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ABSTRACT

Identifying specific hot spot residues that contribute
significantly to the affinity and specificity of protein
interactions is a problem of the utmost importance.
We present an interactive web server, PredHS, which
is based on an effective structure-based hot spot pre-
diction method. The PredHS prediction method inte-
grates many novel structural and energetic features
with two types of structural neighborhoods (Euclid-
ian and Voronoi), and combines random forest and
sequential backward elimination algorithms to se-
lect an optimal subset of features. PredHS achieved
the highest performance identifying hot spots com-
pared with other state-of-the-art methods, as bench-
marked by using an independent experimentally ver-
ified dataset. The input to PredHS is protein struc-
tures in the PDB format with at least two chains
that form interfaces. Users can visualize their pre-
dictions in an interactive 3D viewer and download
the results as text files. PredHS is available at http:
/lwww.predhs.org.

INTRODUCTION

Studies of molecular mechanisms for protein—protein inter-
actions revealed that usually only a small subset of bind-
ing interfaces named hot spots account for the majority
of binding free energy and are actually critical for stabil-
ity and function of protein association (1). Identifying and
understanding hot spots and their mechanisms on a large
scale would have significant implications for practical ap-
plications including drug discovery (2) and protein design.

Experimentally determined hot spots from alanine scan-
ning mutagenesis experiments have been deposited in Ala-
nine Scanning Energetics Database (ASEdb, (3)). Binding
Interface Database (BID) presents experimentally verified
hot spots at interfaces collected from literatures (4). How-
ever, the number of experimentally determined hot spots de-
posited in these databases is very limited since experimen-
tal techniques to identify hot spots are often labor intensive
and expensive. Computational prediction of hot spots has
become a practical alternative.

Current approaches for predicting hot spots can be clas-
sified roughly into three categories: (i) molecular dynamics
(MD) simulations can simulate alanine substitutions and
estimate the induced changes in binding free energy (AAG)
at the atomic level. Some MD-based methods are success-
ful to predict hot spots from protein interfaces (5-8); (ii)
knowledge-based methods rely on empirically calibrated
free energy functions, which include terms such as van der
Waals and electrostatic interactions, hydrogen bonds and
solvation energy, providing an alternative way to predict hot
spots with much less computation. FOLDEF (9) and Ro-
betta (10) belong to this group and were developed for the
fast estimation of mutational free energy changes of a pro-
tein for hot spot identification; (iii) machine-learning meth-
ods, such as neural networks (11), decision trees (12), sup-
port vector machines (13-15), Bayesian networks (16,17),
minimum cut trees (18) and random forests (19), have also
been applied to detect hot spots in recent years. What’s
more, several hot spot databases, including HotRegion (20),
HotSprint (21) and PCRPi-DB (17), were built based on
computational methods.

Although substantial progress has been made, there is
significant room for the improvement of protein hot spot
prediction. For example, MD-based methods are not ap-
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Figure 1. Flow chart of the PredHS web server. Input to the PredHS server
can be protein structure files in PDB format or a list of PDB codes. After
job submission, the server invokes three main component processes: (i) fea-
ture extraction: a set of 108 site features, 108 Euclidean neighborhood fea-
tures and 108 Voronoi neighborhood features are extracted; (ii) feature se-
lection: in the training process, a subset of 38 optimal features are selected
by using a random forest algorithm and a sequential backward elimination
method, these selected features are used for prediction and (iii) prediction
models: PredHS-SVM and PredHS-Ensemble, where PredHS-Ensemble is
an ensemble of n sub-models using a bootstrap resampling method to gen-
erate subsets. Finally, two groups of results are obtained (SVM results and
Ensemble results), corresponding to the two predictors.

