0 in the linear model
rt = r0 + r1a(β). (b) Histogram of the slope r1 in the linear model rt = r0 + r1a(β). (c) Histogram of the β values in the
linear model rt = r0 + r1a(β). Note, here we only show data from participants whose β satisfied 0 < β < ∞; those excluded
were 11 participants whose β = 0 and 2 participants whose β → ∞. (d-e) Cross-cluster surprisal at level-1 (d) and level-2 (e),
including the 87 participants whose β satisfied 0 < β < ∞. The p-values were obtained from one-sample Wilcoxon signed-rank
tests, where we subtracted 1 from the cross-cluster surprisal value and compared the resultant number to a null distribution
centered at zero. An individual asterisk above a boxplot indicates a p-value less than 0.05; two asterisks indicate a p-value less
than 0.01; three asterisks indicate a p-value less than 0.001; four asterisks indicate a p-value less than 0.0001. Each one-sample
Wilcoxon signed-rank test was performed on the data from a single β bin. The β bins are evenly spaced in logarithmic space
and the definition of bins is the same throughout the analysis, except there are more bins in the simulations due to the β range
being larger in the simulations than in the experiment. The number below each boxplot is the number of human participants
with β values in that β bin. For each bin, the box delineates the interquartile range whereas the bottom whisker delineates the
2.5% percentile and the top whisker delineates the 97.5% percentile.

community transition probabilities is larger than one
[16]. Throughout the paper, we specifically refer to the
ratio (not difference) of within-community to between-
community transition probabilities as the “CCS”; when
the CCS is greater than 1, we say that there is a “surprisal
effect”. In contrast to prior work, here we aimed to inves-
tigate surprisal effects on a hierarchical graph with more
than two levels. Thus, we generalized the notion of the
CCS to any generic hierarchical graph with well-defined
hierarchical levels. To do so, first—similar to the commu-
nity definition on nodes—we define level-l (l ∈ {1, ..., n})
edges as follows:

El(S
n
p ) := {(sijl−1, sjil−1) |

s ∈ V (Sn−l−2
p ), i, j ∈ {0, ..., p− 1}}.

(4)

Then a level-l CCS (denoted as ∆l) where l ∈

{1, ..., n− 1} takes the form:

∆l(Â) :=

1
|El|

∑
(i,j)∈El

Âij

1
|El+1|

∑
(i,j)∈El+1

Âij

, (5)

where Â is the learned transition probability matrix. Eq.
(5) defines the CCS at level-l, which is the finer level of
the two involved in the ratio. In other words, for any edge
level l < n, there is a corresponding CCS that compares
level-l edges to edges of the coarser-level (l + 1).
In all calculations of the CCS, we used the mental

representation Â instead of the ground truth transition
probability matrix A, because the CCS is a measure of
the expected outcome and not of the ground-truth.

F. Empirical Cross-Cluster Surprisal

Here, to define the CCS from the empirical reaction
time data (ECCS), we capitalize on the fact that the
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maximum entropy model estimates mental representa-
tions during its parameter fitting process. The working
definition of ECCS can be divided into three parts: 1)
estimation of maximum entropy model parameters from
reaction time data using gradient descent; 2) output of
the last estimated mental count for each unique edge in
the final iteration of the estimation process as carried out
in step (1); 3) calculation of the CCS in the same way
as done for simulation data where the simulated mental
counts were used instead. This working definition thus
matches the manner in which we calculate the CCS in the
simulation data as closely as possible, thereby making the
comparison between simulation data and empirical data
most meaningful.

Of note, all experimental analyses involving empirical
cross-cluster surprisal were restricted to samples whose
β satisfies 0 < β < ∞. This experimental decision was
taken in light of the intrinsic difficulties in differentiat-
ing β = 0 from β → ∞ by the reaction times of our
participants alone. In both cases, the mental transition
probability would in fact be the same for any experimen-
tal transition, thus resulting in the same reaction time.

In addition, we observed that 11 out of 100 participants
had a fitted β = 0, which implies that they may have
completed the task with maximum memory error. Fur-
ther, 2 out of 100 participants had a fitted β → ∞, which
implies perfect memory. Since these two numbers (11 and
2) are much larger than the two tails of 0 < β < ∞ range
in Fig. 4(c), we excluded them from our analyses that
involved β.

G. Regularized Sierpiński Graphs

It is known that humans are sensitive to local statistics;
for example, humans react on average slower to nodes
of higher degree than to nodes of lower degree [7]. In
this study, we were specifically interested in how humans
learn hierarchical structures. Here we deem the degree to
be a confounding variable and thus we choose to modify
Sierpiński graphs such that they become regular. One
way to regularize Sierpiński graphs is to add self-loops to
the three boundary nodes (top, bottom left, and bottom
right nodes in Fig. 2(a) Left panel) of the unregular-
ized graph. We denote this regularized graph as 3S3

3 ,
where the left superscript is the index of the regulariza-
tion type. In the SM, we detail a list of regularization
methods considered and the rationale of electing the self-
loop approach. We used 3S3

3 as the ground truth graph
for participants to learn in the probabilistic sequential
motor task. The transition matrix that prescribed the
walk sequence on the regularized graph 3S3

3 is the prob-
ability transition matrix whose entry is 1/3 if there is an
edge in 3S3

3 and 0 otherwise. Since we rely on the defini-
tion of the edge level in order to calculate the CCS, we
define the edges introduced in the self-loop regularization
to have an undefined level, or level-0.

H. Linear Mixed Effects Model

As in our prior work [16], we first filtered raw reac-
tion time data to exclude the first 500 trials, any trials
during which participants’ first attempts were incorrect,
and any trials during which reaction times were too short
(≤ 100 ms) or too long (≥ 3500 ms) to capture reason-
able motor reactions[16]. We then fitted the filtered re-
action times as a function of the transition type as well
as covariates such as stimulus recency, time-steps, and
keyboard input combinations, within a linear mixed ef-
fects model, whose formula in the standard R notation
[28] reads as follows:

RT ∼ log(Trial) + Target + Recency + Edgelv+

(1 + log(Trial) + Recency + Edgelv|ID,
(6)

where “RT” is the reaction time, “log(Trial)” is the nat-
ural logarithm of trial number, “Target” is the keypress
combination, “Recency” is the number of trials since the
last occurrence of the stimulus during the current trial,
“Edgelv” is the type of transition, and “ID” is the unique
identifier for each of the 100 participants in the experi-
ment. Because we were interested in comparing the reac-
tion times for two adjacent edge levels, we used a custom
dummy coding theme to convert the categorical variable
“Edgelv” in Eq. (6) into three binary variables “lv01”,
“lv12”, and “lv23” (SM, Table S1).
We fitted the Eq. (6) model using the aforementioned

dummy coding to the filtered reaction time data and com-
puted the following statistics: (i) reaction time difference
between level-1 and level-2 transitions (“lv12” in SM, Ta-
ble S1); (ii) reaction time difference between level-2 and
level-3 transitions (“lv23” in SM, Table S1). Thus, co-
efficients for the binary variables “lv12” and “lv23” are
average reaction time differences at level-1 and at level-
2, after accounting for all other confounders and fixed
effects.

