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Abstract Epigenetic and regulatory elements provide an
additional layer of complexity to the heterogeneity of anx-
iety disorders. MicroRNAs (miRNAs) are a class of small,
noncoding RNAs that have recently drawn interest as epi-
genetic modulators of gene expression in psychiatric disor-
ders. miRNAs elicit their effects by binding to target
messenger RNAs (mRNAs) and hindering translation or
accelerating degradation. Considering their role in neuronal
differentiation and synaptic plasticity, miRNAs have opened
up new investigative avenues in the aetiology and treatment
of anxiety disorders. In this review, we provide a thorough
analysis of miRNAs, their targets and their functions in the
central nervous system (CNS), focusing on their role in
anxiety disorders. The involvement of miRNAs in CNS
functions (such as neurogenesis, neurite outgrowth, synap-
togenesis and synaptic and neural plasticity) and their intri-
cate regulatory role under stressful conditions strongly
support their importance in the aetiology of anxiety disor-
ders. Furthermore, miRNAs could provide new avenues for
the development of therapeutic targets in anxiety disorders.
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Background
Anxiety Disorders

Anxiety disorders are a heterogeneous group of disorders
that include acute stress disorder, agoraphobia (with or
without a history of panic disorder), generalised anxiety
disorder (GAD), obsessive-compulsive disorder (OCD),
panic disorder (PD) (with or without agoraphobia), phobias
(including social anxiety disorder) and posttraumatic stress
disorder (PTSD) [1]. These disorders cause significant dis-
tress and functional impairments, and collectively have an
estimated lifetime prevalence of up to 25 % [2]. The global
prevalence of current anxiety disorders has been estimated
at 7.3 % (4.8-10.9 %) and ranges from 5.3 % (3.5-8.1 %) in
African cultures to 10.4 % (7.0-15.5 %) in Euro/Anglo
cultures [3].

Neurobiology of Anxiety

Anxiety is an evolutionary trait that provides a coping
mechanism in dangerous environmental situations and is
associated with emotional processes and cognitive func-
tions, such as learning and memory. These cognitive func-
tions are underpinned by several neural substrates and
neurotransmitter pathways that are characterised by a high
degree of plasticity [4]. Functional magnetic resonance im-
aging (fMRI) studies have revealed increased baseline ac-
tivity in the parahippocampal gyrus and the cingulate cortex
[5] and increased brain activity in the amygdala, parahippo-
campal gyrus and frontal cortex in response to anxiety-
inducing stimuli [6]. These findings suggest an important
role for the forebrain, as a site of increased excitatory
neurotransmission, in the anxiety disorders.

An important physiological hallmark of anxiety is exces-
sive excitatory neurotransmission [7]. The hypothalamic—
pituitary—adrenal (HPA) axis is an integral component in the
neuroendocrine response to acute stress. Corticotropin-
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releasing hormone (CRH) regulates the stress-induced acti-
vation of the HPA axis and mediates autonomic and behav-
ioural changes associated with anxiety disorders [8]. CRH
and vasopressin are secreted in response to stress by the
hypothalamus. These neuropeptides are secreted into the
portal vessels and stimulate the anterior pituitary to synthe-
sise and release adrenocorticotropin hormone (ACTH),
which in turn leads to the release of glucocorticoids (GCs)
by the adrenal cortex. GCs help to control the processes of
adaptation and recovery due to the role they play in the
restoration of biological homeostasis [9, 10]. Studies have
shown a link between elevated cortisol and both chronic
stress and depression [11].

Current and Future Treatments for Anxiety Disorders

Different treatment options are available for anxiety disor-
ders, including cognitive behavioural therapies [12] and
pharmacological treatment options. Historically, tricyclic
antidepressants (TCAs) have been widely used in the treat-
ment of anxiety disorders and have demonstrated similar
efficacy to the SSRIs for panic disorder and generalised
anxiety disorder (GAD). However, the less tolerable side
effect profile of TCAs and concerns about safety (including
problematic anticholinergic and antiadrenergic effects), as is
true of the monoamine oxidase inhibitors (MAOIs) (side
effects include insomnia, sedation, hypotension, sexual dys-
function, hypomania, weight gain/oedema, hypertensive ep-
isode and myoclonic jerking), do not make them first-choice
drugs. The selective serotonin re-uptake inhibitors (SSRIs)
(e.g. fluoxetine, paroxetine, sertraline) are considered to be
first-line pharmacological agents for all of the anxiety dis-
orders, with evidence from multiple, randomised, placebo-
controlled trials supporting their efficacy and safety [13].
Serotonin norepinephrine reuptake inhibitors (SNRIs) (e.g.
venlafaxine) are also emerging as first-line medications for
some of the anxiety disorders, most notably GAD. SSRIs
and SNRIs block serotonin (5-HT) and norepinephrine re-
uptake after release from neurons, respectively, resulting in
their increased availability at the synapse, increased potency
of neurotransmission and further downstream effects on
other neurotransmitters [14]. The slower therapeutic onset
of SSRIs (2 to 4 weeks) is associated with gradual changes
in both brain structure and function [15]. Animal inves-
tigations have shown that proliferation of new neurons in
the hippocampus contributes to the behavioural effects of
SSRIs [16, 17], while modifications in plasticity could be
a putative mechanism whereby these drugs counteract
hyperresponsivity to stress in anxiety disorders [18]. Al-
though more effective than some of the older treatments,
SSRIs have limited efficacy in a subset of patients and
the side effects together with the delayed onset of action
influence compliance [19].