plicable for large-scale studies due to high computational
cost. Knowledge-based methods are computationally much
faster and reported results appear comparable to those from
MD-based simulations (10). But the overall performance
of these two groups of methods was inferior to machine-
learning methods especially in the measure of recall (22).
Machine-learning methods typically depend on the recog-
nition of differences in features including physicochemical
properties, evolutionary conservation and solvent accessi-
ble area. But specific biological properties for precisely iden-
tifying hot spots are often not fully exploited and the per-
formance of the existing methods remains unsatisfactory.
Moreover, the number of interacting hot spots of a protein
is usually much smaller than the number of energetically
unimportant interface residues. Existing methods usually
have much higher specificity but rather lower recall since
most classification algorithms tend to predict test samples
as the majority class and may ignore the minority class when
trained on the imbalanced data.
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Figure 2. A snapshot of PredHS prediction output. (A) SVM results and
Ensemble results of a job are listed. Predicted hot spots are colored in red.
By default, PredHS predicts interfaces to be hot spots with a default cutoff
0 which is adjustable by the user. Users can put the mouse over a residue
to view its residue ID and predicted score. (B) Interactive 3D view for a
prediction. Predicted hot spots are colored according to their predicted
scores. Residues with score higher than zero are shown from light red to
red as the score increases.

Recently, we developed an effective structure-based hot
spot prediction method, PredHS (22), which integrates
novel structural and energetic features with Euclidian and
Voronoi neighborhoods in addition to conventionally used
properties. Moreover, PredHS uses a two-step hybrid ap-
proach to select an optimal subset of features. Based on the
selected features, a support vector machine (SVM) classi-
fier and an ensemble model are built for prediction. We have
benchmarked PredHS using a set of experimentally verified
hot spot residues and an independent dataset. Results show
that PredHS significantly outperforms the state-of-the-art
methods and indicate that structural neighborhood proper-
ties are important determinants of hot spots (22).

Here, we present the PredHS web server, which is an au-
tomatized online implementation of the PredHS method.
The server allows users to request new predictions for input
PDB IDs or structures files provided in PDB format. The
resulting predictions can be visualized in an interactive 3D
viewer and downloaded as text files.

METHODS

The computational approach used by the PredHS web
server consists of three main component processes (Figure
1): (i) feature extraction: to extract a wide variety of se-
quence, structural and energy features, together with two
types of structural neighborhoods; (ii) feature selection:
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Figure 3. Relative contribution of different feature resources. The y-axes show the ratio of the individual feature resource occurred in the selected optimal
features. The reference ratio of 0.117 is the ratio of 38 selected features out of the total number of features.

a two-step feature selection process that combines ran-
dom forest and a sequential backward elimination and (iii)
predictor construction: two predictors (PredHS-SVM and
PredHS-Ensemble) are built for identifying hot spots based
on the optimally selected features.

Structural neighborhood properties

A total of 108 features are extracted to describe potential
hot spot residues. In addition to conventionally used prop-
erties, many novel structural and energetic features are also
used, including local structural entropy (23), side chain en-
ergy score (24), four-body pseudo-potential (25) and topo-
graphical score (16,26). Based on these features, we propose
a new way to calculate two types of structural neighbor-
hood properties using Euclidean distance and Voronoi dia-
gram.The Euclidean property of a target residue is defined
by summing up the values of the properties in the neighbor-
hood. The Euclidean neighborhood is a group of residues
located within a sphere of 5 A defined by the minimum
Euclidean distances between each heavy atom of the sur-
rounding residues and each heavy atom of the target residue.
The Voronoi diagram (27) is another way to calculate struc-
tural neighborhood properties, which partitions a 3D space
(a protein structure) into several Voronoi regions, each of
which contains a point (heavy atom of a residue). A pair of
residues are said to be each other’s neighbor when there is
at least one pair of their heavy atoms has a Voronoi facet in
common. The Voronoi partition is computed by Qhull (28).
This definition is based on geometric partitioning rather
than the use of an absolute distance cutoff, and hence is
considered to be more robust (29).