III. RESULTS

A. Mean-Field Predictions Across Graph Bases
and Graph Powers

We employed the maximum entropy model [16] to
predict a human’s mental representations of Sierpiński
graphs as a function of the memory error parameter β
(see Methods). We considered Sierpiński graphs each
with a base of three, four, and five, all having three hi-
erarchical levels (Fig. 2(a)). In the infinite time limit,
we find that the cross-cluster surprisal, that is how much
the ratio of average mental transition probabilities at one
level to those at the next coarser level is larger than one,
displays a similar dependence on β across all three graphs
(Fig. 2(b)). The curve is unimodal at each level of the
hierarchy, with no cross-cluster surprisal in the high- or
low-β limits. Across all three graphs, the cross-cluster
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surprisal is stronger at the finer scale than at the coarser
scale (Fig. 2(b)). As the base increases, the magnitude
of the cross-cluster surprisal also increases at both fine
and coarse levels of the hierarchy. This behavior implies
that transitions between large communities are more sur-
prising than transitions between small communities.

To assess the generalizability of our findings, we next
considered Sierpiński graphs with a power of three, four,
and five, all sharing the same base of three (Fig. 3(a)).
We again found that the cross-cluster surprisal displays
a similar dependence on β across all three graphs (Fig.
3(b)). As the power of the graph increases, we find that
the strength of the cross-cluster surprisal tends to de-
crease, with the strongest effect at the finest scale (Fig.
3(b)). We also observed a non-zero cross-cluster surprisal
at each level of the hierarchy, suggesting that all levels of
the Sierpiński graph 3Sn

3 can be learned given unlimited
time. When comparing hierarchical levels within graphs
with a power of five, we found that the peak magnitude
of the cross-cluster surprisal decreases first but later in-
creases as the hierarchical level increases, and occurs at
smaller values of β. This behavior implies that in a com-
munity which is nested hierarchically with more than
three levels, there may be a medium hierarchical level
at which the transitions are least surprising when com-
pared among the maxima across all levels.

B. Stochastic Simulations of Different Sample Sizes
and Walk Lengths

Our results thus far are based on calculations that as-
sume human learners have infinite time to learn. To de-
termine how our conclusions might depend on this as-
sumption and the noise introduced with a finite sample
size, we therefore now turn to simulations that use finite
time and a finite sample size. Our goal is to predict the
likely outcomes of a laboratory experiment in which real
humans spend finite time learning. With that goal in
mind, we recorded the mental counts of transitions on
3S3

3 for simulated human learners across a range of 10
possible β values, each of which corresponds to the cen-
ter of a log-uniformly spaced bin, and every bin has the
same number of simulated human learners. To implement
each β value, at each step of the random walk on 3S3

3 ,
the memory error size was drawn from a finite geometric
distribution parameterized by β [16] (also see Methods).
We then calculated the cross-cluster surprisal from the
simulated mental counts and used statistical analyses to
determine its significance.

We found that the sample size affected the smoothness
of the approximated distributions of the cross-cluster sur-
prisal. As the sample size increases, the mean of the
distribution of cross-cluster surprisal values increasingly
approximates the mean-field predictions (Fig. 5). In-
tuitively, we also observed that the means of the distri-
butions of adjacent bins are increasingly similar to each
other as the sample size increases, indicating a growing

smoothness. Using 10, 000 simulated learners per β bin,
we observed that for a walk length of 1500, the cross-
cluster surprisal at the finer level of the hierarchy is sig-
nificant: that is, more than 97.5% of the observed values
are greater than the baseline for β in [0.1, 1]. The peak
cross-cluster surprisal is observed at β = 0.276. Using
the same simulation setup, we observed that the cross-
cluster surprisal at the coarser level of the hierarchy is
not statistically significant: at most 75% of the observed
values are greater than baseline across the full β range.
The peak cross-cluster surprisal is observed at β = 0.037.
This pattern of findings implies that the cross-cluster sur-
prisal can be reliably detected at the finer but not coarser
level of the hierarchy when the sample size is limited.
Considering the time allotted for learning, we found

that walk length affects the spread of the approximated
distributions of the cross-cluster surprisal. Using 100
simulated learners per β bin, we observed that the cross-
cluster surprisal can be reliably detected at the finer
level of the hierarchy for walk lengths as short as 1500
steps (Fig. 6(a)). However, the cross-cluster surprisal
at the coarser level of the hierarchy could not be reli-
ably detected, even for walks with 7500 steps. Despite
this prolonged exposure, more than 2.5% of the observed
cross-cluster surprisal values lay below the baseline; at
a shorter walk length of 1500 steps, more than 25% of
the the observed cross-cluster surprisal values lay below
the baseline (Fig. 6(b)). This observation suggests that
a learning time of 1500, which is on the scale of about
half an hour or so, is sufficient for detecting the cross-
cluster surprisal at the finer level reliably; but it may be
insufficient to detect the coarser level surprisal even if the
learning time is increased fivefold.

