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Abstract

A general paucity of knowledge about the metabolic state of Mycobacterium tuberculosis within the host environment is a
major factor impeding development of novel drugs against tuberculosis. Current experimental methods do not allow direct
determination of the global metabolic state of a bacterial pathogen in vivo, but the transcriptional activity of all encoded
genes has been investigated in numerous microarray studies. We describe a novel algorithm, Differential Producibility
Analysis (DPA) that uses a metabolic network to extract metabolic signals from transcriptome data. The method utilizes Flux
Balance Analysis (FBA) to identify the set of genes that affect the ability to produce each metabolite in the network.
Subsequently, Rank Product Analysis is used to identify those metabolites predicted to be most affected by a transcriptional
signal. We first apply DPA to investigate the metabolic response of E. coli to both anaerobic growth and inactivation of the
FNR global regulator. DPA successfully extracts metabolic signals that correspond to experimental data and provides novel
metabolic insights. We next apply DPA to investigate the metabolic response of M. tuberculosis to the macrophage
environment, human sputum and a range of in vitro environmental perturbations. The analysis revealed a previously
unrecognized feature of the response of M. tuberculosis to the macrophage environment: a down-regulation of genes
influencing metabolites in central metabolism and concomitant up-regulation of genes that influence synthesis of cell wall
components and virulence factors. DPA suggests that a significant feature of the response of the tubercle bacillus to the
intracellular environment is a channeling of resources towards remodeling of its cell envelope, possibly in preparation for
attack by host defenses. DPA may be used to unravel the mechanisms of virulence and persistence of M. tuberculosis and
other pathogens and may have general application for extracting metabolic signals from other ‘‘-omics’’ data.
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Introduction

The M. tuberculosis complex includes the human pathogen M.

tuberculosis, the bovine tubercle bacillus, M. bovis and the attenuated

vaccine strain derived from M. bovis. Tuberculosis (TB) causes 2–3

million deaths each year [1] [2]. Outbreaks of TB due to

multidrug-resistant (MDR) and extensively drug-resistant (XDR)

strains have become increasingly common in many parts of the

world [3]. Control of TB is compromised by the fact that

successful treatment takes 6 months or more, leading to lack of

patient compliance and subsequent emergence of drug-resistance.

These lengthy drug treatment regimes are necessary to kill slowly

growing or non-growing cells, known as persisters, in lesions that

are refractory to drug treatment [4]. Development of new drugs

able to efficiently kill persistent cells could lead to shorter

treatment regimes and more effective control of TB. However,

very little is known about the physiological and metabolic state of

the TB bacillus in vivo. The glyoxylate shunt appears to be required

during intracellular growth indicating that M. tuberculosis survives

by scavenging host lipids [5–6] [7]; and recent evidence indicates

that host cholesterol may be carbon source utilized in vivo [8,9].

Gluconeogenesis has also been shown to be required for growth in

vivo [10]. There is also growing evidence of a shift to anaerobic

respiration during dormant/latent/persistent infection [11] [12]

[13]. These findings have been useful in directing rational drug

development [14] but a more complete understanding of M.

tuberculosis metabolism in vivo remains a major goal of TB drug

research.

There are many approaches to studying the physiology of

bacterial cells in vitro. High throughput methods such as

metabolomics, proteomics and transcriptomics may be combined

with traditional biochemical, physiological and structural investi-

gations to define the physiological state of the organism in vitro.

These data may be incorporated into genome-scale models of

bacterial cells to build virtual cells capable of simulating the

growth of bacteria [15] [16] [17] both in vitro and in vivo. Recently,

two genome-scale models of the TB bacillus have been published

[18] [19] allowing this approach to be applied to modeling the
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physiological state of the TB bacillus during infection. However,

whereas it is relatively straightforward to obtain multiple

measurements for bacteria to define a physiological or metabolic

state in vitro, only limited information can be obtained for in vivo. In

particular, it is very challenging to perform metabolomic,

proteomic, biochemical, physiological or structural studies with

the small numbers of organisms obtained from infected tissue.

However, it is possible to perform transcriptome studies on in vivo

grown organisms and these methods have been applied to the TB

bacillus to obtain transcriptome profiles of bacteria growing in

cultured macrophages, mouse models and in human lesions

[20,21] [22] [23] [24]. The transcriptional profile of a cell can

define most aspects of its physiological state; therefore it should be

possible to predict a physiological state from knowledge of its

complete transcriptome. However the mapping between messen-

ger RNA levels and physiological state is highly complex and non-

linear depending on many unknown factors such as mRNA

stability, translation efficiency and post-translational modification

of proteins. Traditional approaches to defining metabolic

responses from transcriptome data have generally relied on

examining expression levels of key (rate-controlling) genes in

metabolic pathways (for instance, [25]. However, metabolic

control analysis has demonstrated that control is distributed

throughout the entire metabolic network, such that the flux

through any particular pathway is controlled globally [26,27]

rather than by a particular enzymatic step. This makes a simple

mapping of differentially expressed genes onto metabolic pathways

an unrealistic strategy for successful predictions of global metabolic

state changes.

