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A B S T R A C T   

Risk-taking peaks in adolescence and reflects, in part, hyperactivity of the brain’s reward system. However, it has 
not been established whether the association between reward-related brain activity and risk-taking varies across 
adolescence. The present study investigated how neural reward sensitivity is associated with laboratory risk- 
taking in a sample of female adolescents as a function of age. Sixty-three female adolescents ages 10–19 
completed the Balloon Analogue Risk Task, a laboratory measure of risk-taking behavior, as well as a forced 
choice monetary gambling task while an electroencephalogram (EEG) was recorded. This gambling task elicits 
the reward positivity (RewP), a frontocentral event-related potential component that is sensitive to feedback 
signaling reward. We observed a negative quadratic association between age and risk-taking, such that those in 
early and late adolescence had lower relative risk-taking compared to mid-adolescence, with risk-taking peaking 
at around 15 years of age. In predicting risk-taking, we observed an interaction between age and RewP, such that 
reward-related brain activity was not associated with risk-taking in early adolescence but was associated with a 
greater propensity for risk in later adolescence. These findings suggest that for females, neural response to re
wards is an important factor in predicting risk-taking only in later adolescence.   

1. Introduction 

Adolescence involves a host of interacting neurobiological, hor
monal, and behavioral changes that occur during a period of increasing 
autonomy. These changes make adolescence a time of enormous growth, 
but also a vulnerable period, marked by an increase in the incidence of 
psychopathology (Breslau et al., 2017; Costello et al., 2011; Kessler 
et al., 2005) and a rise in risky behavior (Bjork and Pardini, 2015; 
Braams et al., 2015; Burnett et al., 2010; Casey and Jones, 2010; Dahl, 
2004; Sherman et al., 2018; Spear, 2000; though see Defoe et al., 2015). 
Some forms of risk-taking are adaptive in that they serve the develop
mental needs of adolescence, namely increasing independence and 
forming more significant extra-familial relationships, processes which 
rely on some degree of risk and exploration (Spear, 2000). In excess, 
however, adolescent risk-taking is also associated with adverse conse
quences (Dahl, 2004; Resnick et al., 1997). 

These behavioral changes may be supported by concomitant struc
tural changes to dopaminergic reward circuitry and increased neural 
sensitivity to rewards (Galv�an, 2010; Romer et al., 2017). There is 
substantial evidence, primarily from functional magnetic resonance 

imaging (fMRI) studies, that adolescents show increased neural sensi
tivity to reward receipt compared to adults and children and that this 
increased reward sensitivity peaks in mid adolescence (Braams et al., 
2015; Galv�an, 2013; Van Leijenhorst et al., 2010a, b; see however Bjork, 
2004; Bjork et al., 2010). This increased sensitivity to, and valuation of, 
rewards in adolescence appears to result in increased motivation to 
pursue rewarding stimuli such as drugs, alcohol, and novel social in
teractions (Doremus-Fitzwater et al., 2010). Consistent with this, greater 
reward sensitivity at the neural (Chein et al., 2011; Van Leijenhorst 
et al., 2010a) and behavioral level (Duell et al., 2016; Lejuez et al., 2003) 
has also been associated with greater laboratory risk-taking (Blanken
stein et al., 2018) and self-reported risk-taking across all ages (Galv�an 
et al., 2007), though the opposite pattern has also been observed 
(Schneider et al., 2011). However, in spite of the significant neurobio
logical changes that transpire during adolescence (Asato et al., 2010; 
Lebel and Beaulieu, 2011; Luna et al., 2001; Ostby et al., 2009), it is 
unclear how associations between reward sensitivity and risk-taking 
might change across this developmental stage. 