C. Estimating the Surprisal Effect from Human
Experiments

Following our simulations, we next turned to labora-
tory experiments with real human participants. Our goal
was to examine the presence and magnitude of the sur-
prisal effect at two hierarchical levels in the Sierpiński
graph 3S3

3 . Accordingly, in an online laboratory plat-
form, we presented 100 human participants each with a
sequence of 1500 stimuli on their computer screen. The
participants were asked to respond to each stimulus by
pressing the corresponding keys (Fig. 1). We recorded
the reaction time for each stimulus to infer the partic-
ipants’ expectations about the transition probabilities
among stimuli; a faster reaction corresponds to a more
anticipated transition whereas a slower reaction corre-
sponds to a less anticipated transition.
Previous empirical work in humans has shown that re-

action times to within-community transitions are faster
than reactions to between-community transitions [6], and
the difference of the two is an empirical measure of the
cross-cluster surprisal. Notably, this difference in reac-
tion times exists even after accounting for a set of covari-
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Figure 5. Dependence of learning estimates on the number of simulated humans in the participant sample.
Here we show boxplots of the cross-cluster surprisal for the Sierpiński graph 3S3

3 , across ten β values and a walk length of
1500 steps. For each β value, the box delineates the interquartile range, the bottom whisker indicates the 2.5% percentile, and
the top whisker indicates the 97.5% percentile. The solid curves are mean-field predictions of the cross-cluster surprisal at an
infinite time horizon. We sampled 10, 100, and 10000 agents per bin from the total of ten thousand available; columns differ
by sample size. (a) The cross-cluster surprisal (CCS) at the finer level of the hierarchy as a function of β: the rate of error in
memory when updating the mental model of the transition graph. (b) The cross-cluster surprisal (CCS) at the coarser level of
the hierarchy as a function of β.

ates that may affect reaction times, such as the number
of times the stimulus was observed in the last 10 steps,
the number of time-steps since the stimulus was last ob-
served, and keyboard input combination differences that
can drive biomechanical response differences [6, 7]. In
our experiment, we designed the graph such that it had
four types of transitions: level-i community transitions
for levels i = 1, 2, 3 and self-loop transitions. In line with
previous literature [6], we included self-loop transitions
to ensure that the graph was regular, such that each node
had the same number of edges. See the SM for additional
details regarding our regularization procedure.

With this experimental design, we tested whether
within-cluster transitions were statistically faster than
between-cluster transitions. Specifically, we used a lin-
ear mixed effects model that accounted for the aforemen-
tioned covariates and a categorical variable (edge type)
that encoded the three hierarchical levels i = 1, 2, 3 of
the graph (see Methods). We found that people tend
to react faster to level-1 transitions compared to level-2
transitions by 21ms (p < 0.001, t-test, %95 CI: [11, 30],
DoF= 70598). Interestingly, reaction times to level-2
transitions were not statistically different from those to
level-3 transitions (p ≥ 0.05, t-test, %95 CI: [−22, 21],
DoF= 70598). In addition, we found that people tend
to react faster to level-1 transitions compared to level-
3 transitions by 20ms (p < 0.05, t-test, %95 CI: [0, 41],

DoF= 70598). These data indicate the existence of a sta-
tistically significant surprisal effect at the finer scale of
the graph but not at the coarser scale.

In addition to measuring the surprisal effect from reac-
tion times at a group level, we investigated the surprisal
effect from estimated mental representation at an indi-
vidual level. Specifically, using the maximum entropy
model [16], we estimated a mental representation for each
individual participant (Fig. 4(a-c)). We then calculated
cross-cluster surprisal values based on the estimated men-
tal representations (ECCS; see Methods). By this mea-
surement, we found a significant cross-cluster surprisal
at level-1 (p < 0.001, W = 3717, one-sided Wilcoxon
signed-rank test, n = 87). Next we asked whether the
cross-cluster surprisal was greater for people with higher
versus lower values of β. After separating the data into
discrete β bins, we found that the level-1 cross-cluster
surprisal was significant for intermediate β values (β ∈
[0.1, 1]; Fig. 4(d)). Interestingly, these effects were not
observed at the coarser scale of hierarchy in the graph.
We did not observe a significant cross-cluster surprisal at
level-2 (p ≥ 0.05, W = 1483, one-sided Wilcoxon signed-
rank test, n = 87). After separating the data into dis-
crete β bins, we found that the level-2 cross-cluster sur-
prisal was not significant for any β values (Fig. 4(e)).
Taken together, both group-level results from the linear
mixed model and individual-level results from the max-
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Figure 6. Dependence of learning estimates on the number of simulated humans in the participant sample.
Here we show boxplots of the cross-cluster surprisal for the Sierpiński graph 3S3

3 , across ten β values and a sample size of 100
simulated participants. For each β value, the box delineates the interquartile range, the bottom whisker indicates the 2.5%
percentile, and the top whisker indicates the 97.5% percentile. The solid curves are mean-field predictions of the cross-cluster
surprisal at an infinite time horizon. We sampled walk lengths of 1500, 4500, and 7500 steps; columns differ by walk length.
(a) The cross-cluster surprisal (CCS) at the finer level of the hierarchy as a function of β: the rate of error in memory when
updating the mental model of the transition graph. (b) The cross-cluster surprisal (CCS) at the coarser level of the hierarchy
as a function of β.

imum entropy model indicate that the surprisal effect is
easily detectable at level-1 but not at level-2.

D. Factors Impacting the Surprisal Effect
Estimation in Human Experiments

Our mean-field results at the infinite time limit in-
dicated that the cross-cluster surprisal existed at both
finer and coarser hierarchical scales of the graph. How-
ever, our finite-time simulations indicated that the sur-
prisal was easily detectable at the finer scale and less
detectable at the coarser scale, and depended on both
the walk length and sample size. In our human experi-
ments, which spanned finite time and employed a small
sample, we found that the cross-cluster surprisal was sig-
nificant at the finer scale of the Sierpiński graph 3S3

3 but
not at the coarser scale. We hypothesized that the non-
significant surprisal at the coarser scale was in part due to
a lack of statistical power arising from the finite sample
size in the human experiments. To test this hypothe-
sis, we carried out a power analysis (Fig. 7). We found
that the power to detect the coarser-level cross-cluster
surprisal at the empirical sample size for each β bin was
below 80% for all but the fifth β bin. Even for the fifth
bin, the power was below 95%, meaning there was still a
5% chance that we would not detect a significant cross-

cluster surprisal effect.