Several system-level approaches have been proposed to extract

metabolic information from gene expression profiles. In the

reporter metabolites approach [28] the local connectivity of a

metabolite in the bi-partite, substance/reaction graph is used to

identify a set of genes associated with each metabolite. Subse-

quently, for each of the metabolites, the distribution of the

microarray-derived signal of genes associated with the metabolite

is compared with the background distribution of the microarray-

derived signal for all genes, resulting in the identification of the

transcription regulation focal points of metabolism: network nodes

that are directly affected by clusters of differentially expressed

genes. In another approach, Shlomi [29] used Mixed Integer

Linear programming to minimize the discrepancy between the

internal metabolic flux distribution and the transcriptional profile

of genes encoding metabolic enzymes. Their approach identifies

flux distributions, which are consistent with the stoichiometric

constraints of the genome scale metabolic reaction network and at

the same time maximize the number of active metabolic fluxes

associated with up-regulated genes and the number of non-active

metabolic fluxes associated with down-regulated genes. Yet

another approach, E-flux, was recently developed and used to

examine M. tuberculosis microarray data in the context of the

genome scale metabolic reaction network, by constraining upper

bounds of metabolic reactions to values proportional to the

microarray signals of genes associated with these reactions [30]. In

this study we describe a novel approach, Differential Producibility

Analysis (DPA), which uses FBA to analyze microarray data in the

context of a genome scale metabolic network. The DPA method

differs from both the Shlomi method [29] and the e-flux method

[30] in avoiding assumptions concerning the relationship between

transcriptional signal and metabolic flux, depending instead (like

the reporter metabolite approach) only on network structure.

However, by application of FBA to associate metabolites with

genes, rather than graph theoretical approaches, the DPA method

is more global than the reporter metabolite approach [28] and

examines metabolites in the context of the entire metabolic

network rather than their local network environment. Each of

these approaches does however have its merits and data are not yet

available to identify the optimal means of predicting metabolism

from transcriptional profiles.

To test and validate the DPA approach we first applied it to a

transcriptional dataset obtained from a well-characterized system so

that the results of DPA could be compared with a known biological

response. We chose to analyze the transcriptional response of the

enteric bacterium E. coli to reduced oxygen availability and the

impact of the global regulator, FNR, on that response [25]. Having

validated the method we then applied DPA to analyze transcrip-

tomic data in the context of one of the available network models of

M. tuberculosis [18]. Our aim was to utilize differential transcript data

obtained for a number of in vitro and in vivo states to identify

characteristic global metabolic changes. We focused our studies on

attempting to define metabolic changes associated with the

adaptation of M. tuberculosis to the in vivo environment, as represented

by macrophage-grown M. tuberculosis and human sputum-derived M.

tuberculosis. We compared metabolic profiles for adaptation to the in

vivo environment to adaptation of M. tuberculosis to a range of in vitro

environments in an attempt to deconstruct the in vivo state into

components that can be studied in vitro.

Our analysis revealed a previously unrecognized feature of the

response of M. tuberculosis to the macrophage environment: a

down-regulation of genes influencing metabolites in central

metabolism. This was accompanied by up-regulation of many

genes that influence synthesis of cell wall components and

virulence factors, which had been identified in the original

transcriptome study [22]. The results suggest that a significant

feature of the response of the tubercle bacillus to the intracellular

environment is a channeling of resources towards remodeling of its

cell envelope, possibly in preparation for attack by host defenses

system. The study demonstrates that the DPA method can

successfully extract metabolic signals from transcriptomic data and

can be used to study global effects of gene regulatory changes. The

method may have general application for extracting metabolic

signals from other high-throughput ‘‘–omics’’ data.

Author Summary

Mycobacterium tuberculosis causes tuberculosis, leading to
millions of deaths each year. Treatment takes 6 months or
more, leading to lack of patient compliance and emer-
gence of drug resistance. The pathogen takes so long to
kill because it is able to enter a state of dormancy/latency/
persistence where it is insensitive to drugs. There is an
urgent unmet need to develop new antibiotics that target
dormant/persistent/latent organisms. Most antibiotics
target metabolic processes but it is difficult to examine
the metabolism of the pathogen directly inside the host or
host cells. It is of course possible to identify which genes
are active by transcriptomics but there are no established
and validated methods to use transcriptome data to
predict metabolism. We here describe the development of
such a method, called DPA. We validate the method with E.
coli data and then use DPA to predict the metabolism of
the TB pathogen growing inside host cells and from TB
sputum samples. DPA demonstrates that the TB bacillus
remodels its cells in response to the host environment,
possibly to increase the pathogen’s defenses against the
host immune system. Discovering the metabolic details of
this remodeling may identify vulnerable metabolic reac-
tions that may be targeted with new TB drugs.

DPA of the TB Bacillus
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Results

Differential Producibility Analysis (DPA)
The aim of DPA is to identify those metabolites that are likely to

be most affected by a system-wide change in gene transcription.

