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A B S T R A C T   

The 3D conformations of chromosomes can encode biological significance, and the implications of such struc-
tures have been increasingly appreciated recently. Certain chromosome structural features, such as A/B 
compartmentalization, are frequently extracted from Hi-C pairwise genome contact information (physical as-
sociation between different regions of the genome) and compared with linear annotations of the genome, such as 
histone modifications and lamina association. We investigate how additional properties of chromosome structure 
can be deduced using an abstract graph representation of the contact heatmap, and describe specific network 
properties that can have a strong connection with some of these biological annotations. We constructed chro-
mosome structure networks (CSNs) from bulk Hi-C data and calculated a set of site-resolved (node-based) 
network properties. These properties are useful for characterizing certain aspects of chromosomal structure. We 
examined the ability of network properties to differentiate several scenarios, such as haploid vs diploid cells, 
partially inverted nuclei vs conventional architecture, depletion of chromosome architectural proteins, and 
structural changes during cell development. We also examined the connection between network properties and a 
series of other linear annotations, such as histone modifications and chromatin states including poised promoter 
and enhancer labels. We found that semi-local network properties exhibit greater capability in characterizing 
genome annotations compared to diffusive or ultra-local node features. For example, the local square clustering 
coefficient can be a strong classifier of lamina-associated domains. We demonstrated that network properties can 
be useful for highlighting large-scale chromosome structure differences that emerge in different biological 
situations.   

I. Introduction 

The chromosomes of eukaryotes are arranged inside the nucleus with 
a multi-scale architecture of complex folds which can be important for 
their biological functions [1]. The long-range spatial structures of 
chromosomes can contribute to the regulation of gene expression by 
fostering enhancer-promoter contacts locally through loop extrusion or 
over longer distances (and between chromosomes) through spatial 
compartmentalization [2,3]. Variations in chromosome structure can 
both be an important source of functional diversity and a cause of 
certain pathological traits [4–6]. Chromosome structure capture 
methods have enabled the study of chromosome organization at the 
genome scale [7,8]. Hi-C is a high-throughput chromosome 3D structure 

capture method that can reveal population-based (bulk) chromosome 
structures expressed by pairwise contact interactions [9,10]. A typical 
Hi-C analysis uses a two-dimensional contact map that indicates the 
frequency of contacts between all possible pairs of genomic positions 
(genomic bins), as illustrated in Fig. 1. However, this two-dimensional 
matrix may not be intuitive to grasp. It can be difficult to visualize the 
correlation between the spatial structure and biological annotations, 
which are often associated with individual genomic regions. Therefore, 
extracting one-dimensional (1D) indicators from a two-dimensional 
(2D) contact map can be a useful way to characterize chromosome 
structural features and compare them to other known linear genomic 
features, and to discern subtle differences between cell types or upon 
perturbations. 
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One commonly adopted 1D indicator is A/B compartment strength 
(which is often further discretized to a binary A/B classification) for 
each genomic bin position[9]. A/B compartment strength is obtained 
from the principal component analysis (PCA) of bulk Hi-C-derived 
contact matrices. Other methods exist for rendering 2D contact 
matrices to 1D genomic bin-based information, such as the insulation 
score and the directionality index to define topologically associating 
domain (TAD) boundaries [11,12], the gene association domain (GAD) 
score [13], the distal-to-local ratio (DLR) for inferring the compaction of 
chromatin region, and interchromosomal fraction (ICF) [14], which 
have been used to measure dynamic properties such as Loss of Structure 
(LOS) after perturbation [15]. Here, we explore a set of systematic 
methods for extracting information using abstract graph representation 
and network analysis. We aim to assess how these mathematical con-
cepts relate to each other as well as the connection between the un-
derlying genome structure and the biological linear annotation. 

Discretizing spatial connection (contact interaction strength) and 
constructing graph representations of biomolecular structures facilitates 
the application of a family of node-based network properties (Fig. 2a), 
such as centralities and clustering coefficients, to understand biological 
functions. Node-based network properties can measure relationships 
ranging from two-body interaction (such as edge centrality and assor-
tativity) to higher-order ones including three-body (such as local clus-
tering coefficient LCC3), four-body (such as square clustering coefficient 
LCC4), and many-body interactions (such as eigenvector centrality). At a 
relatively small scale, network analysis is applied to study chemical 
structures [16] and the internal interaction of macromolecules such as 
proteins. Protein structure networks have been extensively discussed 
and shown to be useful for studying protein structure and dynamics, 
[17–24]. Beyond single molecules, abstract graph theories have been 
used to describe the structure and reaction dynamics of molecular net-
works of chemicals, from the oxidation of oil paintings to the sol-gel 
phase transition of polymers [25,26]. It is interesting to examine how 
such abstract graph representations of structures can be connected to 

biological function and biophysical aspects of complex and heteroge-
neous chromosome structures. 

Previously, many network analysis for genome biology were mo-
lecular interaction networks and co-expression networks [27–29]. There 
is a variety of investigations using the concept of chromosome network 
[30], such as chromatin interaction networks [30–33]. In the current 
study, we emphasize two unique aspects of our approach. First, our 
construction of network focuses on purely physical and structure aspects 
of chromosome, with node and edge definitions directly and uniformly 
derived from Hi-C contact matrices, without including any additional 
biological annotation, supervision, or inferences regarding the structure 
or sequence information. In contrast, numerous previous approaches 
have pre-selected “actively transcribed” nodes or promoter-enhancer 
focused networks. Additionally, we explore a set of node-based fea-
tures that reflect various ranges of the interaction between a given 
chromosome region with its spatial neighbors (and neighbors’ neigh-
bors). Some of the metrics are quite local, such as the degree centrality 
and local clustering coefficients, while others are quite global, such as 
closeness and betweenness centralities [22,34]. It is interesting to 
examine whether specific features of networks reflect strongly a specific 
biological feature and to what extent network analysis can reveal 
changes in structure due to cell type variation and environmental 
influences. 