In addition to performing a power analysis, we exam-
ined whether the humans who learned the finer level also
tended to not learn the coarser level. If this was the
case, then it would suggest the existence of a trade-off
in learning, such that humans may devote more mental
resources to learning one level of the hierarchy to the
detriment of other levels. To examine this possibility, we
calculated the Spearman correlation coefficient between
the cross-cluster surprisal detected at the finer level of
the hierarchy and that detected at the coarser level of
the hierarchy. To determine whether the measured cor-
relation was greater than expected in non-human agents,
we estimated the cross-cluster surprisal from numerical
simulations with 10, 000 agents per bin and a walk length
of 1500. As shown in Fig. 8, for a given sample size, the
Spearman correlation coefficient varied greatly in non-
human agents, and this variation only diminished appre-
ciably at a sample size of about 104. At the empirical
sample size of 87, about 95% of the simulated Spearman
correlation magnitudes were smaller than that observed
in the humans (Fig. 8). As predicted by the model,
learners with a stronger cross-cluster effect at finer scales
have a weaker cross-cluster effect at coarser scales, and
vice versa. However, as shown in Fig. 8, this trade-off
in learning is greater in humans than in roughly 95% of
the simulated agents, suggesting that humans may de-
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vote mental resources to learning one scale of the graph
more than another, rather than distribute those mental
resources equally among all scales of the graph.

IV. DISCUSSION

Statistical learning of transition structures manifests
in multiple aspects of human life, from learning visual
patterns [2] to learning a language [8]. Prior statisti-
cal learning studies have demonstrated that humans can
learn topological features of transition graphs. Some
transitions graphs are more learnable than others [29],
and even a single graph can be learned differently by
different individuals, as evidenced by variations in their
mental representations. The specific topological features
that humans can learn include degree [1, 7], community
structure [6, 7, 16], and betweenness centrality [7], hence
spanning from local to meso-scale to global structure.
Notably, humans are also sensitive to transitions that do
not fit the statistics of the learned structure, and such
sensitivity depends on precisely how the learned statis-
tics have been violated [16].

Prior studies of graph learning have typically examined
graphs with community structure that exists at a single
scale [6, 7, 16]. Graphs containing hierarchical commu-
nities have not yet been examined. Accordingly, here we
innovate by investigating how humans learn graphs with
hierarchical community structure. Specifically, we em-
ployed regularized Sierpiński graphs, which are (i) sym-
metric, thus relatively easy to analyze, and (ii) small,
thus suitable to be employed in sequential motor learn-
ing tasks designed for humans. Based on the self-similar
topology, we can have well-defined hierarchical levels
on edges as well as nested communities for Sierpiński
graphs, which can be regularized such that every node
has the same number of edges, consistent with prior stud-
ies [6, 7, 16].

Using a finite time horizon, our simulations indicated
that the cross-cluster surprisal is consistently detectable
at the finer level of the hierarchy, but less detectable at
the coarser level of the hierarchy. Turning from simu-
lation experiments to human experiments, we collected
reaction time data from humans as they learned a spe-
cific type of Sierpiński graph (3S3

3) on an online platform.
In these experimental data, we similarly observe that the
cross-cluster surprisal is detectable at the finer level of the
hierarchy, but not at its coarser level. Interestingly, we
observe a strong negative correlation between the cross-
cluster surprisal at the finer versus coarser levels of the hi-
erarchy, indicating that human participants who learned
the finer level well tended to learn the coarser level less
well and vice versa. This trade-off in learning has not
previously been observed and is likely underestimated by
our maximum entropy model. Taken together, our data
reveal three factors that could decrease the capacity to
observe a significant cross-cluster surprisal at the coarser
scale of the hierarchy: limited statistical power due to

the number of participants, limited learning time, and
a trade-off between the learning of one hierarchical level
and the learning of another hierarchical level.

A. Learning Sierpiński Graphs with Infinite Time

Our study began by considering simulations of human
learning using a well-validated maximum entropy model
[16] of human behavior. Our goal was to provide mean-
field solutions to the learning problem in the infinite time
limit. As a measure of learning, we used the so-called
cross-cluster surprisal, which measures the slowing of re-
action times at boundaries between clusters in the graph.
We found that the cross-cluster surprisal increased as the
base for the Sierpiński graph increased. Specifically, we
observed that, during a random walk on a base-p graph, a
walker in a given cluster at node i had a (p−1)/p chance
of staying inside the cluster for almost all i. The effect of
this relation is to increase the average number of consec-
utive steps taken in a given cluster before transitioning to
a new cluster, as p increases. Because the human errors
in memory of these transitions smoothly decrease with
time in the past, most errors will tend to swap two nodes
seen near-in-time, which for high p will also tend to be
two nodes in the same cluster. The cumulative effect of
this process is that humans will tend to over-estimate the
probability of staying inside a cluster and under-estimate
the probability of moving to a new cluster, hence increas-
ing the magnitude of the cross-cluster surprisal effect.
There are multiple scales of the cross-cluster surprisal

effect on a hierarchical graph, and the memory error pa-
rameter β affects these scales. Specifically, as the mem-
ory error parameter β decreases, more errors will tend
to swap two nodes seen far-in-time (as opposed to near-
in-time), shifting the cross-cluster surprisal to coarser
scales. Holding the base p constant, this shift to a coarser
scale will result in a sensitivity to higher hierarchical lev-
els, which is evidenced in the shifting peaks in the cross-
cluster surprisal curves on power-n graphs. As such,
learners with a small β should tend to learn the tran-
sitions at a higher hierarchical level better than those at
a lower hierarchical level, resulting in a more pronounced
cross-cluster surprisal effect at a coarser scale.

B. Cross Cluster Surprisal in a Finite Time
Horizon is Approximated through Simulations

The quality of learning large graphs depends crucially
on the learning time, and for small learning times shows
significant stochastic variation due to the random walk
realizations [30, 31]. As such, we next assessed how the
amount of time allocated to the learning process would
affect the detection of the cross cluster surprisal. Our
simulation analyses across a range of finite time horizons
indicated that cross-cluster surprisal was consistently de-
tectable at the finer scale of the hierarchy (level-1), but
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Figure 7. A power analysis for estimating the surprisal effect in human experiments. Here we provide plots of powers
of one-sided Wilcoxon signed-rank tests on simulated data obtained from the same Sierpiński graph used in the experiment
(3S3

3). To the leftmost β bin in Fig. 5, Fig. 6, and Fig. 4 we assign an index of one, and to the second leftmost bin we
assign an index of two, and so on and so forth. Hence, the β bin indices in the plots here refer to the corresponding β bins
in Fig. 5, Fig. 6, and Fig. 4. Note that we only included β bins whose empirical sample size (as shown in Fig. 4) is greater
than two. To estimate the power of the one-sided Wilcoxon signed-rank test given a sample size n = 1, 2, ..., 99 for each β bin,
we uniformly sampled n agents with replacement from the simulation data that had a total of 10, 000 agents per beta bin.
We then repeated this process 1000 times. Next, we approximated the statistical power by calculating the ratio of repetitions
in which the one-sided Wilcoxon signed-rank test yielded a p-value that was less than 0.05. Because the surprisal effect can
happen at two hierarchical levels in the Sierpiński graph 3S3

3 , here we show power estimates for both levels (shades of green),
with different power baselines (95%, 90%, 80%; dashed lines) for reference.

not at its coarser scale (level-2). Such simulation-based
findings, in turn, indicate that an experimental design
consisting of a 1500-step random walk and 100 learners
may not be sufficient to detect coarser-scale surprisal.
Our laboratory experiment in human participants con-
firmed the latter observation.