Essentially DPA links up- or down-regulated genes with metab-

olites, using FBA essentiality, rather that more traditional pathway

identification tools (such as KEGG) or network analysis. Because a

large number of genes in multiple pathways of metabolism can be

essential to produce any particular metabolite, DPA captures a

more system-wide association between genes and metabolites than

are captured by any simple pathway approach. Figure 1 illustrates

the principle of the method for a toy example metabolic network

consisting of four metabolites and four genes. To perform DPA we

first utilized a FBA-based metabolite producibility plot [31] to

identify, at a system-level, the sets of genes that participate in the

production of each metabolite (Figure 1, step 1). Subsequently, for

each of the metabolites, we calculated a metabolite signal, defined

as the median microarray-derived data signal for those genes that

affect its production (Figure 1, step 2). Therefore, for each

microarray dataset, representing the experimental condition of

interest, we generated a vector of metabolite signals. To avoid

negation of gene expression signals for metabolites which were

associated with different sets of up- and down-regulated genes, the

analysis was performed separately for up and down-regulated

genes. Each metabolite in the network was then ranked according

to the average intensity of microarray signal associated with genes

that affect its production (Figure 1, step 3) using the non-

parametric Rank Products Analysis [32], which has been shown to

be the method of choice for meta-analysis of microarray datasets

derived by different research groups on different experimental

platforms. The detailed steps are described in the Methodology

section. The resulting ranked lists of metabolites that were

identified by DPA to be most affected by the transcriptional

response (we term these the affected metabolites) for all the conditions

were then subjected to cluster analysis to identify similar

experimental conditions that result in similar changes in global

metabolic state and to identify metabolites that have common

metabolite signal profiles across these experimental conditions

examined.

DPA analysis of E. coli microarray datasets
To investigate the utility of DPA for extracting metabolic signals

from transcription data we performed an analysis of microarray

data obtained from an experiment which aimed to identify the

transcriptional response of the enteric bacterium E. coli to reduced

oxygen availability and the impact of the global regulator, FNR,

on that response [25]. E. coli is a facultative anaerobe that can

survive and replicate in both aerobic and anaerobic environments.

Although preferentially utilizing aerobic respiration, the organism

is able to respond to reduced oxygen availability by shifting its

metabolic pathway utilization to mixed acid fermentation and

anaerobic respiration. The two-component global regulator, FNR,

is known to be involved in regulating the shift between aerobic and

anaerobic metabolism. FNR is a CAP (catabolite activator protein)

homologue that contains an oxygen labile iron-sulfur centre,

which acts as the oxygen sensor, and was known to regulate over

70 different genes. The aim of the target study was to identify

additional genes that are differentially expressed in response to

oxygen availability and discover which global changes were

mediated by FNR. The study was designed to measure the

transcriptomic profile of wild type (strain MC4100) E. coli grown

under aerobic (+O2) and anaerobic (2O2) conditions and also

FNR- strain (MC4100 Dfnr-2) of E. coli grown only under

anaerobic conditions in order to identify the FNR response, Note

that the original paper classified genes into eight different

regulatory patterns (I to VIII) depending on whether gene

expression was higher, lower or unchanged in response to oxygen

and whether or not the response was FNR-dependent.

We performed DPA analysis of the two paired conditions: +O2/

2O2 and (2O2)+FNR/2FNR in the context of a genome-scale

metabolic model of E. coli [33]. We obtained four lists: Table S1a,

metabolites identified as associated with down-regulated genes on

exposure of wild-type E. coli to anaerobic conditions (correspond-

ing to regulatory patterns II, IV, V of [25]), Table S1b,

metabolites associated with up-regulated genes in the wild-type

in response to anaerobic growth (regulatory patterns I, III, VII),

Table S1c, metabolites associated with increased gene expression

in the FNR- strain grown under anaerobic conditions (regulatory

patterns I, V, VI), and Table S1d, metabolites associated with

decreased gene expression in the FNR-strain grown under

anaerobic conditions (regulatory patterns II, VII, VIII). These

lists are presented in Supplementary Tables S1a–d with brief

annotations of the most-significantly associated metabolites

indicating predominant metabolic pathways associated with each

metabolite. We compared DPA analysis with gene identification

and ontology analysis, as performed in the original published text

[25].

Metabolites identified by DPA to be associated with
down-regulated genes on exposure of wild-type E. coli to
anaerobic conditions (and thereby up-regulated during
aerobic growth)

The most notable characteristic of this metabolite list (Table

S1a) was the inclusion of many sugars (e.g. glucose and fructose)

and carbohydrates (e.g. glycogen) as well as intermediates (e.g.

glyceraldehyde-3-phosphate and dihydroxyacetone phosphate)

that are metabolized predominantly aerobically via glycolysis

and the TCA cycle (e.g. fumarate). The microarray analysis

similarly identified genes involved in sugar metabolism (e.g. three

genes of the manXYZ operon and ptsG glucose phosphotransferase

system II) and the TCA cycle (e.g. genes encoding several

components of pyruvate dehydrogenase and alphaketogluterate

dehydrogenase) as being down-regulated during the shift to

anaerobic growth. Metabolic signals that were additionally

identified by DPA include iron (an essential cofactor of

cytochrome oxidase, whose genes were found to be repressed

during anerobic growth) and several metabolites involved in the

pentose phosphate cycle and propionate metabolism (e.g. the

methylcitrate cycle) as well as several metabolites involved in

lipopolysaccharide synthesis.