Another class of agents, the benzodiazepines, are potent
and fast-acting but are not a recommended first choice for
anxiety in view of their potential for physiological depen-
dence and their propensity for troublesome adverse effects
(e.g. sedation and cognitive impairment), and rebound anx-
iety (upon discontinuation) [20]. Benzodiazepines enhance
the inhibitory effects of y-aminobutyric acid (GABA), the
main inhibitory neurotransmitter in the brain, through their
action on GABA, receptors [21]. Similar to the benzodia-
zepines in terms of their effects on inhibitory/excitatory
neurotransmission, the anticonvulsants pregabalin and gaba-
pentin demonstrate superior efficacy to placebo in GAD and
social anxiety disorder. However, these two drugs do not
have the same abuse and dependence potential as the
benzodiazepines.

The majority of patients with anxiety disorders do not
respond completely to an initial treatment trial, necessitating
a switch in drug or the addition of a second medication.
Furthermore, the side effect profiles of most anti-anxiety
treatments significantly hamper patient compliance. There
are consequently efforts under way to identify novel phar-
macological targets, including investigation of neuropeptide
Y (NPY) receptor agonists, vasopressin (V1B) antagonists,
NMDA receptor antagonists, and pharmacological modula-
tors of learning and memory. One such agent is D-cycloser-
ine (DCS). DCS administration (before or immediately after
extinction training) has been shown to be an effective ther-
apeutic target in facilitating extinction learning in anxiety
disorders, such as specific and social phobias, OCD and
PTSD [22-24]. DCS is a partial N-methyl-D-aspartate re-
ceptor (NMDAR) agonist at the glycine site on the
NMDARI receptor subunit. NMDARs are critical for the
neural plasticity underlying learning under normal condi-
tions [25]. Activation of the NMDARs requires the binding
of both glutamate and the co-agonist glycine for efficient
opening of the calcium channel. Upon opening of the chan-
nel, intracellular calcium concentrations increase which acti-
vates signal transduction pathways critical to the plasticity
underlying fear extinction [26]. One of the mechanisms
underpinning the formation of emotional (including fear)
memories is the interaction between DCS and other fear
extinction enhancers (histone deacetylase inhibitors) with
brain-derived neurotrophic factor (BDNF) and tropomyosin-
related kinase B receptors in the amygdala, hippocampus
and prefrontal cortex [27]. Other potential treatment
approaches include glucocorticoid receptor, corticotropin-
releasing factor and norepinephrine signalling modulators
that may alter stress responses. Glucocorticoid receptor
modulators and modulators of glutamate signalling (posi-
tive allosteric modulators of glutamate receptors, glycine
transporter inhibitors and glycine agonists also have ther-
apeutic potential) are putative cognitive enhancers that
target mechanisms of conditioned fear extinction [28].
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Genetics of Anxiety

Numerous factors play a role in the aetiology of anxiety
disorders, such as cognitive and physiological factors, ge-
netic heterogeneity as well as epigenetic or regulatory
changes. Several animal and human studies have investigat-
ed the role of molecular mechanisms in anxiety disorders.
Results from twin studies that have investigated the herita-
bility of GAD, PD, phobias and PTSD point to a complex
interplay of genetics and the environment [29]. More
recently, genetic screening in complex disorders has been
extended to the identification of rare risk alleles, copy number
variations (CNVs) and regulatory elements such as miRNAs.
Genetic variation in regulatory gene regions may play a major
role in phenotypic diversity [30, 31], whereby minor varia-
tions in gene regulation have the potential to alter gene dosage
and contribute to genetic susceptibility to disease. In this
regard, it is important that regulatory elements acting in the
brain be more thoroughly studied in anxiety disorders.

MicroRNAs (miRNAs)

MicroRNAs (miRNAs) are a class of small, noncoding
RNAs that have recently drawn interest as epigenetic mod-
ulators of gene expression in psychiatric disorders [32]. In
1993, the first miRNA, lin-4, was discovered in Caenorhab-
ditis elegans through genetic screening for deficiencies in
the temporal control of postembryonic development [33].
However, it was only in 2001 that the role of miRNAs as a
new layer of gene regulation was finally appreciated
[34-36].

MiRNAs are single-stranded RNA species approximately
22 nucleotides (nt) long that form part of a large class of
small, noncoding RNAs. miRBase is the major online re-
pository for all miRNA sequences and annotation. The most
recent version of the database, release 19, contains 21,264
hairpin precursor miRNAs entries expressing 25,141 mature
miRNA products, in 193 species [37]. Between 1 % and 5 %
of mammalian genes are comprised of miRNAs [38], mak-
ing them one of the most abundant classes of regulators in
the genome [39]. Half of all the miRNAs are expressed from
non-protein coding transcripts and the other half from
intronic regions of protein-coding genes [40]. MiRNAs are
evolutionarily conserved and are involved in numerous in-
tricate processes including the stress response [41]. They are
of particular importance in brain functioning and are in-
volved in learning and memory processes [42] as well as
synaptic plasticity [43]. Certain miRNAs are ubiquitously
expressed (e.g. let-7b, miR17-5p and miR21) [44] while
others have an expression pattern dependent on the specific
cell type or developmental stage [45] (e.g. brain and spinal
cord-specific miR34a [44], and miR409-3p in brain devel-
opment in mice [46]).
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The production of mature miRNAs is a complex process;
the primary transcript miRNAs (pri-miRNAs) are cleaved
by the ribonuclease III (Drosha) enzymes and the DiGeorge
syndrome critical region gene 8 protein (DGCRS) in the
nucleus. This cleavage produces a precursor miRNA (pre-
miRNA) approximately 70-100 nt in length that is actively
transported to the cytoplasm by exportin 5. In the cyto-
plasm, the pre-miR is cleaved by another RNaselll enzyme,
Dicer, and the trans-activation responsive (TAR) RNA bind-
ing protein (TRBP) to generate double-stranded miRNAs
approximately 22 nt in length. Thereafter, a helicase
unwinds the dsRNA of the miRNA and one of the strands
is degraded while the other (known as the guide strand)
functions as the mature miRNA. The mature miRNA is
incorporated into a miRNA-induced silencing complex
(miRISC), a complex of proteins that target mRNAs based
on sequence complementarity mostly in the 3’ untranslated
regions (UTRs) [47]. In the case of perfect complementarity
between the miRNA and target mRNA, the target RNA is
degraded. In the absence of perfect complementarity, the
target is not cleaved but is deadenylated which leads to
decapping and subsequent exonucleolytic digestion or trans-
lational repression (through a different mechanism at each
translational step, namely initiation, elongation and termi-
nation) [48] (Fig. 1) [9]. It is important to note that not all
mRNA targets are directly targeted by miRNAs via binding
to the 3 UTR of the mRNA. Indirect targets form part of a
miRNA-mediated regulatory pathway but do not possess
structural affinity for miRNAs. However, the expression of
these targets is indirectly affected by another target of the
miRNA [49]. Parker and Wen have also shown that indirect
targets have a delayed response in expression changes over
time compared to direct targets (as described for miR-124)
[50]. Tt is clear that miRNAs do not simply turn genes on
and off, but form part of an interconnected regulatory net-
work that fine-tunes the expression levels of target genes
[51]. Variations in target sites could thus result in altered
gene expression patterns and ultimately contribute to disease
susceptibility [52].