Although our simulations corroborated our experimen-
tal findings, some aspects of our simulation analyses may
benefit from further development. First, we only assessed
the influence of walk length on learning by simulating
mental transition counts. In contrast, in our empirical
data we inferred surprisal from reaction times in the con-
text of sequential tasks, but have no direct access to the
mental counts. Future work could develop a more pre-
cise behavioral signature of human graph learning that
may be concomitantly applied to both simulated and em-
pirical scenarios. Second, some factors that are unique
to human experiments may affect learning and increase
the variance in human reaction time data but not simu-
lation data, such as variations in the baseline dexterity
of a given participant and their prior experiences with
sequential motor tasks. Moreover, variability may ex-
ist in the mechanics of specific keyboard combinations,
whereby a given participant may unpredictably find some

to be easier to learn than others. Accounting for all the
above mentioned factors in the context of a simulation is
not currently feasible. Thus, the noise estimates in the
simulation framework are conservative estimates of the
noise that may be found in the empirical data. These
and related considerations may inform behavioral neuro-
science work that combines simulation and experimental
study paradigms.

C. Detectability of the Surprisal Effect and
Trade-Off Between Finer-scale and Coarser-scale

Transitions

Our experimental findings in human participants high-
lighted significant group- and individual-level cross clus-
ter surprisal effects for finer-level transitions, thereby
replicating evidence from previous work that employed
modular graphs [6, 7, 16]. By contrast, we did not ob-
serve significant cross-cluster surprisal for coarser-level
transitions. A potential determinant of such phenomenon
could be the lack of statistical power of our empirical
setup. We tested this hypothesis with follow-up anal-
yses, which showed that, despite the large number of
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Figure 8. Trade-off in learning finer versus coarser
scales of hierarchical graphs. Here we plot the Spear-
man correlation coefficient between the cross-cluster surprisal
at the finer scale and the cross-cluster surprisal at the coarser
scale, across all β bins for both simulations (in grey) and the
experiment (in red). To estimate the spread of Spearman cor-
relation coefficients at different values of N (the total sample
size) for the numerical simulations, we uniformly sampled N
agents with replacement from the simulation data which had
a total of 10, 000 agents per beta bin. Then, we calculated
the Spearman correlation coefficient between the cross-cluster
surprisal at the finer scale and the cross-cluster surprisal at
the coarser scale. Finally, we repeated this process 1000 times.
From the 1000 resultant estimates of the Spearman correla-
tion coefficients for each N , we calculated the median, 50%
interval, and 95% interval. The red dot indicates the Spear-
man correlation coefficient (rs = −0.468) for the empirical
data in Fig. 4.

participants and ample learning time, our experiment in
human participants was underpowered to detect coarser-
level cross-cluster surprisal for virtually all β bins. We
conclude that a larger participant sample and, possibly,
longer learning time may increase the likelihood of de-
tecting cross-cluster surprisal effects at the coarser hi-
erarchical scale, and could be fruitfully implemented in
future studies.

To further explore our coarser-level findings, we also
characterized the relationship between cross-cluster sur-
prisal at the finer level and that at the coarser level. Cor-
relation analyses indicated a statistically unlikely strong
negative association between the two variables, whereby
participants who learned finer-level transitions well per-
formed worse than typical stimulated agents at the higher
hierarchical level, and vice versa. This inverse relation-
ship has relevant neurobiological implications, and sug-
gests that a trade-off process during learning, likely owing
to finite capabilities of the human mind, may represent
a signature of learning of hierarchical topology in real-
world, time-constrained scenarios. Specifically, humans

allocating a high level of mental resources to learn one hi-
erarchical level of the graph may do so at the expense of
learning at another hierarchical level. This finding sug-
gests a potential trade-off between robustness to noise—
where noise differs by hierarchical level—and flexibility to
learn multiple levels; we note that both robustness and
flexibility are properties of a goal-directed system [32].
Such an imbalanced allocation of brain resources could
be implemented by variations in attention, or driven by
perceived differences in the value of fine versus coarse pat-
terns of information [33]. Future work may benefit from
multimodal experimental designs, relying on combined
behavioral and, likely, functional imaging measures, to
capture the underlying neural processes.

D. Drivers of the Surprisal Effect and Implications
for Future Work

In addition to the possibility of a learning trade-off
between different hierarchical levels, the learnability of
cross-cluster transitions at finer hierarchical scales may
also be related to the topological properties of graph 3S3

3

and to the random walk scheme of graph learning. Be-
cause the number of edges exponentially decreases as
the level of the edge increases and because each edge
is equally likely to be traversed on a random walk on
such graph, one would only expect a 1/14 chance that
the next step traverses any one of the level-3 edges, sim-
ilar to self-loops. This pattern, in turn, naturally leads
to a limited number of visits on high-level transitions,
as opposed to lower level transitions. Thus, we conclude
that the intrinsic organizational properties of hierarchical
graphs, such as those implemented here, may be an ad-
ditional driver of our cross-cluster surprisal findings. As
discussed above, manipulating experimental conditions
by, for instance, introducing longer random walks in the
context of finite-time experiments, may attenuate noise
effects arising and would be beneficial in future work.
Our simulation and experimental findings confirmed

that time limits negatively influence the likelihood of
detecting a significant cross-cluster surprisal effect at
coarser levels of the hierarchy. The required learning time
and sample size can be estimated with calculations from
the recently introduced exposure theory of graph learning
[30, 31]. While exposure theory originally aimed to pre-
dict edge learning in finite time at a binary level, the for-
malism can be extended to estimate the contrast between
the learned transition probabilities, and thus the cross-
cluster surprisal at different hierarchical levels. Conse-
quently, future experimental work in humans could con-
sider allocating more time for graph learning, in addition
to including a larger participant sample size. In so do-
ing, longer walks would lead to an increase in the raw
counts of coarser-level transitions, thereby enhancing the
detectability of the second-level cross-cluster surprisal.
For a more parsimonious evaluation of level-2 transitions,
one option would be to consider a modification of the ex-
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perimental paradigm to attain a systematic increase in
the probabilities of coarser-level transitions. A second
option would be to add a flag to the stimulus presentation
to indicate to the participant that they are about to ex-
perience a coarse-level transition. This explicit flag could
improve the participant’s ability to differentiate between
coarse- and finer-level transitions. Using either option,
one could proactively facilitate the detection of coarser-
level transitions, and could also empirically validate our
hypothesis that learning coarser-level transitions, in the
context of the current experimental design, is impaired
owing to a saturation of human neural resources for finer-
level transitions.