The focus of this work is to construct the structure network of indi-
vidual chromosomes and compare the network features with selected 
linear genomic features across different cell types under diverse physi-
ological and pathological conditions. One example of the influence of 
the chromosome territory environment on chromosome internal struc-
tures is found when one compares wild-type (WT) thymocytes, lamin B 
receptor (LBR) mutant thymocytes, and rod cells. Interphase nuclei of 
WT thymocytes represent a conventional architecture: heterochromatin 
regions are primarily located at the nuclear periphery, whereas 
euchromatin (typically, regions that are gene-rich and largely active) 
resides in the nuclear interior. FISH experiments [35] have revealed that 

Fig. 1. (a) Hi-C contact map of IMR90 chr21 (region 15.25–48.25 Mb) at 50 kb resolution (b) The corresponding network adjacency matrix representation with a 
cutoff of 40% coverage (c) The corresponding force-directed network graph representation of panel (b). (d) Network feature (LCC3) output (blue) and LAD anno-
tation (gray) as functions of node (genomic bin) index. 
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the structure is inverted in rod photoreceptor cells of nocturnal mam-
mals, and likewise partially inverted in LBR -/- mutant thymocytes [36]. 
The previous direct comparison of Hi-C data between such inverted cells 
and the normal counterpart found straightforward changes between rod 
cells and WT thymocytes, but the difference between LBR mutant and 
WT thymocytes is subtle and the A/B compartment representation was 
unchanged despite the partial inversion. Here, we ask whether distinct 
features can be extracted by network properties and how a network 
viewpoint enhances our understanding of this type of biological 
comparison. 

Another application of graph representation is the influence of cell 
differentiation on chromosome structure. Here, we investigate how 
chromosome structural features are altered between progenitor cells and 
differentiated cells using a set of blood cell types [37]. Additional ap-
plications include how chromosome structures of haploid cell HAP1 
differ from those of ΔCAP-H2 mutant [38] and how HAP1 differs from 
diploid cell. We also explore the effect of cell cycle on chromosome 
structures [39], the differences between a cancer cell type and its normal 
counterpart, and how the nuclear lamina-chromosome interaction is 
reflected in the chromosome structure network (CSN). 

II. Methods and systems 

A. Contact network construction from chromosome structure information 

An abstract graph is a useful way of representing structural compo-
nents and their relationship. For each graph (network), two types of 
elements, vertices and edges, are present. The basic structural unit is 
termed a vertex, which is also called a node in computational sciences or 
a site in physical sciences. An edge that connects two vertices is termed a 
link in computational sciences or a bond in physical sciences. We will 
use these terms interchangeably. In this study, each node is a 

chromosome region (genomic bin) of size 50 kb unless specified other-
wise, whereas each link indicates two such regions are close spatially 
and their association (contact interaction) can be detected in Hi-C 
experiments. 

The bulk Hi-C data can be represented as a contact matrix A, where 
ajk indicates the number of contacts recorded between regions j and k, 
assuming that each region is indexed from 1 to N. There are a total of N 
nodes in the system. Though self-edges are typically included in a graph 
representation and are used for downstream analyses, those contacts 
(diagonal elements) are not considered for the current analysis. Essen-
tially, we would introduce a cutoff value to discretize the values of ajk to 
either 1 when ajk ≥ a∗ or 0 otherwise. Here 1 indicates a link (edge) is 
formed between nodes j and k. Such discretized contact matrix is termed 
the adjacency matrix of a network. The discretization and construction 
of a graph representation helps us simplify the relationship between 
nodes. However, one needs to be careful when choosing a threshold. 
Multiple methods of defining the threshold exist and each has a different 
emphasis. For example, the FitHiC method uses a random polymer 
model as a reference and considers a link formed if the contact value is 
more than the reference value [40,41]. Such a method might provide 
different answers depending on the data resolution and it may convert to 
an overly saturated network in practical cases, especially when the 
resolution is low and bin size is large. 

In this study, we determined the threshold by selecting the median 
value of non-zero contact strengths, thereby maximizing the Shannon 
Entropy of edge formation within the reference random network. 
Essentially, 50% of the N(N − 1)/2 pair of nodes are connected. In a 
binary classification, the two extreme cases are an “all-linked” complete 
graph and a “none-linked” empty graph. Selecting half linked ensures 
the sharpest contrast with a random network under this constraint. 
Thus, threshold p = ½ maximizes the entropy of the corresponding 

Fig. 2. (a) Pedagogical graphs are shown as illustrations of several network properties. The relative value of network property for each node is color labeled. Both BC 
and CC are path-oriented measurements. BC counts the paths that go through a target node while CC focuses on the paths terminating at a target node. In contrast, DC 
and EC focus on the number of neighbors of the target node. LCC indicates the number of closed local paths a node has. (b) The coverage (normalized rank of contact) 
p∗ shown as a function of contact strength a∗. Δp indicates the coverage margin. (c) Cumulative fraction curves for a label being present (black), absent (red), and 
reference (green). ROC is further defined based on associated concepts TPR, TNR, FPR, and FNR. 
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random network, S= -[(1-p) ln (1-p) + p ln p]. which enhances the 
signal-noise ratio. Note that this threshold selection is sensitive to the 
data quality, i.e., the normalized number of nonzero ajk. A properly 
selected threshold value a∗ sensitively depends on experimental condi-
tions, such as sampling size. Since the meaning of cutoff value a∗ is not 
intuitive for selecting links, we define a concept termed link saturation 
(coverage) p∗, a quantitative comparison with the complete network, 
where all edges are formed. With a running cutoff, we can plot the 
function a∗(p∗) as a curve to connect these two concepts. As shown in 
Fig. 2b, the jth ranked contact with strength aj contributes to a point (p∗,
a∗)= ( j[

N(N− 1)
2

], aj) on the curve a∗(p∗). When a∗ is 0, all links are formed 

and one obtains a complete graph where there are total N(N − 1)/2 links 
in the graph. With increasing a∗, some of the links are removed. 
Parameter p∗ can be defined as the ratio between the number of total 
links of a graph and the link number of a complete graph. We can use a 
cutoff link saturation (p∗) to specify a∗ and further define the contact 
network, which means only the largest contacts (p∗ ×100%) were 
considered formed. The proper cutoff value ensures that network 
properties maintain structure information while, at the same time, the 
cutoff filters out other contacts deemed insignificant. 