Although the majority of the literature on the neurobiology of risk- 
taking and reward processing in adolescence has relied on fMRI, 
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event-related electroencephalogram (EEG) studies can serve as an 
important complement. In particular, the event-related potential (ERP) 
component known as the Reward Positivity (RewP) has been established 
as an index of reward sensitivity. This frontocentral ERP typically occurs 
250� 350 ms after rewarding feedback, is more positive to gains than 
losses, and is thought to originate in the medial prefrontal cortex (mPFC) 
and striatum (Becker et al., 2014; Carlson et al., 2011; Foti et al., 2015, 
2011). Moreover, there is evidence that the RewP derived from mone
tary reward tasks primarily tracks reward rather than performance ac
curacy (Gehring and Willoughby, 2002). Because it is a very early and 
relatively obligatory response to rewarding feedback, the RewP can be 
conceptualized as an index of initial responsiveness to reward (NIMH 
RDoC, 2018), and indeed, the RewP is associated with self-reported 
reward responsiveness, behavioral reward sensitivity (Bress and Haj
cak, 2013), and self-reported liking of received rewards (Angus et al., 
2015). 

Studies vary in their description of the developmental trajectory of 
the RewP across adolescence, perhaps because the magnitude of the 
component reflects the coordinated activity of multiple brain regions, 
each developing at different rates. Although some data from both lon
gitudinal (Kujawa et al., 2018) and cross-sectional studies (Bowers et al., 
2018; Lukie et al., 2014) have suggested the magnitude of the RewP is 
stable across adolescence, other studies have found age-related differ
ences in the RewP, although they do not all agree on the direction of 
change (Arbel et al., 2018; Burani et al., 2019; Crowley et al., 2013; 
H€ammerer et al., 2013; Zottoli and Grose-Fifer, 2012). 

Studies that have examined links between the RewP and risk-taking 
are equally mixed; for instance, in adults, a larger RewP has been 
associated with positive urgency (Ait Oumeziane and Foti, 2016) and 
sensation seeking (Novak et al., 2016). These two traits increase across 
adolescence (Littlefield et al., 2016) and predict heightened substance 
use and risky sexual behavior in both adolescents (MacPherson et al., 
2010; Sargent et al., 2010) and young adults (Zapolski et al., 2009). 
Some research also suggests that young adults characterized by higher 
rates of risky real-world behaviors, like problem gamblers, have a larger 
RewP (Hewig et al., 2010; Oberg et al., 2011). Yet several studies have 
found a smaller RewP in adolescents at risk for substance abuse (Crowley 
et al., 2009; see however Morie et al., 2018) as well as in adolescents 
exhibiting problematic internet use (Yau et al., 2015). Combined, these 
data suggest it will be critical to investigate whether and how the as
sociation between reward sensitivity and risk-taking changes across 
development. 

The goal of the present study is therefore to determine whether 
reward sensitivity is uniformly or differentially predictive of risk-taking 
across adolescence. To this end, we examined associations between the 
magnitude of the RewP and risk-taking behavior in the Balloon 
Analogue Risk Task (BART; Lejuez et al., 2003) in a sample of adoles
cents ages 10–19. Because this study was a secondary analysis of a 
predominantly female sample, we focused the present analysis on fe
male participants. We hypothesized that neural reward sensitivity 
measured by the RewP would be predictive of risk-taking across 
adolescence, but most strongly associated in mid adolescence, when 
reward sensitivity should be at its highest. 

2. Methods 

2.1. Participants 

Participants included in the present analysis were drawn from two 
studies in which they completed overlapping procedures. A complete list 
of additional variables available in the two samples can be found in 
supplemental Table 1. Participants in both studies were recruited 
through local schools and the community through fliers and internet 
postings. All participants were screened to ensure they had never 
experienced a loss of consciousness greater than 10 min and had no 
known neurological problems. 

Of the 146 adolescents enrolled, 63 female participants completed all 
procedures and were included in the final sample for analysis. Age was 
calculated in years by subtracting the participant’s date of birth from 
their date of participation and rounding to two decimal places. Date of 
birth was missing for two participants and age in whole years was used. 
Participant ages ranged from 10.0–19.09 years with a mean of 14.37 
years (SD ¼ 2.25). The sample was 82.7 % Caucasian, 1.6 % Chinese, 1.6 
% African American, 1.6 % Native/First Nations, 3.2 % Hispanic, and 
3.2 % other, with 20.7 % not providing racial and/or ethnic information. 

Before commencing the study, we received written informed 
parental consent and assent from all participants under age 18 and 
written informed consent from participants ages 18 and older. Every 
participant was compensated $25/hour for her participation. All pro
cedures were approved by McGill University’s Research Ethics Board. 