MiRNA Targets

Approximately 20-30 % of all genes are regulated by at
least one miRNA [38, 53, 54]. However, computational
analysis suggests that a single miRNA can target hundreds
of genes and that one gene can be targeted by more than one
miRNA [55]. Although the 3’ UTR of mRNAs is a typical
target site of miRNAs, target sites in the coding region have
also been documented [56, 57]. Nucleotides 2—7 of the
miRNA sequence are known as the seed region and are
the most critical region for target recognition [58].
MiRNA-mediated regulation of mRNAs is complicated by
the fact that miRNAs are prone to tissue-specific RNA
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Fig. 1 Figure depicting the production of mature miRNAs. Micro-
RNAs (miRNAs) are encoded in the genome, their genes usually
transcribed by RNA polymerase 1I. The transcripts undergo splicing
and polyadenylation. The pri-miRNA is processed in the nucleus by
the Drosha RNaselll enzyme and the DGCRS protein, producing the
pre-miRNA. The pre-miRNA is exported to the cytoplasm by exportin-

editing. RNA editing is a posttranscriptional mechanism
whereby some RNA molecules are changed to contain bases
not originally encoded in the genome (via nucleotide inser-
tion, deletion or modification). Such events can lead to
altered properties of miRNAs and alternative mRNA-
miRNA interactions [59].

In order to gain insight into miRNAs and their functions,
it is essential to identify their mRNA targets. This step has
proven to be computationally challenging. Although great
advances have been made in the field of miRNA target
prediction, with the development of various target-
predicting software [60], their false-positive rates of target
prediction range between 24 % and 70 % [61-63]. These
high rates emphasise the importance of experimental strate-
gies to validate predicted targets in an endeavour to identify
genuine miRNA targets and miRNA function [64]. For more
detail on in vitro and in vivo experimental strategies for
miRNA target identification, refer to Thomson et al. [64],
Schratt et al. [43], Pasquinelli et al. [65] and Karres et al.
[66].

MiRNAs in the Central Nervous System (CNS)
and Synaptic Plasticity

Both acute and chronic stress are associated with the devel-
opment of anxiety disorders through intricate mechanisms
related to neural plasticity [67]. Optimal functioning of the
CNS requires precise and rapid changes in gene regulation;

5 where Dicer and the TRBP cleave the pre-miRNA to yield a miRNA
duplex (about 22-bp long). One strand is selected to function as a
mature miRNA, the other strand is usually degraded. Mature miRNAs
are then incorporated in a miRNA-induced silencing complex
(miRISC) that recognises and binds to the 3' UTR of the target mRNA
and represses translation (AGO-argonaute) [48]

posttranscriptional regulation by miRNAs could represent
one of the ways in which this is achieved [39]. Numerous
miRNAs are abundantly expressed in fully differentiated
neurons of the mature brain [48]. Recent studies suggest a
crucial role for miRNAs in regulating various neurobiolog-
ical processes, including neurogenesis, neurite outgrowth,
synaptogenesis and synaptic and neural plasticity [68].
Many putative miRNA targets are involved in neural devel-
opment; these include mRNAs that encode proteins in-
volved in the maintenance of neuronal function, plasticity
of neural networks and specific neurodevelopmental and
neurodegenerative diseases [69]. Studies have also shown
that miRNAs are altered by stress, glucocorticoids and
mood stabilisers [32], suggesting that miRNAs could be
vital in the actiology of anxiety disorders. Hunsberger sug-
gested that miRNAs could be differentially expressed in
patients with various psychiatric disorders, indicating that
miRNAs may have the potential to broaden our understand-
ing of the pathophysiology and therapeutics of anxiety dis-
orders [32].

The role of miRNAs as translational regulators also
implicates these small RNAs as mediators of long-term
plasticity. Hansen et al. investigated the functions of miR-
NAs in synaptic plasticity and discovered that miR-134
modulates synaptic plasticity in the rat hippocampus [70].
Further studies suggest that miRNAs are involved in the
critical phases of memory formation via synaptic tagging to
ensure synaptic input specificity [71-73]. A model for
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miRNA-mediated effects at the synapse has been proposed
[74], in which miRNAs could exert an influence on transcripts
with stimulation-dependent translation, such as the ionotropic
glutamate receptors stimulated by glutamate [48, 74].

Mature miRNAs have been shown to play a vital role in
early mammalian development. Knockout studies in zebra-
fish deficient in the Dicer protein (and consequently lacking
functional miRNAs) indicate an important function for miR-
NAs in the formation of the embryonic neural plate and its
transformation into the neural tube [75]. Studies in mice
suggest that miR-9 and miR-124a are involved in neural
lineage differentiation in embryonic stem (ES) cell-derived
cultures [76]. In fact, expression of miR-124a, even in non-
neuronal cells, induces an overall neuronal gene-expression
pattern [77, 78]. Upon introduction into HeLa cells, miR-
124a induces a neuronal-like expression profile by decreas-
ing the levels of numerous nonneuronal transcripts. Alter-
natively, repressor element-1 (RE-1) silencing transcription
factor (transcriptional repressor) inhibits the expression of
neuronal genes, including that of miR-124a, in nonneuronal
cells [79].