Metabolites identified by DPA to be associated with
up-regulated genes on exposure of wild-type E. coli to
anaerobic conditions

Under anoxic conditions, the active form of FNR exists as a

dimer with each monomer bound to an iron-sulfur cluster. The

sulfur within the cluster is donated by cysteine (through the action

of cysteine desulfurase) but glutathione is required to maintain the

complex in the reduced state [34]. It is thereby notable that both

cysteine and glutathione are identified by DPA amongst the

metabolites associated with the most up-regulated genes during

anaerobic growth (Table S1b); a response that was not detected in

the analysis of microarray signals. Hydrogen sulfide, both a

substrate of cysteine synthase and product of anaerobic respira-

tion, was also identified in this group. Consistent with the

microarray signal was the DPA identification of chloride as a

DPA of the TB Bacillus

PLoS Computational Biology | www.ploscompbiol.org 3 June 2011 | Volume 7 | Issue 6 | e1002060



DPA of the TB Bacillus

PLoS Computational Biology | www.ploscompbiol.org 4 June 2011 | Volume 7 | Issue 6 | e1002060



metabolite associated with up-regulated genes during anaerobic

growth (three genes encoding a homologue of the mammalian

yadQ chloride channel were identified as up-regulated [25]). More

puzzling was the DPA identification of many metabolites involved

in peptidoglycan and glycerolipid synthesis. A few genes involved

in lipid synthesis, such as acetyl-coA transferase, were identified in

the microarray signal and a novel anaerobic b-oxidation pathway

has recently been identified to be active during anaerobic growth

of E. coli [35].

Metabolites associated with increased genes expression
in the FNR- strain grown under anaerobic conditions
(and thereby repressed by FNR in the wild-type)

Many of the metabolites identified in this group (Table S1c)

were also those identified by DPA ((i) above)) as being associated

with down-regulated genes on exposure of wild-type E. coli to

anaerobic conditions (and thereby up-regulated during aerobic

growth), consistent with the involvement of FNR in repressing

aerobic pathways.

Metabolites associated with decreased gene expression
in the FNR-strain grown under anaerobic conditions (and
thereby induced by FNR during anaerobic growth in the
wild-type)

The most notable characteristic of this list (Table S1d) was the

inclusion of several fermentation products including ethanol,

formate and acetaldehyde, consistent with a metabolic shift of E.

coli towards mixed acid fermentation under anaerobic conditions.

This signal was detected in the microarray analysis (e.g. both

formate and acetaldehyde dehydrogenase genes demonstrated

FNR-dependent induction in anaerobic growth). Also notable is

cobalamin, cofactor of the B12-dependent nucleotide reductase.

This signal was not identified in the original microarray study but

transcription of the nrdDG operon, which encodes this class III

nucleotide reductase, has since been shown to be strongly induced

by anaerobiosis in a FNR-dependent manner [36].

DPA analysis Of M. tuberculosis microarray datasets
Our principal aim was to gain insight into the in vivo metabolic

state of M. tuberculosis by comparison with growth in various in vitro

conditions (Table 1). We therefore performed DPA analysis of

microarray datasets in the context of the GSMT-TB metabolic

network of M. tuberculosis [18]. The first microarray dataset we

examined was taken from a study of M. tuberculosis replicating in

mouse macrophage [22]. The second model of the in vivo state was

a study on M. tuberculosis cells isolated from human sputum of

patients with TB [37]. The in vitro datasets we examined were from

a number of studies that performed microarray analysis of M.

tuberculosis growing on different substrates (succinate, palmitate), or

exposed to various toxic conditions (treatment with hydrogen

peroxide, low pH, UV radiation), or growth-limited in conditions

that are thought to mimic aspects of growth limitation in vivo

(NRP1 cells in the microaerobic ‘Wayne model’ of dormancy [38],

slow growth in the carbon-limited chemostat [39]). Note that this

is an in vitro model of dormancy/persistence and its relationship to

the asymptomatic and un-infectious state (often known as latency

but sometimes also referred to as dormancy or persistence) that is

encountered in vivo remains unclear [4]. DPA analysis of all

datasets is shown in the supporting information (Figure S1). The

source of each dataset is detailed in Table 1. The mouse

macrophage study examined M. tuberculosis grown in macrophages

that were either naı̈ve or activated, wild-type or Nos1 mutants, at

various time-points. The experiments utilized two different

microarray formats. DPA was performed on each dataset. As

can be seen by (Figure S1), the DPA results, most of the mouse

macrophage experiments clustered closely together so for most

subsequent studies, the result of only one typical experiment (48 hr

infection, activated macrophages, amplicon microarray probes) is

discussed further. One-class Rank Products analysis was per-

formed (see Materials and Methods) to identify the top 100

metabolites predicted by DPA to be associated with up-regulated

genes and down-regulated genes (Supporting information, Table

S2) for each dataset.