Note that practically, p∗ may not always be set at a high value that is 
close to 1, as it is affected by how many zero elements the contact matrix 
has, which in turn is affected by several factors. Certain regions of the 
chromosome are highly repetitive and cannot be easily resolved. As a 
result, when there are only total Nc nonzero values, we can define pc 
= 2 Nc/[N(N − 1) ]. Since pc represents the maximum link saturation at a 
contact threshold of zero, clearly p∗ should be less than pc. Other factors 
that affect the sampling of a contact map include crosslinking duration 
and sequence depth. These factors create another layer of uncertainty. 
Practically, we can define the number of elements ajk that only have a 
single “hit”, N1, and a safety margin parameter Δp = 2 N1/[N(N − 1) ].
Together we have p∗ < pc–Δp. Ideally one could choose p∗ =

pc–Δp
2 . Note 

that the raw (discrete) number of contact counts is only used for 
selecting proper threshold p∗, whereas a∗ requires iterative correction 
(ICE balancing [42]) to adjust biases in Hi-C data collection before one 
can render a network representation. Here N1 and Nc indicate the quality 
of the sampling. For example, for the whole chr21 of the IMR90 dataset 
[43] at 250 kb resolution, pc = 53.1% and Δp = 1.2%. Thus, one should 
not choose p∗ greater than 50% in such a case. In Fig. 2b, we plot the 
threshold value a∗ vs cutoff link saturation p∗ for chr10 (region 
0–17 Mb). One can see that a small (tolerant) a∗ threshold will include 
all the nonzero elements of the contact matrix and results in a near 
maximum coverage p∗. Note that p∗ does not necessarily achieve 100% 
as not all genome bin interactions are detected, especially at higher 
resolutions. For the case of IMR90 chr10, pc = 89.9% and the coverage 
margin parameter Δp = 6.6%. Ideally one should choose p* at the flat-
test region of the a∗(p∗) curve since such cutoff will make the selection 
least sensitive to the choice of a* . According to the results, it is better to 
choose a cutoff of 40% under 250 kb resolution. Practically, we use p∗

= 40% unless specified otherwise. 

B. Network properties 

Once the discretization of the contact matrix is achieved and an 
abstract graph is constructed (Fig. 1a-c), we can further calculate site- 
based network properties. For a given network, there are a range of 
node-based network properties one can construct, from properties that 
are quite local and reflect only the connectivity of how a genomic bin 
with its linked neighbors, to those that are global and collective. Here, 
we mainly study centrality properties, clustering properties, and a 
hybrid of centrality and clustering properties. As a comparative over-
view, the two centralities (closeness centrality CC and betweenness 
centrality BC) that are defined from paths are quite global, while the two 

eigensystem-based properties, eigenvector centrality (EC) and A/B 
strength (MI-PCA), are semi-local. Local clustering coefficients (LCCs) 
are a step more local, and finally degree centrality (DC) is the most local. 
The order (from global to local node features) is: CC and BC, EC and MI- 
PCA, LCC4, LCC3, and DC. 

Generally speaking, betweenness centrality (BC) measures how often 
a node appears on the shortest paths between two nodes, while closeness 
centrality (CC) focuses on nodes being the ends of a shortest path 
(Fig. 2a). Both properties are path-based parameters and emphasize the 
global features of the network. In contrast, degree centrality (DC) and 
eigenvector centrality (EC) measure local properties. Both DC and EC 
count the number of neighbors of a node, but the main difference is that 
EC considers a self-consistent weight assigned to each node, and it is 
more global than DC. Highly connected nodes weigh more than less 
connected nodes. The local clustering coefficient (LCC) is another way of 
associating network features to node-based values. LCC is a way of 
indicating how dense the links are around a node, and in comparison, it 
is more local than some of the centralities. Specifically, the LCC value for 
node i is given by LCC3i = 2Ti/[Di(Di − 1) ] [34]. The term Ti represents 
the count of triangles that include vertex i and 2/[Di(Di − 1)], the total 
possible triangles given the degree of ith node, Di, which defines the 
number of neighbors of vertex v. Using adjacency matrix, A, one can 
generalize LCC3 and describe completed neighboring squares for ith 
node [44,45], LCC4i =

∑
jkAijAjkAki/[Di(Di − 1) ] where Di =

∑
jAij and 

Aij = 1 when a link exists between i and j, 0 otherwise. As we will 
demonstrate below, LCC4 (LCC-even, in general) is largely independent 
from LCC3 (LCC-odd) and especially useful for studying certain types of 
networks such as bipartite networks [46]. Both provide distinct per-
spectives of network features. Besides the loop-based generalization we 
adopted, there are some other expansions of definitions, such as 
clique-based LCCs [47] that can provide an additional insight on the 
architecture of networks in general. 

C. Statistical analysis 

Although site-based contact PCA is not deduced from the properties 
of a network, it is a popular way of reducing 2D contact map information 
to site-based values [48]. For MI-PCA and downstream discretization of 
A/B compartment analysis, each element xj of the top eigenvector (one 
with the largest eigenvalue) is associated with each genomic bin j, and 
the A/B compartment is assigned to each bin depending on the sign of 
the eigenvector element at that bin. As one group of elements is often 
associated with gene rich, while the other gene poor, one can assign the 
signs so that j belongs to the A compartment when xj > 0 and belong to B 
when xj < 0. The absolute value 

⃒
⃒xj

⃒
⃒ also is used to symbolize the 

strength of the compartment. 
We would like to quantitatively compare local, genomic bin- 

associated network properties and linear annotations of linear genome 
information, which are often expressed as discrete (even binary) states. 
The conventional scatter plot and correlation coefficients may not work 
in such cases. Instead, we report the area under the cumulative fraction 
curves (CFCs), which are essentially an integration of the raw scatter 
plot function. 