MiRNA-132 was identified as one of the most highly
inducible CREB targets in a genome-wide study by Vo et al.
where they screened for cAMP-response element binding
(CREB) protein targets that directly regulate neuronal plas-
ticity. CREB protein acetylates histones, giving a specific
tag for transcriptional activation; it also binds to phosphor-
ylated CREB and improves its transcriptional activity to-
ward cAMP-responsive genes. In addition, the authors
showed that miR-132 expression in cortical neurons induced
neurite outgrowth and, conversely, that its inhibition re-
duced neuronal outgrowth [80]. Their research suggests that
miR-132 decreases the levels of the GTPase-activating pro-
tein (p250GAP), a protein proposed to regulate neuronal
differentiation, and subsequently neuronal morphogenesis
[80—82]. The role that this miRNA plays in neuronal plas-
ticity also suggests a role for miR-132 in regulating expres-
sion changes associated with anxiety disorders.

Several researchers have also set out to identify specific
miRNAs and their targets responsible for regulating synap-
tic function. Schratt et al. investigated the brain-specific
miRNA regulation of dendritic spine development in rats.
Most dendritic spines contain a postsynaptic density (PSD)
(comprising of a complex matrix of postsynaptic receptors,
cytoskeletal proteins and signalling molecules) and are in-
volved in postsynaptic signalling and plasticity [83]. They
found that miR-134, a brain-specific miRNA, modulates
synaptic plasticity in the rat hippocampus. This miRNA
has a negative effect on the size of dendritic spines in rat
hippocampal neurons by directly targeting LIMKI (Lim-
domain containing protein kinase 1) [43]. LIMK] is a potent
regulator of cofilin and actin dynamics and plays a crucial
role in the morphogenesis of dendritic spines and brain
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function [84]. Further investigations of miRNAs that regu-
late dendritic spine morphology and synaptic plasticity will
provide valuable insight into the intricate processes in-
volved in learning and memory.

MiRNAs in Anxiety as Described in Animal Models

The HPA axis plays a vital role in regulating the normal
response to stress; malfunctioning of this system underlies
susceptibility to certain anxiety disorders [10]. Precise
mechanisms for this increased susceptibility has however
not been fully elucidated. miRNAs are abundantly
expressed throughout the brain, where they perform impor-
tant regulatory functions in the CNS [48, 51]. This suggests
a role for miRNAs in stress response regulation. Uchida et
al. established and characterised an animal model of vulnera-
bility to repeated stress [85]. Previous studies have shown that
Fischer 344 (F344) rats constitute a stress-hyperresponsive rat
strain that is more vulnerable to repeated restraint stress (RRS)
compared to other strains such as Sprague-Dawley (SD) rats.
Uchida and colleagues first investigated neuroendocrine and
biochemical responses to RRS and found lower levels of
glucocorticoid receptor (GR) protein expression in the
paraventricular nucleus (PVN) in F344 rats compared to con-
trol SD rats. They focused on translational repression by
miRNAs to help explain the observed aberrant translation of
GR. They established that miR-18a inhibited translation of
GR mRNA (in cultured neuronal cells) and that higher ex-
pression levels of miR-18a were present in F344 rats com-
pared with SD rats in the PVN. In vitro experiments confirmed
the results for miR-18a and also established a similar role for
miR-124 [86]. MiR-18 and miR-124a reduced the levels of
GR protein and decreased GR-mediated events. MiR-18 is
widely expressed throughout the body, whereas miR-124a
expression is restricted to the brain [86]. Down-regulation of
GR translation via miR-18a may be an important susceptibil-
ity mechanism for stress-related disorders [85], and F344 rats
could therefore be a useful animal model for studying vulner-
ability to repeated stress.

Subsequent work by Uchida et al. focused on the effects
of maternal separation and early life adversity on the behav-
ioural response to RRS as well as vulnerability to chronic
stress in adult rats [87]. Maternally separated rats showed
increased expression of repressor element-1 silencing tran-
scription factor 4 (REST4), a neuron-specific splicing vari-
ant of the transcriptional repressor REST. REST regulates
certain brain-enriched miRNAs postulated to be associated
with neuronal functions such as brain development and
plasticity [74, 79, 80, 88]. The maternally separated rats
also showed a marked increase in a variety of REST target
gene mMRNAs and miRNAs in the medial prefrontal cortex
(mPFC). The expression of pre-mirl32, -124-1, -9-1, -9-3, -
212 and -29a as well as the mature miR132, -124, -9 and -



Mol Neurobiol (2013) 47:726—739

731

29a were found to be significantly up-regulated in mater-
nally separated rats compared to control rats. Interestingly,
mir-132, -124-1, -9-1, -9-3, -212 and -29a all possess a
repressor element-1 (RE-1) site within 50 kb of their pro-
moter regions [88]. The authors hypothesised that the dif-
ferential expression of mRNAs and miRNAs of genes that
contain RE-1 might be due to alterations in RE-1-mediated
gene transcription in the mPFC of maternally separated rats
secondary to altered REST4 expression. Indeed, results in-
dicated an increased level of expression of genes and miR-
NAs possibly regulated by REST4, such as glutamate
receptor subunit (Glur2), calcium/calmodulin-dependent
protein kinase II (CamKlla) and adenylate cyclase 5
(Adcy5) as well as precursors for mirl32, -124 and -212.
These results suggest a role for an REST4-mediated gene
network and specific miRNAs acting in the mPFC. This
study provides additional insights into factors that could
influence susceptibility to developing mood and anxiety
disorders in adulthood following exposure to early life
stress. [87].