The metabolic response associated with adaptation of M.
tuberculosis to growth in macrophages

Each of the top 100 metabolites associated by DPA with either

up- or down-regulated genes in the macrophage was classified into

broad areas of metabolism (e.g. nucleotide or lipid biosynthesis)

based on the pathway(s) that involved this metabolite in the

GSMT-TB model [18]. The full list of metabolite assignments can

be seen in Table S5. A pie chart was then used to compare the

metabolic processes most affected by up (Figure 2A) or down-

regulated (Figure 2B) M. tuberculosis genes when it adapts to the

mouse macrophage. As can be seen, there are large differences.

The most striking are: (i) metabolites involved in phospholipid

synthesis (principally phosphatidylinositol mannoside (PIM)),

mycolic acid synthesis, cell wall virulence factors (phenolphthio-

cerol dimycocerosate (PDIM), phenolic glycolipid (PGL), acyltre-

halose, mannosyl beta-1-phosphodolichol (MPD)) are mostly

associated with up-regulation in the macrophage; (ii) metabolites

associated with various central metabolism pathways were mostly

associated with down-regulation in the macrophage. This was

particularly apparent for metabolites involved in amino acid

metabolism that comprised 25% of the top 100 metabolites in the

Table 1. Abbreviations and source of M. tuberculosis
transcriptome data used in this study.

No Abbreviation Experiment Reference

1 Macrophage Activated (48 hr) macrophage [22]

2 Peroxide.1 H2O2 treatment [22]

3 Palmitate.1 PA treatment [22]

4 Peroxide.2 H2O2 treatment [58]

5 Azide NaN3 treatment [58]

6 NRP1exp NRP-1 (oxygen-limited) [58]

7 Palmitate.2 Growth on palmitate [58]

8 Ph4.8 pH 4.8 (acidic) treatment [58]

9 Succinate Growth on succinate [58]

10 UV Growth under UV radiation [58]

11 Chemostat TB growth under chemostat [44]

12 Sputum Sputum sample analysis
from TB patients

[37]

doi:10.1371/journal.pcbi.1002060.t001

Figure 1. Schematics of DPA illustrated through analysis of a toy metabolic network consisting of 4 metabolites (M1–M4) and 4
genes (g1–g4).
doi:10.1371/journal.pcbi.1002060.g001

DPA of the TB Bacillus
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down-regulated list but only 10% of metabolites in the up-

regulated. Other central metabolic themes that were mostly

associated with down-regulation in the macrophage were TCA

cycle metabolites, sugar metabolism, pyruvate metabolism (5%

compared to zero), cofactors (13% compared to 5%, the cofactors

involved were mostly involved in biotin, thiamine and F420

synthesis), nucleotide synthesis (4% compared to 0%) and heme

synthesis (9% compared to 0%). Also noteworthy, although the

numbers are small, is the observation that several metabolites

involved in anaerobic respiration (e.g. nitric oxide and molybde-

Figure 2. Pi chart illustrating the role of M. tuberculosis metabolites in macrophages. Pi chart illustrating the role of metabolites associated
by DPA with up-regulated (A) or down-regulated (B) genes in the mouse macrophage.
doi:10.1371/journal.pcbi.1002060.g002

DPA of the TB Bacillus
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num, which is a co-factor for nitrate reductase) were associated

with down-regulated genes.

The metabolic response of M. tuberculosis isolated from
human sputum

To identify those metabolites that were most affected by the

transcriptional response of M. tuberculosis to the human sputum

environment a similar analysis to that documented above was

performed. The highest ranked metabolites associated with up-

and down-regulated genes in M. tuberculosis isolated from human

sputum (Supporting information, Table S2) were, perhaps

surprisingly, not particularly closely related to metabolites

associated with adaptation to the macrophage environment.

Metabolites associated with up-regulated genes were associated

with many cell wall components and virulence factors, such as

metabolites involved in peptidoglycan synthesis, synthesis of the

sulfolipid virulence factor SL-1 [40] (which was not up-regulated

in mouse macrophages), synthesis of arabinogalactan [41],

synthesis of phenolphthiocerol dimycocerosate (PDIM) [42],

synthesis of phosphatidylinositol mannoside (PIM) [43] and de

novo biosynthesis of nucleotides (e.g. deoxyuridine-diphosphate,

DUDP and deoxycytidine monophosphate, DCMP). Metabolites

associated with down-regulated genes in the sputum-derived cells

included several metabolites involved in amino acid synthesis but

also synthesis of several cofactors such as molybdenum and

coenzyme A (e.g. L-pantoate, PANT). Oxygen was also identified

as associated with down-regulated genes indicating perhaps a

down-regulation of genes involved in aerobic respiration.