2.2. Procedure 

All participants completed an online demographics questionnaire 
either at home or during their lab visit. Among other computerized 
tasks, participants then completed a monetary reward task while 
continuous EEG was recorded, as well as the auto-pump BART 
(described below; Pleskac et al., 2008) in a randomized order. 

2.3. Reward response 

To capture neural response to reward receipt, participants completed 
a simple forced-choice guessing task, which is known to elicit the RewP 
(Proudfit, 2015). On each trial, participants were presented with two 
doors and were told that one was holding a prize. They were instructed 
to choose a door by clicking the left or right mouse button. After a 1000 
ms fixation cross, either a green arrow pointing up indicating gain or a 
red arrow pointing down indicating loss was displayed for 2000 ms, 
followed by a 1500 ms fixation cross. The participant would then be 
prompted to click to proceed to the next trial. Participants were given 
five practice trials to ensure they understood the task. After the practice, 
there were two blocks of 20 trials each, where 50 % of trials resulted in a 
win (reward) and 50 % resulted in a loss in random order. On win trials, 
participants earned 50 cents while on loss trials they lost 25 cents; this 
discrepancy is intended to equalize the subjective value of the feedback 
and allow rewards to accumulate (Proudfit, 2015; Tversky and Kahne
man, 1992). Participants were told at the outset that they were playing 
for real money and immediately following the task all participants 
received $3.00 in winnings. 

2.4. Risk taking 

An adapted BART task, the BART auto pump (Pleskac et al., 2008), 
was used to measure risk-taking. This task is one of the few risk-taking 
tasks that reliably relates to reported real-world risk-taking (Sherman 
et al., 2018) and greater risk-taking in this task has been associated with 
greater drug and alcohol use, criminal activity, or not wearing a seatbelt 
(Lejuez et al., 2003). Another advantage of this task is that is that some 
risk-taking is necessary to perform well. This adds ecological validity as 
that is also the case for key developmental tasks of adolescence like 
making new friends and developing independence (Spear, 2000). 

In the task, participants earned money by inflating a series of 

Table 1 
Sample characteristics and correlation matrix describing associations between 
age, RewP and average pumps in the BART. P-values for Pearson’s correlation 
coefficients are all > 0.2 with df ¼ 61.   

M (SD) 1 2 3 

1. Age 14.37 (2.25) –   
2. RewPresid 0 (.99) � .14 –  
3. Pumps 52.06 (13.28) .16 .16 –  
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balloons, but lost earnings if they popped a balloon through over- 
inflation. On each of 30 trials, the participant chose to inflate each 
balloon a number of “pumps,” ranging from 1 to 128, by entering their 
selected number into a box on the screen. Each pump could earn the 
participant one point. Each balloon also had an unknown explosion 
point, ranging from 1� 128. If the number of pumps selected by the 
participant was less than the balloon’s explosion point, the balloon 
would inflate, and points would accumulate in the “bank” displayed on 
the screen. If the number of pumps selected by the participant exceeded 
the explosion point, the balloon would disappear with a loud popping 
sound and the participant would earn no points for that trial. On the 
subsequent trial, the actual explosion point of the previous balloon (and 
not the number of pumps the participant selected) was displayed on one 
side of the screen. Participants were told that across all balloons the most 
advantageous number of pumps was 64, but that individual explosion 
points for balloons vary. Participants were also told they would receive a 
dollar amount proportional to their task winnings. All participants 
received $2.00 directly after the task, independent of performance; they 
were not debriefed on this minor deception due to planned re- 
recruitment of this sample and repetition of this task. The average of 
the number of pumps participants opted to make across all balloons was 
used as an index of risk-taking (Pleskac et al., 2008). 

2.5. Electroencephalographic recording and data processing 

During the doors guessing task, continuous EEG was recorded with a 
BrainVision actiCHamp system (Brain Products, Munich, Germany) and 
a 32-electrode cap arranged based on the standard 10/20 layout with 
the ground electrode at Fpz. To correct for eye movements, the elec
trooculogram (EOG) was collected with facial electrodes placed 1 cm 
above and below one eye and 1 cm to the outside of both eyes. Data was 
recorded using a sampling rate of 1000 Hz. 