Meerson et al. predicted that miRNAs mediate stress
response regulation through alternative splicing. They stud-
ied expression profiles of miRNAs in the hippocampus CA1
region and the central amygdala in both acute and chroni-
cally stressed rats. They found that both acute and chronic
immobilisation stress induced distinct miRNA expression
profiles in these two stress-responsive brain regions. MiR-
134 and miR-183 were up-regulated in the amygdala fol-
lowing acute stress. MiR-134 was down-regulated in the
amygdala and hippocampus under chronic stress conditions
in both the amygdala and CA1l. These two miRNAs were
further investigated as they shared numerous common pre-
dicted mRNA targets that were known mediators of neuro-
nal stress reactions, including the Serine/Arginine-rich
splicing factor 2 (SC35). SC35 is up-regulated in response
to stress, promoting the alternative splicing of acetylcholin-
esterase (AChE) from its synapse-associated isoform
(AChE-S) to the rare soluble form of the protein (AChE-
R). MiR-183-mediated suppression of SC35 was confirmed
in cultured cells. This alternative splicing of AChE affects
the local and temporal regulation of cholinergic neurotrans-
mission. The authors were able to demonstrate that stress
altered the expression levels of miR-183 and miR-134.
Through regulating splicing factors and their targets, these
miRNAs were able to modify both alternative splicing and
cholinergic neurotransmission under stress conditions in the
brain, providing a link between the molecular and physio-
logical responses of different brain regions to psychological
stress [89].

The functional role of miRNAs in regulating stress
responses were investigated by Haramati et al.; by inactivat-
ing the Dicer gene (a key enzyme in miRNA synthesis
pathway), they were able to inactivate miRNA processing

in the central amygdala [90]. A sharp increase in anxiety-
like behaviour was evident in mice lacking Dicer (and thus
also mature miRNAs) in their amygdala. In addition, acute
stress in wild-type mice induced differential expression of
numerous miRNAs in the amygdala. MiR-34c, one of the
prominent stress-induced miRNAs, was further investigated
and found to be strongly up-regulated by exposure to stress,
resulting in reduced symptoms of anxiety in normal mice.
Interestingly, corticotrophin-releasing factor receptor type 1
(CRFR1) mRNA is one of the targets of miR-34c. The
authors showed that miR-34c elicits its effect on the amyg-
dala by targeting an evolutionarily conserved region in the
3" UTR of CRFR1 mRNA. The authors postulated that miR-
34c down-regulates stress-related proteins like CRFR1 and
assists in the stress recovery process of these mice. In effect,
such miRNAs and their targets may unveil new targets for
the treatment of stress-related disorders [90].

By 2008, it was established that miRNAs play an impor-
tant regulatory role in neuronal development; however, the
mechanism of regulation of miRNA expression had not
been elucidated. Parsons et al. investigated differential
miRNA expression in one tissue of different inbred mouse
strains to gain more insight into miRNA expression regula-
tion. By studying differential miRNA expression in the
hippocampus of four common inbred mouse strains (A/J,
BALB/cJ, C57BL/6J and DBA/2J) prone to anxiety-like
behaviour, they identified 11 differentially expressed miR-
NAs. The expression of miR-34a, miR-323, miR-378 and
miR-451 correlated with behavioural measurements of ex-
ploration on the elevated plus maze task (indicative of
anxiety levels), with less anxious animals displaying more
explorative behaviour. MiR-34c and miR-323 expressions
correlated with anxiety (less explorative behaviour) on the
elevated plus maze task and expression of miR-34c, miR-
323, miR-378 and miR-451 correlated with tests of learning
and memory [91]. While a role for miRNAs in synaptic
development had previously been proposed [42], this study
was one of the first to demonstrate involvement of miRNAs
in anxiety, learning and memory.

Acute and repeated stress affects neural activity in differ-
ent brain regions [92]; short-term changes in neural trans-
mission and gene regulation [93-95] and longer term
changes in structural modification [96-98] have, in particu-
lar, been documented. It is thus plausible that miRNAs may
be involved in these processes. In a recent study investigat-
ing the effects of single or repeated exposures to restraint
stress on miRNAs in the frontal cortex of CD1 mice, a
marked increase in the expression levels of various miRNAs
after acute stress was found, while only minor changes were
observed after repeated restraint. The authors hypothesised
that acute stress rapidly modulates miRNAs, but that these
effects are only transient. Northern blot analysis confirmed
that after acute restraint an increase in let-7a, miR-9 and
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miR 26-a/b was observed. These changes were found to be
region specific, present in the frontal cortex but not in the
hippocampus, providing evidence that miRNAs in the front-
al cortex are involved in the process of translating stressful
events to alterations in protein expression [99].

MiRNAs in Anxiety as Described in Human Studies

The role that miRNAs play in synaptic plasticity and neu-
ronal differentiation suggests that miRNAs may be involved
in the aetiology of numerous psychiatric disorders. Various
miRNA expression studies have been conducted in schizo-
phrenia patients (post-mortem brain samples) [100-102],
autism spectrum disorders [103, 104], Rett syndrome [105]
and substance abuse disorders [106]. To date, there have
been few studies of miRNAs in anxiety disorders.

Muifios-Gimeno et al. selected a panel of SNPs (712 SNPs
that covered 325 miRNA regions) to use in association studies
of panic disorder [107]. Their analysis revealed that the SNP
coverage in miRNA regions is much lower than the rest of the
genome. None of these SNPs were located within a mature
miRNA sequence, which is in line with the reported negative
selection at miRNAs and miRNA target sites at 3 UTRs
[108]. This lower SNP density was confirmed by a study that
re-sequenced 117 miRNAs in four different human reference
populations [109]. It is thus evident that mutations in miRNA
binding sites are likely to be deleterious and could have severe
phenotypic implications. Re-sequencing of 3’ UTRs and miR-
NAs in patients and controls might cast more light on the role
of miRNA-mediated regulation in the susceptibility to anxiety
disorders [109].