For each pair of network properties and binary annotation infor-
mation, one can construct three cumulative fraction curves, CFP (black), 
CFN (red), and CFR (green dashes), as illustrated in Fig. 2c. Each genomic 
bin position has a network value, e.g., LCC3 and a binary annotation, e. 
g., LAD or non-LAD. For CFP, the cumulative fraction curve examines the 
positive response and increases by a fraction of dy = 1/Np at position 
x = LCC3i, when ith genomic bin is a LAD and dy = 0 when it is not a 
LAD. Here Np is the total number of nodes with LAD status. Conversely, 
CFN examines the negative response and increases when a bin is not a 
LAD by dy = 1/Nn. Here, parameter Nn is the total number of non-LAD 
nodes. The reference curve CFR increases by dy = 1/

(
Nn +Np

)
at LCC3i 

regardless of LAD status. When we make a hypothesis that larger values 
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of LCC3 are associated LAD status, the value of CFP is the false negative 
rate (FNR) while 1-FNR is true positive rate (TPR). Similarly, one can 
obtain the true negative rate (TNR) and false positive rate (FPR) from 
the CFN curve. We can further define TNR-FNR (=TRP-FRP) and find an 
optimal threshold value to classify these two states (LAD or not) from 
LCC3 values. Note that the positive likelihood ratio LR+ =TNR/FNP is a 
similar method of discerning these two curves. Further, the widely 
applied receiver operating characteristic (ROC) curve is plotted (x, y) 
= (FPR, TPR). The area under the ROC curve (AUC) is a value between 
0 and 1, where a larger value implies a stronger performance mea-
surement for the classification of an annotation from a given network 
property. 

D. Systems and data  

1. Hi-C data of human cell lines: All structural data of chromosomes 
used in this study came from bulk Hi-C data. In this study, we used 
publicly available (www.ncbi.nlm.nih.gov/geo) Hi-C data from the 
following human cell types: lymphoblast GM12878 (GSE63525) 
[43], fibroblast IMR90 (GSE63525) [43], leukemia cell line K562 
(GSE63525) [43], HAP1 (GSE95014) [38] – a haploid cell derived 
from K562 [49], condensin II deletion in HAP1 cells (GSE163625) 
[38] and Hi-C data from different blood cell types: erythroblast, 
neutrophil, and megakaryocyte, with permission from the PCHI-C 
Consortium [37]. 

Hi-C raw data is expressed as a contact frequency between regions 
of the genome at a specific resolution (genomic bin). With proper 
procedures, one can describe the information as a contact matrix. 
Unless otherwise specified, all Hi-C data came through 
MAPQGE30-filtering and was further normalized by ICE balancing 
[42]. Furthermore, we apply a sequence distance normalization, i.e., 
aij→aij/bk with bk =

∑
ijuij × δ|i− j|− k/

∑
ijδ|i− j|− k =

∑
iui,i+k/(N − k), 

where Kronecker delta selects k = |i − j|, as stated in Ref. [48]. Pre-
viously, we showed that unlike ICE balancing which is a necessary 
site-based correction, both distance-normalized and untreated ver-
sions can be useful, where the former is focused on interactions that 
occur more often than expected in a random polymer, and therefore 
perhaps are mediated by specific biological mechanisms, while the 
latter represents how often two regions actually come in contact in a 
nucleus, which has implications for biochemical reactions [48]. 
Given our focus on studying structure patterns, we opted for distance 
normalization for all data presented, except in the case of chicken 
mitotic chromosome, where we compared both. 

We focus on intra-chromosomal interactions in this study, and 
human chromosome 21 is examined by default. Since a part of the 
chr21 is poorly covered by Hi-C experiments due to its repetitive 
nature, we used the 15–48 Mb region. To generalize our conclusions, 
we also examined another (larger) chromosome, chr10 (~ 0–17 Mb) 
for a comparison and obtained consistent results. 

There are many interesting linear annotation data on chromo-
somes available (some are direct measurements and others are 
derived): chromosome histone modification marks, 
lamina-associated domains (LADs), gene expression, and derived 
information such as chromosome sub-compartments and chromatin 
states. We focus specifically on examining chromatin state, LADs, 
and compartment subtype in this work. We utilized these biological 
properties since they are closely associated with the structural 
properties of chromosomes and thus may manifest as network 
properties or show biological significance.  

2. Lamina-Associated Domain: Lamin is a nuclear inner membrane 
protein that is critical for various biological processes within the 
nucleus, such as chromatin organization, DNA repair, and gene 
expression. In mammals, both A- and B-type lamins at the nuclear 
periphery interact with hundreds of large chromatin domains known 
as lamin-associated domains (LADs) [50]. LADs might be closely tied 

to geometrical properties of chromosome structure that are therefore 
reflected in a graph representation. LADs also change their spatial 
localization in response to cell type-specific gene expression during 
differentiation and development [51]. For this study, LAD data came 
from Tig3 fibroblasts [48] for comparison to the similar IMR90 
fibroblast Hi-C data.  

3. Chromatin state: Chromatin states (CSs) map epigenomic marks such 
as histone modifications, histone variants, open chromatin regions, 
and other associated marks to their likely functional roles in gene 
regulation [52]. Each region of the chromosome is assigned to only 
one of the 15 CS states according to their combination of epigenetic 
marks: CS1 =Active Promoter, CS2 =Weak Promoter, CS3 =Poised 
Promoter, CS4 =Strong Enhancer 1, CS5 =Strong Enhancer 2, 
CS6 =Weak Enhancer 1, CS7 =Weak Enhancer 2, CS8 =Insulator, 
CS9 = Transcription Transition, CS10 = Transcription Elongation, 
CS11 =Weak Transcription, CS12 =Repressed, CS13 =Heter-
ochromatin/low signal, CS14 =Repetitive/ Copy Number Variation, 
CS15 =Repetitive/ Copy Number Variation. We used CSs of 
GM12878 in this study. 