The metabolic response of M. tuberculosis to various in
vitro conditions

The lists of top-ranking metabolites associated by DPA with

each in vitro condition (Supporting information, Table S2) showed

many interesting features. For instance, exposure to pH 4.8 was

associated with up-regulation metabolites such as 2-C-methyl-D-

erythritol-2,4-cyclodiphosphate (MDECPP) involved in polypre-

noid synthesis and metabolites involved in arabinogalactan

synthesis, but down-regulation genes were associated with

metabolites (such as 3-dehydroquinate, DQT) involved in

aromatic amino acid synthesis. Genes that were up-regulated on

exposure to hydrogen peroxide were associated with metabolites

involved in synthesis of the secreted siderophore mycobactin and

cobalamin synthesis but metabolites associated with down-

regulated genes were involved in peptidoglycan, nucleotide and

amino acid. Genes that were upregulated by slow growth of M.

tuberculosis in the chemostat were associated with metabolites such

as 2-methyl citrate and a-ketoglutarate, involved in the methyl

citrate cycle and TCA cycle respectively, together with several

metabolites involved in cobalamin synthesis (e.g. hydrogenobyr-

inate), biotin synthesis (e.g. 8-amino-7-oxononanoate), heme

synthesis (e.g. protoporphyrin-IX) and glutamate synthesis (e.g.

N-acetyl-L-glutamate). Genes that were up-regulated in the

Wayne model of dormancy NRP1 state [38] were associated with

many mycolic acid synthesis intermediates.

Comparison between datasets: deconstructing the
macrophage response

To gain insight into the metabolic overlap between the

macrophage-grown M. tuberculosis and various in vitro model

systems, we performed hierarchical cluster analysis of the resulting

ranked metabolite lists for all the experimental conditions followed

by identification of common metabolites in various experimental

conditions using Venn diagrams. First, metabolite signals (median

gene expression value for each metabolite) were ranked for each

experimental datasets. The experiments were then subjected to

hierarchical clustering using Pearson’s correlation coefficient of

metabolite signal ranks as a similarity measure. The trees reflecting

the degree of correlation between metabolite ranking order in each

experiment are shown on Figures 3a and 3b. Statistically

significant tree nodes, conserved in over 90% of bootstrap

replicates were identified as clusters. The analysis of metabolites

affected by up-regulated genes (Figure 3a) groups the NRP1

Wayne model of dormancy experiment [38], the slow-growth

chemostat model [18] and the macrophage derived M. tuberculosis

into a cluster separated from the remaining part of the tree at the

node conserved in 92% of bootstrap replicates. The close match

between the macrophage experiment and the slow growth in the

chemostat experiment suggests that M. tuberculosis is similarly

growth restricted in the macrophage environment. Slow growth is

also a component of the NRP1 cells, which may account for the

inclusion of this experiment into the same cluster. The cluster

analysis of metabolites associated with down-regulated genes

reveals a statistically significant cluster of four conditions

containing NRP1 cells, sputum, the slow-growth chemostat model

and in vitro acid stress. It is interesting to note that for metabolites

associated with both up and down-regulated genes the in vivo

model conditions (human sputum and mouse macrophage derived

M. tuberculosis) do not cluster together suggesting that different

metabolic pathways are activated in M. tuberculosis residing in

mouse macrophages compared to human sputum.

To identify specific metabolites responsible for the observed

level of clustering, we used Venn diagrams to compare the 100 top

ranked metabolites associated with up- and down-regulated genes

for each condition. The Venn diagram analysis, presented in

Figure 4, was performed in groups of three conditions that were

compared with each other and the M. tuberculosis macrophage

experiment (except for the last comparison which was with only

two conditions compared to the macrophage experiment). Each

experimental condition was associated with metabolites unique to

that condition and metabolites that were shared associated with a

range of conditions, as detailed in Supplementary Tables (Tables

S3 and S4 for metabolites associated with up- and down-regulated

genes respectively). Several interesting features of the analysis are

apparent. Firstly, metabolites associated with up-regulated genes

from macrophage-grown M. tuberculosis (Table S3) contained only

one metabolite unique to the macrophage (a mycolic acid

intermediate). No unique metabolites were associated with

down-regulated genes in the mouse macrophage (Table S4).

Many metabolites could be identified that were shared between

the macrophage experiment and other experiments. Some were

shared with very few other conditions whereas others were found

in several in vitro experiments. For example, metabolites involved

in synthesis of the virulence-associated phosphatidylinositol

mannoside (PIM) cell wall phospholipid were associated with up-

regulated genes in the macrophage and growth on palmitate

(palmitate.1. Note that the analysis includes two pairs of conditions

– peroxide and palmitate growth – that were commonly examined

in the two different studies. Perhaps surprisingly, the metabolite

signal was not very similar for these paired conditions. This

probably reflects differences in the way the experiments were

performed in the different laboratories). Metabolites involved in

synthesis of the virulence determinant, phenolphthiocerol dimy-

cocerosate (PDIM), were associated with up-regulated genes in the

macrophage but also the in vitro conditions NRP1, growth on

palmitate (palmitate.2) and exposure to either pH 4.8 or sodium

azide. Metabolites shared between up-regulated genes in both M.

tuberculosis grown in macrophages and M. tuberculosis isolated from

DPA of the TB Bacillus
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human sputum included several 3-carbon metabolites, such as D-

glyceraldehyde-3-phosphate and monoacylglycerol, both involved

in triglyceride synthesis. Metabolites involved in cholesterol

metabolism were shared between macrophage-grown M. tubercu-

losis and growth on palmitate, which is consistent with cholesterol

and palmitate requiring similar lipid oxidation pathways for

catabolism. More surprisingly, metabolites involved in cholesterol

metabolism were also associated up up-regulated genes during

slow growth in the chemostat and NRP1 in the Wayne model of

dormancy, despite the fact that cholesterol was not available in

either condition. The result may indicate that pathways involved

in cholesterol metabolism may be activated in M. tuberculosis by

non-lipid signals, such as nutrient starvation.