In 2011, Muifios-Gimeno et al. [107] investigated the func-
tional role of miRNAs in panic disorder (PD) in a Spanish
cohort of patients with PD. They examined 712 single-
nucleotide polymorphisms (SNPs) that tagged 325 human
miRNA regions. Two SNPs found to be significantly associ-
ated with panic disorder, rs6502892 and rs11763020, were
also found to tag miRNAs miR-22 and miR-339, respectively.
MiRNA-22 was shown to regulate four candidate genes,
namely brain-derived neurotrophic factor BDNF, serotonin
5-HT2C receptor (HTR2C), monoamine oxidase A (MAO-A)
and the regulator of G-protein signalling 2 gene (RGS2).
Target predicting software proposed adenosine receptor A2a
(ADORA2A), BDNF, corticotropin-releasing hormone recep-
tor 2 (CRHR?2) and sodium-dependent noradrenaline trans-
porter (SLC6A42) as possible targets of miR-339. In addition,
they found SNPs associated with PD sub-phenotypes (PD
with and without agoraphobia) that tagged miR-138-2, miR-
148a, miR-488 and miR-491. Functional studies indicated that
miR-138-2, miR-148a, and miR-488 repressed the expression
of certain candidate genes for PD in the region of 30 % to
60 %, including gamma-aminobutyric acid A receptor, alpha 6
(GABRAG), cholecystokinin B receptor (CCKBR) and
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proopiomelanocortin preproprotein (POMC), respectively
[107]. Following transfection with miR-22 and miR-488,
neuroblastoma cells showed altered expression of a subset of
potential target genes for these miRNAs and genes that might
affect physiological pathways related to anxiety. An associa-
tion between rs73531, which tagged the intergenic miR-148a,
and age at onset (AAO) (p=0.0007) was observed. The aver-
age AAO was 23 years for the GG homozygotes and 30 years
for the AG heterozygotes and 44 homozygotes [107].

Neurotrophin-3 growth factor receptor (VTRK3) was also
investigated as a candidate susceptibility factor in PD and
obsessive-compulsive disorder (OCD). After re-sequencing
the 3' UTRs in two different isoforms of NTRK3 in PD and
OCD npatients, they found that in the truncated isoform of
NTRK3 (located in a functional target site for miR-485-3p)
the C allele of rs28521337 was significantly associated with
the hoarding phenotype of OCD. Additionally, they identi-
fied two new rare variants, ss102661458 (located in a func-
tional target site for miR-765) and ss102661460 (located in
a functional target sites for miR-509 and miR-128), in the 3’
UTR of NTRK3, present in one chromosome of a PD patient
[52]. MiR-128 is a brain-enriched miRNA that is involved
in synaptic processing and neuronal differentiation and miR-
509 shares the target site of miR-128, its expression is
restricted to the testis [110], suggesting tissue-dependent
regulation of NTRK3 at this site. These two variants
resulted in the recovery of gene expression by significantly
altering the miRNA-mediated regulation of NTRK3. Their
data provides evidence that miRNAs play a key role in
posttranscriptional regulation, in this case allele-specific
miRNA regulation of NTRK3 in anxiety disorders [52].

A cross-species approach is another interesting method
that has been used to study anxiety and to identify genes that
regulate anxiety-like behaviour. This approach has enabled
researchers to identify a SNP (rs817782) in the 3' UTR of
the aminolevulinate dehydratase gene (ALAD) that was
shown to be associated with social phobia [111]. The rare
A allele of 1s817782 generated a putative target site for both
miR-211 and miR-204 within the 4L4D 3’ UTR, as pre-
dicted by a miRNA target prediction program (http://
www.patrocles.org) [111]. The authors previously found
that ALAD was expressed at a higher level in the hippocam-
pus and periaqueductal grey of six inbred anxious mouse
strains. These two brain regions together are part of the
abnormally sensitive fear network that patients with PD
suffer from. However, a direct link between this functional
ALAD SNP, the putative miRNA target sites (for miR-211
and miR-204) and PD has yet to be established [112].

MiRNAs and Pharmacotherapies for Anxiety Disorders

The serotonin transporter (SERT) is an important neuro-
transmitter in the CNS that ensures the reuptake of serotonin
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at the synaptic cleft and regulates serotonin levels in the
brain. Defective serotonergic neurotransmission has been
associated with anxiety, OCD, depression and suicidal be-
haviour [113, 114]. SERT is also a pharmacological target of
selective SSRI antidepressants [115], one of the very effec-
tive treatments for various anxiety disorders. A study by
Baudry et al. found that SERT is a target of miR-16. After
chronically treating mice with the SSRI fluoxetine (Prozac),
there was an increase in miR-16 levels in serotonergic raphe
nuclei that resulted in reduced SERT expression [116].
These studies clearly confirm the important role of miRNAs
in the pathophysiology of anxiety disorders. Furthermore,
miRNAs present a novel therapeutic strategy as targets for
anxiolytic drugs. Since miRNAs play an essential role in
regulating numerous stress response pathways, it is impera-
tive that miRNAs be evaluated as potential drug targets for
anxiety disorders.