Two-step feature selection

To remove potentially redundant ones from the whole set
108 features we implement a two-step strategy. The first step
is to evaluate the importance of each candidate feature by
the mean decrease Gini index (MDGI) with the random for-
est (RF) package in R (30). A higher MDGI score means
the feature is more informative for classifying an interface
residue into hot spots and non-hot spots. In PredHS, 77 fea-
tures with MDGI Z-score larger than 2.5 are selected. In the
second step, redundant features are removed by sequential
backward elimination (SBE) with 10-fold cross-validation.
The SBE algorithm sequentially removes features from the
whole feature set till an optimal feature subset is obtained.
A feature is removed if its removal maximizes the perfor-
mance of the predictor. Finally, an optimal set of 38 features
is obtained for building prediction models (22).

Prediction models

Two classifiers were built for hot spot prediction: one is
PredHS-SVM, which is implemented with LIBSVM pack-
age (31) using radial basis function (RBF) as the kernel; the
other is an ensemble classifier, PredHS-Ensemble, which is
built to handle the problem of imbalance in classification.
PredHS-Ensemble uses an ensemble of n sub-models that
employ an asymmetric bootstrap resampling approach to
generate subsets. Each subset contains all of the hot spots
and a subset of non-hot spots that is generated using ran-
dom bootstrap sampling and has the same size as hot spots.
The final results are calculated by majority votes among the
outputs of the n sub-models.



WEB SERVER INTERFACE

Users can upload a file of a protein structure in the PDB
format or simply input a PDB code to start a job. The input
structure should contain at least two chain identifiers form-
ing an interface. Multiple structures can be submitted in one
run. Users could choose to leave their email address or a job
title to conveniently retrieve the results. The PredHS server
first checks the validity of the input structure, and once con-
firmed, it progresses to the second step for users to select the
query protein and its partners. When the selection is done,
users can submit the prediction job by clicking the ‘Submit’
button.

A typical query takes no more than 30 min to run. For
each submitted structure, the server returns two lists of
residues and their associated scores to be hot spot, corre-
sponding to PredHS-SVM and PredHS-Ensemble, respec-
tively (Figure 2A). The red residues in the query sequence
are predicted hot spots. Users can view the residue ID and
its associated score by putting the mouse over the residue.
The higher the score is, the more likely a given residue is a
hot spot. The results can be downloaded in text or visual-
ized in an interactive 3D viewer Astex Viewer (32) by follow-
ing the “View in 3D’ link. As shown in Figure 2B, predicted
hot spots are colored according to their associated scores.

RESULTS

The PredHS web server trains prediction models based on a
dataset of 265 experimentally mutated interface residues ob-
tained from ASEdDb (3) and the published data of Kortemme
and Baker (10), among which 65 are hot spots. To make a
fair comparison with other methods, we use an independent
test dataset extracted from the BID database that contains
alanine-mutation experiments of a different set of 127 inter-
face residues, of which 39 are identified as hot spots.

We calculated a variety of measures to evaluate the pre-
dictions:

Recall = TP/(TP + FN);
Specificity = TN/(FP + TN);
Precision = TP/(TP + FP);
Accuracy = (TP + TN)/(TP + FP + TN + FN);

(TPxTN — FPxFN) .
J/(TP + FN)(TP + FP)(TN + FP)(TN + FN)’

F1 = 2xPrecision x Recall/(Precision + Recall).

Here TP, FP, TN and FN are true positive, false positive,
true negative and false negative counts. We also calculated
the area under the receiver operating characteristic (ROC)
curve (AUC).

PredHS predicts hot spots using an optimal feature set
of 38 features, which are selected from the combination of
108 site features, 108 Euclidean features and 108 Voronoi
features with the proposed two-step feature selection ap-
proach. These features are calculated based on hetero-
geneous information resources, including position-specific
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scoring matrix (PSSM) (33), physicochemical features (34),
solvent accessible burial (35), atom/residue contacts (13),
pair potentials (36), topographical score (16,26), four-body
pseudo-potential (25), side chain energy score (24) and local
structural entropy (23). To analyze the relative contribution
of different feature resources, we calculated the ratio of each
feature resource occurred in the selected optimal set (37).
The ratio of 0.117 is used as a reference ratio since it is the
ratio of selected 38 optimal features out of the total number
of features. From Figure 3, we can see that the topographi-
cal score contributes most to the hot spot identification, fol-
lowed by the side chain energy score, atom /residue contacts,
four-body pseudo-potential and local structural entropy.