Offline analyses were conducted using BrainVision Analyzer soft
ware (Brain Products). A Butterworth Zero Phase bandpass filter atten
uated frequencies below 0.1 Hz and above 30 Hz (with a slope of 24 dB/ 
oct for each) in the unsegmented data. After filtering, trials were 
segmented 200 ms before and 1000 ms after feedback (the upward or 
downward arrow). Segmented data were referenced offline to an 
average of TP9 and TP10, the left and right mastoids. Eye-blinks and 
ocular movements were removed from the data using the EOG based on 
a modification of the algorithm described in Gratton et al. (1983). Ar
tifacts were rejected using a semi-automatic procedure in which chan
nels were automatically eliminated from a trial if they included a voltage 
step of > 50 μV between sample points, a voltage difference of > 175 μV 
within a 400 ms interval, or activity < 0.5 μV in a 100 ms interval. 
Remaining artifacts were removed from the data via visual inspection. 

All gain trials were averaged together, as were loss trials, and mean 
activity from -200 ms – 0 ms was used as a baseline and subtracted from 
each subsequent data point. The RewP was subsequently scored as the 
mean activity between 250� 350 ms following feedback at electrode Cz. 
Split-half reliability for neural response to gain and loss at Cz was 
calculated for odd and even numbered trials using the Spearman-Brown 
coefficient. This coefficient was 0.75 for loss trials and 0.71 for gain 
trials. 

2.6. Data analysis 

We conducted a sensitivity analysis using G*Power to establish the 
smallest effect size we had at least 80 % power to detect. With a total 
sample size of 63, 3 predictors in a multiple regression, and α error 
probability set to 0.05, the smallest effect size we could detect was f2 ¼

0.13, or R2 ¼ 0.12. 
All subsequent analyses were conducted in SPSS version 24 (IBM 

Corp., Armonk NY) or in R (R Core Team). A one-way (Feedback: Gain 
vs. Non-Gain) repeated-measures ANOVA was conducted to verify that 
gains elicited a larger RewP than losses. Next, because we were 

interested in neural response unique to reward, we calculated a stan
dardized residual from a regression of response to loss predicting 
response to gain. This residual, which has better psychometric proper
ties than a simple difference score (Ethridge and Weinberg, 2018), was 
used in all analyses as a measure of reward sensitivity and will be 
referred to as the RewPresid. The internal consistency of this RewPresid 
was 0.46 based on the Spearman-Brown coefficient. 

Following this, Pearson’s correlations between age, RewPresid, and 
average pumps were computed to assess any bivariate linear relation
ships between them. To assess the relationship between risk-taking and 
tangible outcomes in the BART, we tested linear and quadratic associ
ations of average pumps predicting points earned. Next, we tested for 
two additional quadratic associations: one predicting average BART 
pumps from age (Braams et al., 2015) and a second predicting RewPresid 
from age, each controlling for linear effects, to probe nonlinear devel
opmental trajectories. To determine the effects of age and RewP on 
risk-taking, we conducted a linear regression predicting average pumps 
in the BART from mean-centered age and RewPresid in the first step and 
added an interaction term between age and the RewPresid in the second 
step. We conducted a chi-square likelihood ratio test using the lmtest 
package in R (Zeileis and Hothorn, 2002) to assess whether step two 
from this regression better fit the data than step one. Finally, we per
formed a simple slopes analysis at the mean age � 1SD to decompose the 
interaction. 

3. Results 

3.1. Neural response to reward and loss 

A repeated measure analysis of variance (ANOVA) was conducted to 
assess the effect of feedback on neural responses in the time-window of 
the RewP. There was a main effect of feedback type (F(1,62) ¼ 37.98, p 
< .001, η2 ¼ .38), confirming that, as expected, monetary rewards eli
cited a larger RewP than monetary losses (Fig. 1). 