Zhou et al. conducted one of the first studies that dem-
onstrated that miRNAs and their effectors are targets of
pharmacotherapeutic drugs. Lithium and valproate (VPA)
have been found to be effective in treating bipolar disorder
(BPD). Although not routinely used in the anxiety disorder
setting, valproate in particular may be a useful adjunct in
treatment-refractory anxiety disorder patients as well as in
those patients with a comorbid bipolar disorder and might
enhance exposure-based cognitive therapy for anxiety dis-
orders and PTSD [117]. Zhou et al. found fluctuating levels
of various hippocampal miRNAs following chronic treat-
ment with mood stabilisers, lithium and VPA. The miRNAs
that they were able to confirm were let-7b, let-7¢, miR-24a,
miR-30c, miR-34a, miR-128a, miR-144 and miR-221. The
predicted effectors of these miRNAs are involved in neuro-
genesis, neurite outgrowth and signalling of extracellular
signal-regulated kinase (ERK), phosphatase and tensin ho-
mologue deleted from chromosome 10 (PTEN) and Wnt/(3-
catenin pathways [68]. Treatment with mood stabilisers such
as lithium and VPA has been found to increase the expres-
sion of genes encoding dipeptidyl-peptidase 10, metabo-
tropic glutamate receptor 7 (GRM7) and thyroid hormone
receptor 3 in vivo [68]. Several of these effector-coding
genes have previously been described as candidates for
susceptibility to the development of BPD. The authors went
on to investigate the effects of lithium and VPA on the
expression of miRNAs and their effectors in primary cul-
tures. Primary cultures that received treatments of lithium or
VPA showed lowered levels of miR-34a and elevated levels
of GRM7 (a predicted effector of miR-34a). In addition,
treatment with a miR-34a precursor decreased GRM7 levels
and treatment with a miR-34a inhibitor increased GRM7
levels. These results confirm that endogenous miR-34a reg-
ulates the levels of GRM7, which may contribute to the
therapeutic effects of lithium and VPA on GRM7 [68].
Valproate has been shown to be effective, particularly as

an augmentation strategy, for a number of anxiety disorders,
including PTSD, panic disorder, GAD and SAD [68].

Table 1 provides all the miRNAs included in the review
that have been implicated in the aetiology of anxiety
disorders.

Discussion

Regulatory gene regions have recently received attention
as major contributors to phenotypic diversity and disease.
Investigation of these gene elements in complex disor-
ders, such as anxiety disorders, is critical to understand-
ing the genetic actiology of these disorders. This review
aimed to highlight the importance of miRNAs in anxiety
and how such information can be exploited to better
understand and treat anxiety disorders. The direct role
of miRNAs in anxiety is apparent from literature show-
ing that miRNAs target and regulate stress-related pro-
teins (such as miR-34c that targets CRFR1) and facilitate
the stress recovery process [90]. In addition, miRNAs
can regulate alternative splicing of stress-related genes
(such as miR-183-mediated suppression of SC35 that
controls alternative splicing of AChE) and, in doing so,
regulate neurotransmission under stressful conditions,
providing a link between the molecular and physical
stress responses [89]. MiRNAs are also involved in
allele-specific regulation of genes that play a role in
susceptibility to anxiety disorders (such as NTK3) [52].

Numerous studies have shown that miRNA expression is
altered in response to stress. Parsons et al. were able to show
a clear association between behavioural measures for anxi-
ety and differential expression of specific miRNAs in mice
[91]. However, miRNA expression is not only altered in
response to prolonged stress but also in response to acute
stress. Acute stress results in transient expression change
and miRNAs can act as modulators that rapidly translate
stressful events to altered protein expression [99]. Further-
more, SNPs in the 3" UTR of genes that have been associ-
ated with anxiety disorders have the potential to alter
miRNA target recognition sites and therefore alter the ex-
pression of the target gene, ultimately affecting stress
responses [108, 109].

Finally, miRNAs not only provide us with informa-
tion regarding the molecular mechanism underlying the
therapeutic effects of certain anxiolytic drugs (miR-34a
regulates GRM7 levels after lithium/VPA treatment [68]
and miR-16 regulates SERT expression in response to
Prozac [116]) but also presents novel therapeutic targets
for the treatment of anxiety disorders, either through
directly targeting the miRNA itself or by targeting the
targets of those miRNAs that have been associated with
anxiety disorders.
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Table 1 Summary of microRNAs that are possibly involved in anxiety disorders

MiRNA Involvement with anxiety disorders Species Reference
Let-7a-1 Up-regulated expression in the frontal cortex Mus musculus Rinaldi et al. [99]
following acute stress
Down-regulated in amygdala after acute and chronic stress Rattus norvegicus Meerson et al. [89]
Let-7b Increased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
Let-7c Decreased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
miR-1 Up-regulated in amygdala under chronic stress and Rattus norvegicus Meerson et al. [89]
down-regulated in the hippocampus under acute stress
miR-9 Involved in neural lineage differentiation in ESCs Mus musculus and in vitro Krichevsky et al. [76]
cell line
Up-regulated expression in the frontal cortex Mus musculus Rinaldi et al. [99]
following acute stress
Up-regulated expression in the medial pre-frontal Rattus norvegicus Uchida et al. [87]
cortex following maternal separation
miR-9-1 Pre-miRNA up-regulated expression in the medial Rattus norvegicus Uchida et al. [87]
pre-frontal cortex following maternal separation
Down-regulated in CA1 region of hippocampus under Meerson et al. [89]
acute or chronic stress
miR-9-3 Pre-miRNA up-regulated expression in the medial Rattus norvegicus Uchida et al. [87]
pre-frontal cortex following maternal separation
miR-17-5p Up-regulated in the hippocampus CA1 region Rattus norvegicus Meerson et al. [89]
under chronic stress
Controls neuronal development and differentiation In vitro cell line Hebert et al. [118]
miR-18a Possible repressor of the glucocorticoid receptor Rattus norvegicus Uchida et al. [85],
gene in the hypothalamic paraventricular nucleus Vreugdenhil et al. [86]
regulating stress responses
miR-21 Involved in the control of glial cell differentiation In vitro cell line Chan et al. [119]
miR-22 Associated with panic disorder—repression of Homo sapiens Muifios-Gimeno et al. [107]
RGS2, BDNF, HTR2C and MAOA
miR-24a Decreased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
miR-26a/b Up-regulated expression in the frontal cortex Mus musculus Rinaldi et al. [99]
following acute stress
miR-29a Up-regulated expression in the medial pre-frontal Rattus norvegicus Uchida et al. [87]
cortex following maternal separation
miR-30c Decreased expression in the hippocampus due to t Rattus norvegicus Zhou et al. [68]
reatment with lithium and sodium valproate
miR-34a Correlation between differential expression of this Mus musculus Parsons et al. [91]
miRNA and behavioural measures for exploration
on the elevated plus maze task
Decreased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
miR-34c Correlation between differential expression of this miRNA Mus musculus Parsons et al. [91]
and behavioural measures for anxiety in mice. Haramati et al. [90]
Up-regulated by exposure to stress
miR-124 Up-regulated expression in the medial pre-frontal Rattus norvegicus Uchida et al. [87]
cortex following maternal separation
miR-124-1 Pre-miRNA up-regulated expression in the medial Rattus norvegicus Uchida et al. [87]
pre-frontal cortex following maternal separation
Down-regulated in the hippocampus under acute stress. Meerson et al. [89]
Controls neuronal development and differentiation Hebert et al. [118]
miR-124a Involved in neural lineage differentiation in ESCs Mus musculus and in vitro Krichevsky et al. [76];
cell line Lim et al. [77]; Makeyev
et al. [78]
Down-regulates glucocorticoid receptor Rattus norvegicus Vreugdenhil et al. [86]
miR-128 Association of an allelic variant in the target site for Homo sapiens Muifios-Gimeno et al. [52]
miR-128 in NTRK3 (ss102661458) with panic
disorder—reduction of NTRK3 repression
miR-128a Rattus norvegicus Zhou et al. [68]
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Table 1 (continued)