Finally, we previously discussed that an appropriate
graph to investigate hierarchical learning ought to have
at least three hierarchical levels, to allow for the exis-
tence of at least two cross-cluster surprisal scales. The
graph 3S3

3 used in our study satisfies the requirements of
a relatively small size and self-symmetry. However, we
note that 3S3

3 is still considerably larger than the mod-
ular graph used in previous experiments [6, 7, 16]. This
experimental feature, in turn, places greater cognitive
demands on the participants, potentially leading to de-
creased task performance and more frequent attentional
lapses. In addition, every edge in 3S3

3 is traversed over-
all 28 percent less frequently than in the previously used
modular graph. On balance, both the above character-
istics are likely to have detrimentally influenced cross-
cluster surprisal effects at the coarser scale in our human
experiment. Collectively, our study paves the way for
future investigations of human learning in hierarchical
graphs, and offers important pragmatic considerations in
the context of the experimental paradigms that may be
best suited to investigate these.

E. Future Directions

Our study represents the first attempt to understand
human hierarchical graph learning and to test the hy-
pothesis that human learners exhibit cross-cluster sur-
prisal effects at more than two hierarchical levels in a
graph during a sequential motor learning task. To ad-
vance research in this field, future work may benefit from
varying the hierarchical structures of a graph to a greater
degree. One possible strategy is to remove the symmetry
requirement that was a cardinal component of our exper-
imental design. Another area of improvement pertains
to the graph size. Our Sierpiński graph had a limited
number of nodes, whereas real-world networks such as
Wikipedia networks [18] and the Semantic Web [20] that
humans are exposed to are likely to possess a significantly
larger number of nodes. Thus, further experimental de-
signs could implement scalable learning tasks that incor-

porate significantly larger graphs with different types of
hierarchical structures. Finally, further advancements in
the formulation of our current mental model [16] of graph
learning may help refine our hypothesis that humans may
exhibit a learning trade-off that could favor finer-level
transitions at the expense of coarser-level transitions.

F. Conclusion

In conclusion, our study combines simulation-based
data and an experimental graph-learning paradigm ad-
ministered to human participants. Our findings estab-
lish that finer-level transitions on a hierarchical graph,
measured with the cross-cluster surprisal metric, are
more easily detectable than coarser-level transitions. We
also observe a strong negative correlation between cross-
cluster surprisals at fine versus coarse scales, suggesting
the existence of a trade-off in human learning, whereby
the learning accuracy for one class of transitions may be
maximized at the expense of the other one. For hierar-
chical graphs, learning time and sample size are poten-
tial additional determinants of the detectability of cross-
cluster surprisal at coarser scales.
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Supplemental materials to the manuscript

I. MAXIMUM ENTROPY MODEL

We elected a geometric distribution as the scrambling
distribution because the geometric distribution optimizes
a trade-off between two terms known to be relevant for
learning [? ]: expected recall distance and recall inef-
ficiency. These two variables could also reasonable be
referred to as the “error of a recalled stimulus” and the
“computational complexity”, respectively, as in Ref. [? ].
According to the scrambling assumption, the source node
for the transition can be (∆t + 1)-steps away from the
target node during mental counting, where ∆t = 0, 1, ...
corresponds to the recall distance. The memory scram-
bling distribution assigns a probability to recall distance,
and the expected recall distance E(∆t) is the expecta-
tion of recall distance in the scrambling distribution. The
recall inefficiency E(logf(∆t;β)) is conceptually similar
to the definition of expected recall distance, but corre-
sponds instead to the expectation of the logarithm of the
probability for each recall distance, rather than to the
recall distance itself. Thus, if there is only one recall dis-
tance with all other choices having a probability equal to
zero, then the recall will be demanding or inefficient, as
one will have to select only the stimulus at that exact re-
call distance; conversely, if all recall distances are equally
likely, the recall can be any stimulus visited in the past,
thus being easy or efficient.

Hence, the expected recall distance and recall ineffi-
ciency comprise a trade-off: If the recall is very effi-
cient, the expected recall distance will be large, which
in turn lowers the accuracy of recalling the last visited
stimulus that, by definition, has a recall distance of zero.
The total resource cost, then, corresponds to a weighted
sum of expected recall distance and recall inefficiency:
βE(∆t) + E(logf(∆t;β)). Here, we maintain that the
brain minimizes this total resource cost, as argued in
prior work [? ]. In the total resource cost trade-off,
the factor β, which we call the “scrambling parameter”
throughout the paper, corresponds to how much weight
the brain puts on accuracy over efficiency [? ? ]. The
minimization of the total resource cost yields a geomet-
ric distribution for the scrambling distribution f(∆t;β)
as the solution.

When normalizing the mental counts to derive the
mental probabilities for transitions between stimuli, there
is a choice of what the mental counts are before the learn-
ers start the graph learning task. In this paper, we did
not assume that the learners have any prior expectations
of the graph size or possible transitions of the underly-
ing graph they were to learn, and therefore the mental
counts are zero at the beginning. In the case of division
by zero during normalization, we assigned a value of zero
to the mental transition probability.

II. EXPERIMENTAL DESIGN ON GRAPH
CHOICE

Within the Sierpiński graph family, there are several
options regarding the ground truth graph that governs
the transition probability of the stimuli in the experi-
ment. We first enumerate some guidelines on several em-
pirical aspects of learning a graph, which constrain the
graph choice for the experiment. By violating the guide-
lines on those empirical aspects, we shift the difficulties
in experimental design to data analysis. To simplify the
analysis, we attempt to make the design satisfy as many
guidelines as possible. We then evaluate a number of
graphs in the Sierpiński graph family to choose one of
them that best meets the guidelines.