3.2. Risk-taking across adolescence 

In the BART, the average number of pumps across subjects was 52.06 
(SD ¼ 13.28), below the indicated optimal number of 64. There was both 
a positive linear (b ¼ 6.68, t ¼ 4.93, p < 0.001) and a negative quadratic 
(b ¼ -0.281, t ¼ -3.47, p ¼ 0.001) association between average pumps 
and points earned such that participants who took more risks earned 
more points, but earnings peaked at 64 pumps as indicated and declined 
thereafter. 

There was no significant linear association between age and average 
number of pumps (b ¼ .94, t ¼ 1.26, p ¼ .21); but there was a significant 
quadratic effect of age (b ¼ -0.87, t ¼ -3.08, p ¼ .003), with average risk- 
taking peaking around age 15 (Fig. 2). The average number of pumps 
was 51.12 (SD ¼ 13.06) in adolescents aged 10–13, 55.17 (SD ¼ 12.29) 
in adolescents aged 14–16, and 51.31 (SD ¼ 15.34) in adolescents aged 
17-19. 

3.3. Neural response to reward and risk-taking across adolescence 

Pearson’s correlations between age, RewPresid and average pumps 
are presented in Table 1. Age was neither linearly (b ¼ -0.07 t ¼ -1.16, p 
¼ .25) nor quadratically (b ¼ -0.021 t ¼ -0.95, p ¼ .35) significantly 
associated with the RewPresid. To assess the association between neural 
response to reward and risk-taking across adolescence, we conducted a 
linear regression with average pumps as the dependent variable and 
RewP and age as independent variables. In the second step, we added an 
interaction between RewP and age (Table 2). 

There was no main effect of age or RewP in the first step, but in the 
second step, age significantly moderated the association between the 
RewP and risk-taking (R2 change ¼ .07, p ¼ .03). A likelihood ratio test 
indicated that including the interaction term resulted in a better fitting 
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model (χ2 ¼ 4.86, p ¼ .03). Simple slopes analysis at the mean age � 1SD 
indicated that the RewP did not significantly predict risk-taking at 
younger ages (simple slope at age 12.12 ¼ -0.97, t ¼ -0.42, p ¼ 0.67), but 
did predict risk-taking in mid and late adolescence (simple slope at age 
14.37 ¼ 3.43, t ¼ 2.03, p ¼ .05; simple slope at age 16.62 ¼ 7.83, t ¼ 2.67, 

p ¼ .01; Figs. 3A and B). 

4. Discussion 

Adolescence has been characterized as a time of heightened reward 
sensitivity and increased risk-taking. The present study tested whether 
the RewP, an electrophysiological measure of reward sensitivity, was 
associated with risk-taking, and if so, whether that association changed 
across adolescence. Our results demonstrated that although reward 
sensitivity did not differ across ages, greater reward sensitivity was 
associated with greater risk-taking only later in adolescence, suggesting 
that reward sensitivity’s link with risk-taking varies across development. 

Prevailing theories of adolescent risk-taking, such as imbalance or 
dual systems models, posit that adolescent risk-taking emerges due to 
heightened reward sensitivity while executive control is still developing 
(Casey et al., 2008; Crone and Dahl, 2012; Ernst et al., 2006; Shulman 
et al., 2016; Steinberg, 2007; Van Leijenhorst et al., 2010b). The present 
results are somewhat consistent with this model, in that risk-taking in 
this sample was highest in the same age range in which reward sensi
tivity and risk-taking became positively linked (i.e., between 14 and 16). 
However, because the magnitude of the RewP appears to reflect con
tributions from both subcortical and prefrontal regions (Carlson et al., 
2011; Foti et al., 2015), we cannot attribute these results to the relative 
maturation of striatal or prefrontal regions. Moreover, unlike striatal 
response to rewards, which appears to have an inverted u-shaped 
developmental trajectory from childhood to emerging adulthood 
(Braams et al., 2015; Galv�an, 2013), the RewP was not significantly 
associated—either linearly or quadratically—with the age of our 

Fig. 1. A. Average waveforms to gain and loss at electrode Cz from all participants. The dotted line represents a simple difference of gain - loss. Time 0 represents the 
onset of feedback stimuli. B. Scalp distribution demonstrating the difference in neural activity to gain - loss between 250-350 ms. Red indicates a greater positivity to 
gain than loss. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article). 