MiRNA Involvement with anxiety disorders Species Reference
Decreased expression in the hippocampus due to
treatment with lithium and sodium valproate
miR-128b Regulates formation of fear-extinction memory in Mus musculus Lin et al. [120]
the infralimbic pre-frontal cortex
miR-132 One of the most highly inducible CREB targets, plays In vitro neural cell line Vo et al. [80]
a role in neurite outgrowth and neuronal plasticity
Up-regulated expression in the medial pre-frontal cortex Rattus norvegicus Uchida et al. [87]
following maternal separation
Pre-miRNA up-regulated expression in the medial
pre-frontal cortex following maternal separation
miR-134 Modulates synaptic plasticity in hippocampus Rattus norvegicus Hansen et al. [70]
Up-regulated expression in the central amygdala Rattus norvegicus Meerson et al. [89]
and hippocampus after acute stress
Down-regulated expression in the central amygdala Rattus norvegicus Meerson et al. [89]
and hippocampus after chronic stress
miR-138-2 Associated with age at onset in panic Homo sapiens Muifios-Gimeno et al. [107]
disorder—repression of GABRAG6
miR-144 Decreased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
miR-148a Associated with age at onset in panic Homo sapiens Muifios-Gimeno et al. [107]
disorder—repression of CCKBR
miR-183 Up-regulated expression in the central Rattus norvegicus Meerson et al. [89]
amygdala following acute stress
miR-204 Association of an allelic variant in the Homo sapiens Donner et al. [111]
3" UTR of ALAD with SP
miR-208 Up-regulated in CA1 region of hippocampus Rattus norvegicus Meerson et al. [89]
under acute or chronic stress
miR-211 Association of an allelic variant in the Homo sapiens Donner et al. [111]
3" UTR of ALAD with SP
miR-212 Pre-miRNA up-regulated expression in the medial Rattus norvegicus Uchida et al. [87]
pre-frontal cortex following maternal separation
miR-221 Decreased expression in the hippocampus due to Rattus norvegicus Zhou et al. [68]
treatment with lithium and sodium valproate
miR-273 Plays a role in neuronal differentiation Caenorhabditis elegans Chang et al. [121]; Johnston
et al. [122]; Johnston et al.
[123]
miR-323 Correlation between differential expression of this Mus musculus Parsons et al. [91]
miRNA and behavioural measures for anxiety in mice
miR-339 Associated with panic disorder Homo sapiens Muifios-Gimeno et al. [107]
miR-376 Up-regulated in CA1 region of hippocampus Rattus norvegicus Meerson et al. [89]
under acute or chronic stress
miR-378 Association between miRNA and behavioural measures Mus musculus Parsons et al. [91]
(exploration, learning and memory) for anxiety in mice
miR-451 Association between miRNA and behavioural measures Mus musculus Parsons et al. [91]
(exploration, learning and memory) for anxiety in mice
miR-485-3p Significantly associated with hoarding subtype of OCD Homo sapiens Muifios-Gimeno et al. [52]
miR-488 Associated with panic disorder—repression of POMC Homo sapiens Muifios-Gimeno et al. [107]
miR-491 Associated with panic disorder Homo sapiens Muifios-Gimeno et al. [107]
miR-509 Association of an allelic variant in the target site for Homo sapiens Muifios-Gimeno et al. [52]
miR-509 in NTRK3 (ss102661458) with panic
disorder—reduction of NTRK3 repression
miR-765 Association of an allelic variant in the target site for Homo sapiens Muifios-Gimeno et al. [52]

miR-765 in NTRK3 (ss102661460) with panic
disorder—reduction of NTRK3 repression

For a comprehensive list of differentially expressed miRNAs in the hippocampus and central amygdala following acute and chronic stress, refer to
Meerson et al. [89]

NTRK3 neurotrophic tyrosine kinase, receptor, type 3; RGS2 regulator of G protein signalling 2; BDNF brain-derived neurotrophic factor; HTR2C
5-hydroxytryptamine (serotonin) receptor 2C; MAOA monoamine oxidase A; GABRA6 gamma-aminobutyric acid A receptor, alpha 6; CCKBR
cholecystokinin B receptor; POMC proopiomelanocortin preproprotein
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