A. Learning Time and Visit Frequency

Since the nodes are sampled according to a random
walk on the graph, how long the experiment lasts is di-
rectly related to the count with which each node is vis-
ited. For a random walk in infinite time, the probability
of landing on any node or edge is proportional to its de-
gree; thus, we assume for simplicity that the probability
at its limit is a good estimator on the expected count of
visiting a node or edge when the walk length is at least
1500. To ensure that the count is sufficient, we define
sufficiency based on the estimated expected count of 100
visits/node or 50 visits/edge in the previous experiment
where a 1500-step random walk was performed on a 15-
node modular graph in 30 minutes [? ]. Guideline:
Thus, about an hour or 3000 visits on nodes on a regu-
lar graph with the estimated expected count of at least
100 visits/node would allow the graph to have at most
30 nodes.

B. Task Complexity

We used the same probabilistic sequential motor task
used in our previous study to keep the experiment setting
as similar as possible and to avoid confounding variables.
The complexity is considered under the context of learn-
ing within an hour. The task design in the previous study
only involved one hand and one- or two-finger combina-
tions, resulting in 15 combinations mapped uniquely to
15 nodes in the modular graph [? ]. To study hierarchical
effects, we need to have at least three levels, whereas the
modular graph has only two levels. The simplest near-
regular 3-level hierarchical graph we found has more than
15 nodes. Therefore, we could either include three-finger
combinations or envision the use of the other hand. We
opted for the inclusion of the other hand and kept the
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combination styles used in our prior work [? ], because
three-finger combinations would have made the task too
demanding. If we allow such constraints in combination
styles, we can have at most 29 combinations if we do
not distinguish which hand presses the spacebar when
the spacebar is the only key pressed, without introduc-
ing cross-hand combinations. Cross-hand combinations
would also introduce too much complexity to the task.
Guideline: Therefore the range of the number of nodes
we aim for is from 15 to 30.

C. Degree Homogeneity

It has been shown that humans are sensitive to local
structures [? ] (e.g., degree, and thus transition prob-
abilities) as well as higher-order structures [? ? ? ]
on transition graphs. To assess whether humans may be
sensitive to structures at various global scales, ensuring
regular node degree would eliminate the potential con-
founding effect due to the variations in transition proba-
bilities.

D. Different Types of Graphs in the Sierpiński
Graph Family

We now consider several graph choices and discuss
their advantages and disadvantages in relation to the
aforementioned guidelines. We only consider Sierpiński
graphs that have three hierarchical levels and have no
more than 30 nodes. Our range of choices thus narrows
down to the sub-family of 3-level, base-3 graphs with dif-
ferent types of regularization.

1. Unregularized Sierpiński Graphs

The S3
3 graph (also denoted as 0S3

3) has 27 nodes, three
of which are boundary nodes whose degree is 2 (which is
one less than the degree of the non-boundary nodes). If
we use all 15 combinations for each hand, we will have 30
combinations in total, and then will need to remove three
of them at random. We could consider sharing the thumb
key-presses across two hands; thus, we would have only
28 combinations, and would only need to remove one at
random. Apart from the slight key-press complications,
the degree distribution breaks the homogeneity assump-
tion, making the graph nearly but not exactly regular,
which would complicate the analysis.

2. Regularized Sierpiński Graphs

In the original definition of a Sierpiński graph Sn
p ,

we observe that there are exactly p boundary nodes
{0n, ..., (p − 1)n}, each of which only has a degree of
p− 1 (which is one less than the degree of non-boundary

nodes). To make the graph regular, which would simplify
the analysis, we employ several different regularization
methods to ensure that the Sierpiński graph is exactly
regular (see [? ] for an extensive appraisal of regulariza-
tion methods and other variants of the Sierpiński family).

We denote: (i) 0Sn
p (equivalently, Sn

p ) to be the unreg-

ularized Sierpiński graphs; (ii) 1Sn
p to be a family of one-

node regularized Sierpiński graphs, defined by adding a
node that connects to all boundary nodes in Sn

p ); (iii)
2Sn

p

to be a family of one-community regularized Sierpiński
graphs, defined by adding a smaller Sierpiński graph
Sn−1
p whose boundary nodes each connects to the bound-

ary nodes in Sn
p ); (iv)

3Sn
p to be a family of self-loop reg-

ularized Sierpiński graphs, defined by adding a self-loop
to each boundary node in Sn

p ). Of note, we excluded 2S3
3

from the experimental design and analysis because such a
regularization would significantly increase the graph size
(by pn−1 = 9), which would exceed the desired graph
size of 30 nodes and would make the learning task too
demanding without major changes to the task design. In
addition to the pragmatic concern in the guideline, 2S3

3

would also break its self-similarity property, such that the
number of communities at each level is no longer a con-
stant. The rest of the regularization types listed above,
however, also have drawbacks. One-node regularization
introduces shortcuts between boundary nodes and to a
lesser extent, their neighbors, changing the average dis-
tance between said nodes, and thus affecting the expected
count per node in a random walk with a limited size of
no more than 3000. Self-loop regularization “traps” the
boundary nodes with a probability of 1/p = 1/3. In prior
work that employed modular graphs [? ? ], shortcuts or
self-loops did not exist, and they could potentially con-
found the reaction time on the transitions.

Accordingly, we elected 3S3
3 as the ground truth graph

for participants to learn during a probabilistic sequen-
tial motor task. Although, as previously noted, both
3S3

3 and 1S3
3 could potentially confound the experiment

with edges that emerge as a result of regularization, we
opted for 3S3

3 because, while satisfying most guidelines,
unlike 1S3

3 , it does not introduce a new node that would
serve as a shortcut between the communities and com-
plicate the analysis. Similar to the unregularized case
(0S3

3), the overall strength of the CCS does not decrease
as fast as that in 1S3

3 or 2S3
3 when the level increases (Fig.

1). A self-loop regularized Sierpiński graph 3S3
3 has 27

nodes, each of which corresponds to a unique key combi-
nation comprising either one keypress or two keypresses.
A slight complication of key combination is that we have
to remove one finger combination at random if we share
the thumb key-presses across two hands, thus introduc-
ing a confounding variable. However, this confounding
variable will be effectively balanced in analysis due to its
randomness across participants.