We used 10-fold cross validation on the training dataset
to evaluate the predictive power of structural neighborhood
properties and selected optimal features. Five SVM clas-
sifiers were built and tested using five groups of features,
including site, sequence, Euclidean, Voronoi and optimal
features. The sequence features are generated with a slid-
ing window of 21, which includes 10 residues upstream and
10 residues downstream of the target residue in the protein
sequence. As shown in Table 1, classifiers with structural
neighborhood properties (Euclidean and Voronoi) achieve
better performance than those using site and sequence fea-
tures in terms of AUC score. The classifier with linear se-
quence neighborhood properties is significantly worse than
the others, and thus the sequence features are not included
in the combination. PredHS-SVM with the optimal features
achieves the best performance, suggesting that the proposed
two-step feature selection algorithm can effectively improve
the prediction.

Furthermore, we compared PredHS with other five state-
of-the-art methods, including Robetta (10), FOLDEF (9),
HotPoint (38), KFC2a and KFC2b (15). Each method has a
companion web server or a stand-alone software. Results of
the independent BID dataset are shown in Table 2. PredHS
significantly outperforms the existing methods in the five
performance measures (accuracy, specificity, precision, CC
and F1 score). Although KFC2a has a similar recall value
(0.74) to that of PredHS-Ensemble, the specificity (0.74) and
precision (0.56) of KFC2a are much lower than that (0.80
and 0.63) of PredHS-Ensemble.

CONCLUSION

The PredHS web server provides an automated platform
to predict hot spots from interfaces. In contrast to the ap-
proaches based on the recognition of differences in physic-
ochemical properties, evolutionary conservation and sol-
vent accessible area, an advantage of PredHS is that it inte-
grates Euclidian and Voronoi neighborhoods together with
a variety of heterogeneous information, including sequence-
based, structure-based and energetic features. What’s more,
PredHS uses a two-step feature selection approach, pro-
viding an effective way for selecting an optimal subset of
features within a reasonable computational cost, which im-
proves the prediction performance and reduces the risk of
over-fitting.

A limitation of PredHS and many other hot spot predic-
tion methods is that they can only identify hot spots from
known protein interfaces, which means that the input to
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Table 1. Prediction performance comparison of classifiers with different types of features (site, sequence, Euclidean, Voronoi and optimal subset)

Feature types AUC Accuracy Recall Specificity Precision CC Fl1
Site 0.81 0.82 0.62 0.89 0.66 0.52 0.63
Sequence 0.76 0.80 0.39 0.93 0.77 0.42 0.46
Euclidean 0.82 0.82 0.57 0.91 0.67 0.50 0.60
Voronoi 0.83 0.84 0.60 0.92 0.75 0.57 0.65
Optimal subset 0.87 0.88 0.75 0.93 0.79 0.69 0.76
(PredHS-

SVM)

Table 2. Prediction performance comparison on the independent BID dataset. Maximum value(s) of each performance measure is(are) highlighted in
bold.

Methods Accuracy Recall Specificity Precision CC Fl1
Robetta 0.70 0.33 0.86 0.52 0.23 0.41
FOLDEF 0.68 0.26 0.87 0.48 0.16 0.33
HotPoint 0.69 0.59 0.74 0.5 0.31 0.54
KFC2a 0.74 0.74 0.74 0.56 0.41 0.64
KFC2b 0.79 0.59 0.87 0.68 0.47 0.63
PredHS-SVM 0.83 0.59 0.93 0.79 0.57 0.68
PredHS- 0.79 0.74 0.80 0.63 0.53 0.68
Ensemble

these methods should be protein complexes forming inter-
faces other than monomers. We plan to improve PredHS
by using structural alignment methods to detect hot spots
from predicted interfaces, and thus make monomer input
possible.

PredHS has been in service for >10 months and it is un-
der continuous improvement. We hope PredHS can be ap-
plied to a wide range of hot spot identification and further
functional analysis and so to provide a practical tool for bi-
ologists.
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