As already mentioned, there were no unique metabolites

associated down-regulated genes in the macrophage (Table S4).

Most of the metabolites common to the macrophage and in vitro

conditions were involved in central metabolism, amino acid

synthesis/degradation, and respiration. However, some specific

responses were also apparent. Metabolites (e.g. protoporphyrin-

IX) involved in heme synthesis were commonly associated with

down-regulated genes in macrophages, growth on succinate, and

exposure to pH 4.8. Pentose phosphate pathway metabolites, such

as ribose and deoxyribose-5-phosphate (DR5P) were commonly

associated with down-regulated genes in the macrophage, NRP1

and slow growth in the chemostat, as were several metabolites

involved in amino acid synthesis, such as 3-hydroxy-isobutyrate

(HIBUT) and 3-phospho-hydroxypyruvate (PHP). Metabolites

involved in biotin synthesis were associated with down-regulated

genes in macrophages and growth on palmitate (palmitate.1).

Discussion

Several different methods are currently available for extracting

metabolic information from transcriptome data. The method that

has been used the longest is simply to infer metabolic changes from

the nature of genes that are up or down-regulated. However, one

of the key insights of systems biology is that control of any system

tends to be distributed so the activity of any single gene does not

necessarily reflect the state of the system as a whole. For this

reason, recent attempts to extract metabolic information from

transcriptome data have utilized genome-scale metabolic models

as a tool to extract system-level metabolic signals. DPA is such a

system-based method that analyzes transcriptome data on a

framework of gene-metabolite relationships established by FBA. It

is a global method that examines the contribution of every gene in

the network to the production of every metabolite in the network.

There are several aspects of DPA that merit consideration. First,

unlike the method of Shlomi [29] and the E-flux method [30] it

makes no attempt to predict actual fluxes. We believe that such an

approach is realistic, given the uncertainties of the mapping from

the transcriptome through the proteome to the metabolome; and

we note that flux predictions of the above methods had not yet

been checked against experimentally-derived fluxes, such as those

obtained by 13C-Metabolic Flux Analysis. DPA can be compared

to the reporter metabolite approach [28], but, rather than relying

on local connectivity, DPA utilises FBA to establish genome-scale

linkages between metabolites and genes and may thereby detect

the influence of distant gene expression events on each metabolic

step. To put it another way, whereas the reporter metabolite

method ‘is basically a test for the null hypothesis, ‘‘neighbour

enzymes required for synthesis of a metabolite in the metabolic

graph show the observed normalized transcriptional response by

chance’’’ [28]; DPA is a test of the null hypothesis, ‘‘all enzymes

required for synthesis of a metabolite in the metabolic graph show

the observed normalized transcriptional response by chance.’’

Secondly, DPA separately analyses metabolites associated into

both up- and down-regulated genes. This does generate some

anomalies, such as the occasional presence of the same metabolite

in both sets of lists (a metabolite associated with both up- and

down-regulated genes – but usually with very different rank order),

but its advantage is that it avoids cancellation of signal from

metabolites associated with both up- and down-regulated genes.

Secondly, we found that a few metabolites were not examined by

DPA. This was found to be due to redundancy in synthesis

pathways, rendering some metabolites (often in central metabolic

pathways) essentially invisible to differential producibility analysis

since no genes were essential for their production. Nevertheless,

despite these potential drawbacks, DPA proved to a powerful tool

for extracting metabolic signals from transcriptome data.

We chose to test DPA using an established dataset obtained

from a well-characterized system: the response of E. coli to

anaerobic growth and the role of the FNR global regulator [25] in

that response. The value of DPA was clearly demonstrated by its

consistency with gene ontology identification in the original study

of a metabolic shift from aerobic sugar utilization via glycolysis,

pentose phosphate pathway and TCA cycle towards anaerobic

utilization of fermentation pathways [25]. DPA also identified

repression of the aerobic pathways for sugar utilization as a major

target for the action of FNR. However, DPA was able to identify

additional metabolic signals in the transcriptome data that was not

identified by gene ontology analysis. For instance, DPA identified

components of cysteine and glutathione metabolism as being

activated during anaerobic growth which is consistent role of these

metabolites in activation of FNR under anaerobic conditions [34].

Also, cobalamin synthesis was highlighted by DPA as being FNR-

dependent and although this had not identified in the original

study, the role of FNR in cobalamin synthesis, has since been

demonstrated [36].