For computations and analyses, we require a definition
of edge level for all edges, so that the transitions can be
grouped hierarchically. Thus, we make edge level con-
ventions for the regularized Sierpiński graphs such that,
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Figure 1. The cross-cluster surprisal on power-3 Sierpiński graphs with different bases and regularization types.
(a) The CCS for an unregularized 3-level Sierpiński graph across three bases. (b) The CCS for a one-node regularized 3-level
Sierpiński graph across three bases. (c) The CCS for a one-cluster regularized 3-level Sierpiński graph across three bases. (d)
The CCS for a self-loop regularized 3-level Sierpiński graph across three bases.

compared to the unregularized Sn
p , edges introduced in

1Sn
p have a level of n + 1, and edges introduced in 3Sn

p

have an undefined level, or level-0.

III. CODING A CATEGORICAL VARIABLE IN
LINEAR REGRESSIONS

There is a categorical variable coding scheme called
“forward difference coding” [? ] that is very simi-
lar to the coding theme in this text. We introduce
a slightly different coding scheme that we used in the
analysis. Assume that we have a categorical variable
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Figure 2. The cross-cluster surprisal on base-3 Sierpiński graphs with different levels and regularization types.
(a) The CCS for an unregularized base-3 Sierpiński graph across three levels. (b) The CCS for a one-node regularized base-3
Sierpiński graph across three levels. (c) The CCS for a one-cluster regularized base-3 Sierpiński graph across three levels. (d)
The CCS for a self-loop regularized base-3 Sierpiński graph across three levels.

C ∈ {C1, C2, ..., Cn} (n ≥ 2) that has n levels. We can
encode C by creating n (or n − 1, if we use one level as
the reference) dummy variables. Let us consider a simple
one dimensional linear model:

y = aX + bC + c+ ϵ, (1)

where X is a continuous independent variable, c is the
intercept, and ϵ is the error term. One normally would

use a series of dummy variables to replace C in Eq. 1.

A. One-Hot Encoding without Reference

One way to encode C is to create n dummy variables
{Di}1≤i≤n, each of which is binary and has a coefficient
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bi (1 ≤ i ≤ n):

y = aX +
∑

1≤i≤n

biDi + c+ ϵ, (2)

where Di := 1{C = Ci}. Then for C = Ci, Eq. 2
becomes y = aX + bi + c + ϵ. The interpretation of
coefficient bi is thus: how much Ci adds to or subtracts
from the outcome y when all other variables are fixed.

B. One-Hot Encoding with a Reference Level

Similarly, one can encode C by creating n− 1 dummy
variables {Di}1≤i≤n−1 relative to reference level Cn (for
simplicity we picked Cn as the reference), each of which
is binary and has a coefficient bi (1 ≤ i ≤ n− 1):

y = aX +
∑

1≤i≤n−1

biDi + c+ ϵ, (3)

where Di := 1{C = Ci}. Then, for C = Ci (i ̸= n), Eq.
3 becomes y = aX+ bi+ c+ ϵ (same as one-hot encoding
without reference); however, for C = Cn, Eq. 3 becomes
y = aX + c + ϵ. Coefficient bi (1 ≤ i ≤ n − 1) thus
corresponds to how much Ci adds to or subtracts from
the outcome y relative to the outcome when C = Cn,
when all other variables are fixed.

C. Multi-Hot Encoding with a Reference Level

Thus far, we have considered encoding the impact of
{Ci}1≤i≤n on the outcome y. However, we are inter-
ested in the CCS, which requires the comparison of two
adjacent levels in the categorical variable. If we define
yj := y|{C = Cj}, then the difference between two adja-
cent levels is (yj − yj+1) ∀1 ≤ j ≤ n − 1. To encode C
for the differences between two adjacent levels, we cre-
ate n − 1 dummy variables {Di}1≤i≤n−1 relative to the
reference level Cn, having selected Cn as reference for
simplicity. Each of the dummy variables is binary and
has a coefficient bi (1 ≤ i ≤ n− 1):

y = aX +
∑

1≤i≤n−1

biDi(C) + c+ ϵ, (4)

where Di = Di(C) is effectively a fixed discrete function
on the level of the categorical variable C. The specific
choice of n− 1 discrete functions {Dj(C)} will be deter-
mined shortly. We now impose a constraint on the inter-
pretation of the coefficient bj for any Dj such that said

coefficient bj corresponds to how much Cj adds to or sub-
tracts from the outcome y relative to the outcome when
C = Cj+1, when all other variables are fixed. This con-
straint can be written mathematically: ∀1 ≤ j ≤ n− 1,

yj − yj+1 = bj ,

⇔
∑

1≤i≤n−1

bi (Di(Cj)−Di(Cj+1)) = bj , (5)

Table I. Categorical variable “Edgelv” to multi-hot en-
coded dummy variable conversion. The levels with one
number in “Edgelv” variables correspond to the edge levels,
whereas the levels with two numbers in dummy variables cor-
respond to the difference between two adjacent edge levels.

Dummy Variables
Edgelv lv01 lv12 lv23
self-loop 1 1 1
lv1 0 1 1
lv2 0 0 1
lv3 0 0 0

where Di(Cj) := Di(C = Cj). Because Eq. 5 holds for
all permissible choices of j and for any {bi}1≤i≤n−1, we
can equate the coefficients of {bi}1≤i≤n−1 and simplify
Eq. 5 to

{
Di(Cj)−Di(Cj+1) = 0 for i ̸= j

Dj(Cj)−Dj(Cj+1) = 1
. (6)

If we restrict n − 1 discrete functions {Di(C)} to be
binary-valued (thus multi-hot) such that Di(C) ∈ {0, 1},
then we can solve for {Di}1≤i≤n−1 in Eq. 6:

Di(Cj) = 1{j ≤ i} ∀1 ≤ j ≤ n. (7)

D. Multi-Hot Encoding in Empirical Data

In the experimental data, the categorical variable of
interest is “Edgelv”, which has four levels: “lv0”, “lv1”,
“lv2”, and “lv3”. “lv0” corresponds to the edges that
are introduced through regularization, whose edge level
is undefined (zero); the remaining variables correspond to
the edges with respective edge levels. The three dummy
variables are “lv01”, ‘lv12”, and ‘lv23”. We used the
multi-hot encoding (Table I) in the linear mixed effects
model and we only reported results for the second and
third dummy variables “lv12” and “lv23”, because they
correspond to the difference definition (as opposed to the
ratio definition) of the CCS at level 1 and level 2, respec-
tively.