Note that the annotation state of a genome sequence, such as 
chromatin state, exists at a different (and often higher) resolution 
than that of the network nodes. In the current study, CS data has a 
much higher resolution of 200 bp. When we examine cumulative 
fractions and make comparisons between chromatin states and 
network properties, we operate at the lower resolution (e.g., 50 kb) 
of the two datasets and directly assign the annotation state of the 
exact genome position of the node (the lower bound of the corre-
sponding genome bin). Our straightforward definition works well for 
correlation calculations. However, in our attempt to illustrate the 
statistical features of network properties for a particular chromatin 
state using a distribution (e.g. a violin plot), such as in the case of CS3 
(poised promoter), we encountered a challenge since this annotation 
is typically very small and is not always assigned to the genomic bin 
node. To resolve this issue, we practically operate at the higher 
resolution (200 bp) mode and interpolate by assigning the same 
network property value to all bins that fall within each 50 kb range 
(one structure node). Thus, when constructing the violin plots, 
multiple chromatin state labels can be assigned to the same node and 
quantitative weights ensured.  

4. Subcompartments: In addition to the binary classification of A/B 
compartment (largely correlated with euchromatin vs heterochro-
matin) [53], additional studies classify regions into multiple 
compartment subtypes (sub-compartments) using a range of data, 
including interchromosomal contacts, strength of PCA eigenvectors, 
gene expression, and epigenetic information [43,54–58]. Here, we 
compared our network properties across several cell types using two 
sub-compartment definitions, which extends the A/B definition to six 
states, A2, B1, B2, B3 and B4 [43,53].  

5. Mouse Interphase nuclei: A partially inverted architecture was 
observed when lamin B receptor is deleted from thymocytes. 
Compared to WT thymocytes, these LBR mutant cells cannot anchor 
lamin associated domains onto the nuclear membrane [36]. Though 
it is relatively simple to discern the differences in Hi-C maps from WT 
thymocytes (conventional) and rod cells (inverted) because these are 
quite different cell types, it is difficult to distinguish between LBR -/- 
(partially inverted) and WT (conventional) architecture using Hi-C 
contact maps directly. Therefore, we examine whether network 
properties can distinguish these two nuclear organizations based on 
their subtle changes in Hi-C data. We used the gene-dense mouse 
chr11 for this study. The original data resolution is 20 kb, and we use 
200 kb for better statistics in the network analysis.  

6. Chicken mitotic chromosome: Chromosomes go through dramatic 
structure transformations during the cell cycle. We study CSNs 
derived from Hi-C data of mitotic chicken chromosome 21 during the 
transition from G2 into prophase (time = 0, 2, 5, 7, 10, 30, 60 min) 
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from Ref. [39]. ICE balance and distance normalization were 
applied. The resolution of the contact matrices is 40 kb. 

III. Results and discussion 

A. Effects of coverage and resolution on chromosome structure network 
properties 

We first report how resolution and threshold may affect the analysis 
using chr21 of IMR90 (region 15.25–48.25 Mb) as an example. By 
varying coverage parameter p∗, we found that a higher cutoff value such 
as 80% results in constant high values of the node-based network 
property LCC3, as the nodes of the CSN are almost fully connected. 
Conversely, if the threshold p∗ is as low as 20%, the resulting curve has 
larger variation with some nodes being zero, as the CSN has fewer links 
and is broken into disconnected smaller subnetworks (Fig. 3a). These 
results suggest a p∗ threshold of 40%, the same as chosen based on ob-
servations from Fig. 2b, is also appropriate to yield network properties 
that vary meaningfully across the chromosome. 

Resolution also has an impact on network properties, as shown in 
Fig. 3b. For example, there is a potentially spurious high peak for LCC3 
values near 37.5 Mb (bin index 89). However, the peak disappears if the 
resolution is 50 kb (bin index 445), when the genomic bin size is 
decreased from 250 kb to 50 kb. We observe that the resolution has a 
relatively small effect on EC, which indicates eigenvector centrality is 
less sensitive to resolution selection since EC is more of a semi-global 
property compared to local properties such as LCC3. Generally, a 
smaller bin size provides a high-resolution description only if there are 
sufficient samples in each bin. 

We next compare the similarities and differences in the quantified 
network properties, LCC3, EC, BC, CC, and LCC4, using the same pa-
rameters (250 kb bins and p∗= 40%) (Fig. 3c). BC exhibits the most 
frequent variations, while the other four properties show changes more 
gradually across the genomic region. Overall, BC values are nearly 
constantly low while CC values are constantly high. EC and LCC3 have a 
wider range of variation. However, their peaks and valleys are not 
correlated, which indicates that different network properties reflect 
distinct features of the CSN. Using several different network properties 
may provide a more comprehensive understanding of chromosome 
structure. For example, at positions around 35,000–37,500 kb (arrow, 
Fig. 3c), EC is almost zero, the LCC4 value is around 0.3, and the LCC3 
value is high. The low CC and EC suggests that the region has few 
neighbors, while the contrast between LCC3 and LCC4 values indicates 
that there is a short-distance ring structure in the area. Thus, this region 
is like an isolated island, likely to form links within itself rather than 
with others. 