Fig. 2. Quadratic association between age and average pumps in the BART. 
Average risk-taking peaked between 14-16 years. 

Table 2 
Two-step regression predicting risk-taking measured by average pumps in the BART. An interaction term between RewP and age is added in step two.  

Step Predictor b b 95 % CI β p R2 F p 

1      .06 1.96 .15  
Intercept 52.06 48.756� 55.36 — <.001    
Age 1.11 � .39 – 2.60 .19 .14     
RewPresid 2.57 � .82 – 5.95 .19 .14    

2      .13 2.97 .04  
Intercept 52.69 49.44 – 55.94 — <.001    
Age 1.55 .04 – 3.05 .26 .05     
RewPresid 3.43 .05 – 6.81 .26 .04     
RewPresid x Age 1.96 .16 – 3.76 .28 .03     
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participants, consistent with some prior cross-sectional and prospective 
research that the RewP remains stable across adolescent development 
(e.g. Kujawa et al., 2018; Lukie et al., 2014). Nonetheless, our results 
suggest that age is an important factor in understanding associations 
between neural reward response and risk-taking behavior. In
consistencies in the literature attempting to link these constructs may 
be, in part, due to neglecting to account for developmental factors in 
analyses. 

Additionally, while the association between the RewP and risk- 
taking became stronger after age 14, the amount of overall observed 
risk-taking behavior diminished after age 15. Therefore, the positive 
association with the RewP increased as risk-taking decreased, such that 
older adolescents who show larger neural responses to reward within 
300 ms of feedback continue to engage in higher levels of risk-taking 
while those with reduced activity in this time-window show reduced 
risk-taking relative to their peers. Perhaps this pattern emerges because 
normative increases in risk-taking—as seen in mid-adolescence—are 
supported by a broad range of processes and are less influenced by in
dividual differences in reward sensitivity. As the behavior becomes less 
normative, however, individual differences in initial reward respon
siveness may exert themselves more, such that those with greater 
sensitivity to reward remain incentivized to take risks with greater fre
quency, relative to those who are less reward sensitive. However, as our 
sample was cross-sectional, longitudinal studies will be needed to assess 
whether the RewP prospectively predicts changes in risk-taking across 
adolescence. 

The present study replicated previous findings that risk-taking peaks 
in mid-adolescence (Braams et al., 2015; Burnett et al., 2010). However, 
other studies do not find this pattern of risk-taking across development 
(Defoe et al., 2015). One potential reason for mixed results is that 
increased adolescent risk-taking occurs particularly in the context of 
emotional arousal, mediated by increased striatal activation to rewards 
(Blakemore and Robbins, 2012; Figner et al., 2009). This emotional 
arousal may occur through presence of peers (Chein et al., 2011), 
emotional priming (Burnett et al., 2010), or task characteristics that 
increase incremental feedback or immediacy of feedback (Figner et al., 
2009) The auto-pump BART shares characteristics with other 

emotionally arousing or “hot” tasks. These include receiving immediate 
feedback and potentially inducing counterfactual emotions by viewing 
the explosion point of the previous balloon. Therefore, our results are 
consistent with existing literature observing a peak in adolescent 
risk-taking in emotionally charged tasks. 

Although risk-taking can be dangerous, especially when it involves 
drugs or alcohol, a certain inclination toward positive types of risk can 
be advantageous (Steinberg, 2008). For example, a willingness to take a 
risk is required for forming new relationships. Because peers become 
more important in adolescence (Doremus-Fitzwater et al., 2010; Foulkes 
and Blakemore, 2016; Kandel, 1986), a deficit in willingness to take risks 
to obtain rewards may be a liability that feeds into social difficulties. 
Greater willingness to take risks can also facilitate exploration, which is 
increasingly important as adolescents gain independence from their 
caregivers (Cohen, 1980; Spear, 2000; Steinberg, 2005). Consequently, 
very low levels of risk-taking are not always more adaptive than high 
risk taking. Consistent with this, in the present study, the mean number 
of pumps in the BART was 52.06, and only eleven participants had a 
mean number of pumps greater than or equal to 64, the optimal number 
across all trials. Accordingly, less risk-taking was associated with earn
ing fewer points in the task. Because 64 was communicated to the par
ticipants as the most advantageous choice over the whole task, results 
from our sample may better reflect how reward sensitivity relates to 
risk-aversion (Huggins et al., 2019) as opposed to heightened propensity 
for risk. 

Our sample also bears further consideration: This study only 
included female participants. Yet, there is evidence that males tend to 
take more risks than females (Lewis et al., 2019; Van Leijenhorst et al., 
2008), possibly even more in adolescence relative to adulthood (Byrnes 
et al., 1999). That combined with different rates of development be
tween males and females (Marceau et al., 2011) suggests that the present 
results may not generalize to males. Future research should recruit 
larger samples that are evenly distributed by sex to evaluate whether our 
findings replicate in males or whether there are sex differences in how 
the RewP predicts risk-taking across adolescence. 

Another limitation of the present study is that individuals mature at 
different rates such that age is not a perfect measure of development. 

Fig. 3. A. Scalp distributions of the RewP showing activity to gain minus loss, made for presentation purposes. Early adolescence includes ages 10-14, while late 
adolescence includes ages 15-19. Low and high risk-taking are defined by a median split of average pumps in the BART. Whereas early adolescents low and high on 
risk-taking show similar magnitudes of their RewP, individuals who engage in riskier behavior in late adolescence show a larger RewP than those lower on risk- 
taking. B. Simple slopes of the standardized RewP residual predicting average pumps in the BART at the mean age � 1 SD. Age interacted with RewP such that 
the RewP became a stronger predictor of risk-taking with age. Only the slopes at age 14.37 and 16.62 were statistically significant. 
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The addition of a pubertal development scale may have provided a more 
precise indication of how reward sensitivity and risk-taking change 
across adolescent development. Further, pubertal hormone levels (i.e. 
testosterone, estradiol) affect reward processing and risk-taking in ad
olescents. For example, in adolescent females, higher levels of endoge
nous testosterone are associated with greater risk-taking (Op de Macks 
et al., 2011) and reduced striatal reactivity to reward outcome (Forbes 
et al., 2010) while higher levels of estradiol are also associated with 
reduced striatal reactivity to reward outcome (Ladouceur et al., 2019). 
Understanding the role of pubertal hormones may therefore be crucial to 
understanding how associations between reward sensitivity and 
risk-taking develop across adolescence. 

While overly high reward sensitivity and risk-taking may have con
sequences for externalizing disorders, blunted reward sensitivity and 
low risk-taking may have consequences for internalizing disorders 
(Bjork and Pardini, 2015; Goff et al., 2013; Huggins et al., 2019; Telzer 
et al., 2013). Therefore, another important future direction is to examine 
neural reward sensitivity and risk-taking in both healthy subjects and 
subjects with a range of internalizing and externalizing 
psychopathology. 

Prior literature has linked an adolescent peak in risk-taking with 
heightened neural reward responsiveness (Romer et al., 2017; Van 
Leijenhorst et al., 2010a), though there is still substantial heterogeneity 
in the literature (Defoe et al., 2019; Sherman et al., 2018). Our findings 
build on the existing literature by addressing the question of how a very 
early psychophysiological measure of reward sensitivity differentially 
predicts risk-taking across adolescent development. These findings have 
important implications for better understanding adolescent risk-taking 
by challenging the assumption that reward sensitivity and risk-taking 
are uniformly related across adolescence, a period with significant 
neurobiological and behavioral change. 

5. Conclusion 

This study employed a novel analysis testing an interaction between 
neural reward sensitivity and age to predict risk-taking in adolescent 
females. Our results suggest that age is an important factor to consider 
when investigating how reward sensitivity relates to risk-taking in 
adolescence. In particular, our results indicate that as risk-taking 
diminished at older ages, the association with the RewP grew stronger 
and more positive. This implies that as risk-taking decreases in later 
adolescence, those with greater reward sensitivity continue to take risks 
while those with blunted reward sensitivity do not. A more cautious 
response style is not always optimal, neither in the BART nor in real life. 
A more nuanced understanding of optimal reward sensitivity and risk 
levels will be necessary to recognize their implications for emergent 
adolescent psychopathology and adaptive functioning. 
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