The network properties provide different measurements of the 
structure features. One can further define a derived network property as 
a combination of basic network properties: BC, CC, EC, and LCCs. A 
previous study pointed out possible correlations between derivative 
network properties, such as BC vs DC × (1 − LCC3) [59]. We directly 
compared the correlation between different network properties and 
between network properties and A/B compartment strength in Supple-
mentary Material (SM) Fig. S1. Among all the basic network properties 
studied, the majority show little correlations, indicating that they are 
largely independent metrics. Only a few pairs of properties show cor-
relation in restricted regions. For example, LCC4 and A/B compartment 
strength show correlation at high value regions whereas EC and A/B 
correspond at low value regions. We found only one strongly correlated 
pair: EC and DC × LCC3. Additionally, as shown in SM Fig. S2, a derived 
network property, the LCC4/LCC3 ratio, is correlated to the A/B 
compartment classification. This ratio compares the relatively longer 
connectivity (neighbors of nearest neighbors) to short-range connec-
tivity (nearest neighbors). Nodes with high LCC4/LCC3 ratios are likely 
a part of the inactive region (B compartment) and vice versa. This 
distinction further underscores the utility of graph properties in 

Fig. 3. (a) LCC3 value as a function of node (genomic bin) index, under 
different coverage thresholds p∗ (max, 80%, 60%, 40%, 20%) at 50 kb resolu-
tion for IMR90, chr21:15.25–48.25 Mb. (b) IMR90 chromosome 21 (same re-
gion as above) 40% p∗ cutoff EC and LCC3 values at different resolution (50 kb 
vs 250 kb bin sizes). (c) Comparison of different network properties including 
BC, CC, EC, LCC3 and LCC4 across the same IMR90 chr21 region as in a and b. 
Arrow indicates a notable region of divergent values between network prop-
erties at a given genomic location. 
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characterizing of biologically related structure features. 

B. Network properties display distinct structural features of chromosomes 
for different cell types 

There are several epigenetic differences between chromosomes of 
different cell types. We evaluated whether network properties and CSN 
can discern the structural differences that result from epigenetic dif-
ferences. We first compared the CSN of chr21 between a normal cell type 
(GM12878, non-cancerous lymphoblast) and a cancer counterpart 
(K562; leukemia). As shown in Fig. 4a, the overall fluctuation of LCC3 
and LCC4 values of K562 is much more subdued than the corresponding 
fluctuation of normal cells (GM12878). This plateaued pattern, which 
does not vary significantly between sequence neighbors, suggests that 

many nodes on a chromosome have a similar (and even) degree of 
connectivity with other nodes in the network. This loss of network 
features in bulk cancer cell data may reflect the loss of functional or-
ganization of the chromosome. Therefore, unlike normal cells which 
have highly organized chromosome structure, the degree of chromo-
some organization in cancer cell K562 is weakened. Although most of 
the remaining peak and valley positions of K562 are similar to that of 
GM12878 (especially for EC), there are exceptions. For example, K562 is 
missing the peak at about 37 Mb for LCC3, potentially a site of more 
dramatic chromosome structural difference. 

In addition to changes in chromosomal structure in cancer, we also 
examined the impact of interactions between homologous chromosomes 
on genome structure. In this case, haploid cells HAP1 vs. diploid cells 
GM12878 were compared. HAP1 has only a single copy of each chro-
mosome except chromosome 15 (the second copy of chr15 is only an 
incomplete fragment). Therefore, chromosomes of haploid cells may 
lose some of the interchromosomal interactions of the corresponding 
diploid cells. We constructed contact networks for HAP1 using the same 
cutoff (p∗ = 40%) and displayed the EC and LCC3 results in Fig. 4b. 
Note that there is a disparity in the coverage of Hi-C sequencing data, 
where GM12878 has a higher pc than HAP1 (pc = 92.5% vs 77.2%). 
Another aspect to consider when interpreting HAP1 and K562 results is 
the translocations that occur in these cell lines [60]. For example, chr21 
and chr12 exhibit translocations in the region near chr21:27 Mb and 
chr12:23 Mb in K562. These genomic rearrangements can affect con-
tacts near the edges of the translocation region. 

When using the same cutoff p∗, the system with lower pc has fewer 
dispensable edges to choose and thus leads to a structure network that 
demonstrates an ensemble average of configurations, an evenly con-
nected global network. Since pc (data coverage) influences the effect of 
p∗, we also used an alternative definition, a scaled p∗ to compare 
different systems. Specifically, instead of using a constant p∗, we use 
different p∗ for different systems while keep p∗

pc
= constant. For this 

case, we make sure that p∗HAP
pcHAP

=
p∗GM
pcGM

. As shown in Fig. 4c, we set 
p∗= 33.4% to construct the network of HAP1, to ensure 33.4%/77.2% 
= 40%/92.5%. When we compare Figs. 4b and 4c, the results are not 
sensitive to the selection of p∗, i.e., lowering the cutoff value of HAP1 
cells, did not significantly affect LCC3 and EC values. Similar to the 
cancer cell K562, from which HAP1 is derived, the LCC3 values are 
almost constant, and each position has a similar number of random 
contacts with its surrounding network. Subsequent tests showed that 
even if p∗ is lowered to 20%, the LCC3 value of HAP1 would still be 
largely constant with slightly more random fluctuation (SM Fig. S3). 
Therefore, this phenomenon is robust and not an effect of p∗, which 
suggests the lack of well-defined chromosome structure features in 
HAP1. Since HAP1 is both haploid cell and originates from cancer cell 
line, it is unclear whether one or both factors contribute to the phe-
nomenon. However, upon examining the EC values, we observe that 
HAP1 exhibits further attenuation of the organizational structure (for 
example, in the 19.5–24 Mb region, SM Fig. S3) compared to that of 
K562. This structural changes might be caused by the haploid nature of 
the HAP1. 

We also studied a HAP1 mutation (ΔCAP-H2) [38], as shown in SM 
Fig. S4. CAP-H2 is a subunit of condensin II, which is involved in 
chromosome looping and condensation. Previous research reported 
large scale chromosome structure changes and notable changes in 
interchromosomal contacts with CAP-H2 deletion [46]. However, local 
changes are difficult to discern from the Hi-C contact maps alone (SM 
Fig. S4). Although condensin II primarily affects regions near centro-
meres, our selected region (q-arm of chr21) still exhibits clear effects of 
this mutation using network analysis. We observed that notable changes 
occur in LCC3 and LCC4 while EC is largely preserved. Their values 
decreased across the entire chromosome, indicating a general loss of 
intermediate-scale connectivity along the chromosome, consistent with 
the loss of loops formed by condensin. Additionally, the CAP-H2 mutant 

Fig. 4. Network properties (EC and LCC3/4) as functions of network node 
index for cancer cell type K562 are shown in (a) and for haploid cell HAP1 in 
(b). The corresponding results for lymphoblast GM12878 are shown as a 
comparison. Data of region 15.25–48.25 Mb for chr21 (50 kb resolution) is 
used. Constant coverage of 40% is used. (c) Same comparison as (b) but HAP1 
coverage is set to 33.4%, so that p∗/pc is kept constant. 
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cells exhibited greater variations in LCC3 and LCC4 compared to the WT, 
indicating that certain genomic regions are more strongly influenced by 
the loss of condensin than others. Therefore, network properties can 
reveal differences in decondensation after condensin deletion, which 
may not be readily apparent from the 2D contact map alone. 

Rod cells in mice have a unique inverted nuclear structure. It is 
difficult to visualize the difference between the "inverted" and "non- 
inverted" structures from the Hi-C contact map directly. While distance- 
based methods, such as image-based chromatin tracing [61], may be 
better at discerning this structure difference than Hi-C, we demonstrate 
that CSN metrics can still assist in revealing differences in the Hi-C in-
formation,. We analyzed the differences between WT type and LBR 
mutation using the chromosome structure networks. As shown in Fig. 5, 
BC, CC and EC show a similar distribution pattern of high values at both 
ends and low in the middle. Conversely, LCCs are higher in the middle 
than at both ends. This suggests that the nodes in the central region of 
mouse chr11 have fewer neighbors but are more locally connected, 
whereas the nodes at the ends are more urban. A scenario of 
long-distance enhancer-promoter interaction at the ends and highly 
correlated regulation complexes in the middle can be a realization of 
such CSNs. Compared with the wild type, the value of network prop-
erties fluctuated less in the LBR mutant. Similarly, the LCC values of LBR 
mutant are lower than that of wild type, while BC and CC do not change 
much, which suggests that the LBR mutation has weaker short-distance 
contacts and a loss of some local organization. Thus, chromosomes of 
LBR mutant cells have weakened short range contacts compared to those 
of WT cells. 

As a further comparison of related cell types, we compared three cell 
types from different branches of the same hematopoietic lineage: 
erythroblasts, neutrophils and megakaryocytes. As indicated in the SM 
Fig. S5, the network properties of erythroblast and megakaryocyte cells 
are relatively close, whereas neutrophils are far from both erythroblasts 
and megakaryocytes. For example, the BC and LCC values for neutrophil 
structure have extremely high peaks around chr10:12.5 Mb (50 bin 
index). Such a relationship is consistent with the differentiation path of 

the cell types. Both erythroblast and megakaryocyte cells can further 
give rise to additional cell types (such as erythrocytes and platelets) in 
processes that involve the loss of the nucleus, while neutrophils are at a 
terminal stage [38]. This difference may be reflected in the increased 
structure specialization of the neutrophil chromosomes. These selected 
three cell types exhibit significant overall differences from each other, 
raising the question of how effectively network properties can distin-
guish between more closely related cell types. To explore this question 
further, we also compared a pair of more closely related cell types, B cell 
[59] and GM12878 in SM Fig. S5 (d) and (e). We observe that node 
features are much closer to each other than those in (a-c), yet certain 
notable differences persist. 

To evaluate how CSN metrics perform with dramatic shape changes 
in entire chromosomes, we examined the transformation of chromosome 
structure from interphase through prophase to metaphase. We used Hi-C 
data from chicken chromosome 21 at different stages of chromosome 
condensation (time = 0, 2, 5, 7, 10, 30, and 60 min) [39] to illustrate the 
large scale chromosome dynamics. As shown in SM Fig. S6, we 
compared both distance decay normalized (panel 1) and nonnormalized 
(panel 2). We found that the node features of CSN do not simply 
disappear over time, even for the normalized cases. Instead, several 
types of structure rearrangements occur over time. For example, EC and 
LCCs indicate a type of structural reorganization occurs at 5 min and 
another one at 30 min. However, creating a distinct network from uni-
formly condensed mitotic chromosomes (at later timepoints) becomes 
more difficult and the discretized contact maps at these stages show few 
distinctive features. The corresponding results without normalization 
show that the EC metric can capture certain global features of the 
structural changes as chromosomes progress to condensed metaphase 
stages. Overall, we found that LCCs did not reveal hidden features 
overlooked by a direct inspection of the 2D contact maps. This might be 
a limitation of the network metrics which focus on the connectivity of 
only a few nodes and not sensitive to drastic global changes. 

Fig. 5. The structures of chr11 of mouse rod photoreceptor cell wildtype (WT) and LBR mutant are characterized using network properties at a resolution of 200 kb. 
(a) Heatmap comparison. Above the diagonal is LBR -/- cell. Below the diagonal line is WT cell. (b) BC value comparison between two the above cells. (c) CC value 
comparison. (d) EC value comparison. (e) LCC3 value comparison. (f) LCC4 value comparison. 
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C. The connection between network properties and genomic annotations 

Having observed that quantitative CSN properties differ between cell 
types and conditions, we also evaluated whether these properties of the 
structural network relate to other biologically significant linear anno-
tations along the genome. A major advantage of CSN is the potential for 
data reduction. Various node-based network properties render the 
complex structure information (two-dimensional contact matrix origi-
nated from Hi-C) into different one-dimensional functions of positions 
(genomic bins). In this way, it is convenient to compare 1D node 
properties with known genomic linear annotations. Indeed, previous 
work has observed that Hi-C network properties such as node degree can 
vary between promoter and enhancer regions [62]. 

In our study, we used LAD status and chromatin states as examples to 
study the relationship between genomic linear annotations and network 
properties of the structure (LCC3, LCC4, EC, BC, and CC), focusing on 
IMR90 cells, as shown in Fig. 6. We also compared LAD annotation with 
A/B compartment strength (top eigenvector MI-PCA of Hi-C contact 
[48], up to a sign, Fig. 6c), where we observe that LAD labels are more 
likely associated with compartment B. Note that we did not fix the sign, 
and compartment B is positive (and A is negative) for this top eigen-
vector of MI-PCA. Though the A/B compartment value is not a 
node-based network property, it nevertheless provides a value associ-
ated with each genomic position. Researchers have routinely used it to 
classify compartments, while more advanced methods of classification 
have been developed in recent years [57]. As described in the Methods, 
we used cumulative fraction curves (CFCs) to discern the separation of 
LAD states (LAD versus non-LAD) by different node network properties. 
As shown in Fig. 6a, EC can clearly separate LADs from non-LADs. The 
genomic bins associated with LAD labels are more likely to have high EC 
values. Similar results can also be observed for the CFC of LCC4 in 
Fig. 6b. In contrast, although MI-PCA can also distinguish LAD and 
non-LAD regions at low values, the three CFC curves representing LAD, 
non-LAD and reference overlap at high values (A compartment) 
(Fig. 6c). 

The comparison of how well each network property can distinguish 
LADs from non-LADs can be seen from the ROC graph in Fig. 6d. When 

an ROC is high (thus giving a larger AUC value), there is a strong sep-
aration of LAD vs. non-LAD by this metric. LCC4 values (AUC = 0.852) 
are the strongest LAD predictor, followed by EC and MI-PCA, while LAD 
regions show no distinction based on BC values. Except BC, all five other 
network properties are associated with differences in LAD classification. 
Both LCC3 and LCC4 outperform others, including the A-B compartment 
signal, in resolving LAD classification especially at the small false pos-
itive rate region. This suggests that LADs regions have characteristic 
modes of local clustering within the chromosome structure that are even 
more distinctive to LADs than B compartment association in general. 
This observation confirms the importance of quantifying different 
network properties to study chromosome structure and biological 
annotation. By examining various network properties that range from 
global to local, we find that LADs seem to have more distinctive local 
rather than global network properties. 

Besides comparing LAD and MI-PCA (A/B compartment strengths), 
we also examined the correlation between A/B compartment subtypes 
and network properties. The difference between A1 and A2 sub- 
compartments is that A1 has higher CG content and shorter genes. B1, 
B2, and B3 differ in their association with histone modifications. Ac-
cording to the available data, chr21 of IMR90, GM12878, and K562 cells 
associates with up to four sub-compartments A1, A2, B1, and B2. By 
comparing LCC3 and LCC4 with A1, A2, B1 and B2 classifications, we 
found that network property LCCs can distinguish different compart-
ment subtypes in IMR90 (SM Fig. S6). For both subcompartment defi-
nition approaches for IMR90 [43,53], LCC3 and LCC4 values show 
significant distinctions between A1 and B2 regions, with A2 and B1 
regions showing intermediate LCC3 and LCC4 values. This pattern is also 
evident for LCC4 values in GM12878 and K562 cells, although for 
GM12878 cells LCC3 values are much more similar across all sub-
compartment types. 

Additionally, we compared chromatin states with network proper-
ties. Chromatin states classify chromatin regions by properties such as 
their epigenetic marks and transcription state to identify their specific 
functions in transcriptional regulation [63]. The chromatin state data of 
GM12878 chr21 (GEO:GSM936082) was used in this comparison. As 
shown in Figs. 7a and 7b, we show cumulative curves with respect to 

Fig. 6. LAD cumulative fraction (CF) plots of network properties and MI-PCA for a region of IMR90 chr21. Here classifier performance concepts using CFP (black), 
CFN (red), CFR (green dash) are shown for EC in (a), LCC4 in (b) and PCA in (c). (d) ROC curves of six different network properties for the LAD classification. 
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LCC values for the six most data-rich chromatin states. Despite the 
similar nature of the definitions, the accumulation curves of chromatin 
states in LCC3 and LCC4 are distinct in discerning chromatin state 
classifications. LCC4 can better discriminate heterochromatin (CS13) 
versus other states. The distribution of either LCC metric for poised 
promoter state classification (CS3) is sharply peaked and there are no 
zero values (Figs. 7c and 7d). This result suggests that the chromatin 
state label CS3 may have a highly specialized structure motif. This 
observation may be connected to previous findings suggesting that the 
promoter-based subnetwork, as opposed to the rest, has a signature of 
positive assortativity [33]. In addition, we found that some chromatin 
states, such as heterochromatin and repetitive/CNVs, had more than one 
aggregation peak at LCC4, which may indicate that there are subtypes of 
chromosomal structures associated with these CS labels. As previous 
literature on heterochromatin structure suggests, there is a possible 
phase separation of heterochromatin [64]. It is an interesting hypothesis 
that the two sub-states observed for CS15 (heterochromatin) could 
represent one relatively condensed phase (positive assortativity) and 
one relatively open structure (negative assortativity) as depicted in 
Fig. 3c of Ref. [64]. 

IV. Concluding remarks 

We constructed the structural network of chromosomes using Hi-C 
sequencing data. We found that some node-based network properties, 
such as LCC3 and LCC4, can be used to characterize important features 
of chromosome structure. It can render complex two-dimensional in-
teractions into one-dimensional quantitative network properties. Node 
features of CSN can be used to reveal meaningful structural differences 
existing between cell types. For example, compared to other network 
properties and A/B compartment strength (contact PCA), the square 
local clustering coefficient (LCC4) is a particularly strong classifier for 
predicting LAD and one specific chromatin state (CS13, heterochro-
matin). In general, network analysis of CSN can be a useful addition to 
the growing toolkit for studying bulk Hi-C three-dimensional genome 
structure information. Similar analyses can also be used in the future to 
study interchromosomal interactions and chromosome dynamics and 

probe other types of data such as C-walk [65] and multi-contact capture 
approaches [66]. 
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