With the value of DPA demonstrated in a well-characterized

system, we then used the technique to investigate the transcrip-

tional response of M. tuberculosis to environmental stresses and

replication in the macrophage. Firstly, we were able to identify

previously recognized features in several of the datasets we

examined, confirming the utility of the method. For instance,

Schnappinger [22] identified genes (such as UmaA) involved in

mycolic acid synthesis that were up-regulated in M. tuberculosis

grown inside macrophages, and we were also able to identify

several intermediates in mycolic acid synthesis that were associated

with up-regulated genes in the same dataset. Similarly, Beste [44]

identified protein synthesis and modification as being down-

regulated in slow-growing M. tuberculosis in the chemostat, and

metabolites associated with amino acid metabolism were found to

be associated with down-regulated genes in the same dataset (a

response shared with macrophage and NRP1-derived cells) by

DPA analysis. DPA also revealed features of exposure of M.

tuberculosis to in vitro environments that were consistent with existing

knowledge. For instance, genes that were found to be up-regulated

in both macrophage-grown M. tuberculosis and M. tuberculosis

Figure 3. Clustering of M. tuberculosis gene expression datasets. Clustering of gene expression datasets based on DPA of metabolites
associated with up-regulated genes, A) and down-regulated genes, B). Red numbers indicate the Approximately Unbiased (au) multiscale bootstrap
based p-value for dendrogram. We used 90% confidence to identify significant clusters (with Red bounding boxes).
doi:10.1371/journal.pcbi.1002060.g003
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exposed to hydrogen peroxide included several metabolites, such

as mycobactin, involved in iron uptake. Iron is a cofactor of the

enzyme catalase that would be expected to be up-regulated on

exposure to peroxide. Increased catalase synthesis would require

increased iron uptake and therefore increased synthesis of the

siderophore mycobactin. That this response is common between

mouse macrophage-grown M. tuberculosis and peroxide-treated M.

tuberculosis is consistent with data indicating that M. tuberculosis is

Figure 4. Venn diagrams comparing M. tuberculosis metabolites associated by DPA with different experimental conditions. Venn
diagrams comparing the top 100 significant metabolites associated with up-regulated (A) and down regulated (B) genes (refer to Supplementary
Information Table S2 for the detailed metabolite list for each experimental condition).
doi:10.1371/journal.pcbi.1002060.g004
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exposed to oxidative stress in the mouse macrophage [45]. DPA

thereby allows the response of M. tuberculosis to the host

environment to be deconstructed into components that can be

studies in vitro.

One of the most striking features of DPA analysis of the

macrophage data was the number of metabolites associated with

up-regulated genes that are involved in the synthesis of cell

envelope lipid components including mycolic acids and envelope-

associated several virulence factors such as phosphoinositol

mannosides and phenolic glycolipid are associated with upregu-

lated genes when M. tuberculosis is growing in macrophage

metabolites. The most likely explanation is that exposure to the

macrophage environment stimulates M. tuberculosis to remodel its

outer surface, as was suggested from analysis of the microarray

data [22], possibly in preparation for attack by host defenses. A

distinctive feature of the TB bacillus is its high lipid content

(approximately 40% of its cell mass) and the large number of genes

(more than 250) involved in lipid and polyketide synthesis and

degradation in the TB genome (Cole et al., 1998). Several

antituberculous drugs, such as isoniazid and pyrazinamide, are

known to target lipid biosynthesis. It is widely believed that a key

component of the adaptation of the TB bacillus to the intracellular

environment is a switch to consuming host lipids [5] including

activation of genes, such as the isocitrate lyase gene, involved in

the degradation of lipids. However, our analysis indicates that lipid

metabolism in M. tuberculosis during infection is also likely to be

directed towards lipid biosynthesis involved in remodelling the cell

surface. Unraveling the molecular details of this remodeling may

provide novel drug targets.

However, in addition to areas of metabolism that were

highlighted in the original macrophage transcriptome study,

DPA identified several other components of the adaptation of

M. tuberculosis to the macrophage that had not been identified in

the original analysis, such as cofactor synthesis. Genes involved in

the synthesis of the cofactors cobalamin and F420 tended to be up-

regulated in the macrophage whereas genes associated with

synthesis of biotin tended to be down-regulated. Coenzyme F420

is involved in redox reactions such as the F420-dependent glucose-

6-phosphate dehydrogenase and is required for activation of the

experimental antituberculosis drug PA-824 by M. tuberculosis [46];

whereas cobalamin is involved in several biosynthetic reactions

including nucleotide and fatty acid synthesis and has recently been

identified as essential for operation of the methylmalonyl pathway

of propionate utilization in M. tuberculosis [47]. Both of these could

potentially provide new targets for antituberculous drugs. Biotin is

involved in many biosynthetic reactions, most notably fatty acid

synthesis, where it is a cofactor for the acetyl-CoA carboxylase

carboxytransferase function; so it was surprising to find that many

genes involved in its synthesis are down-regulated in the

macrophage. The result may indicate that the proposed

remodeling of the cell envelope indicated by our analysis takes

place without de novo synthesis of fatty acids, possibly by utilizing

host-derived lipids as substrates; or the result could indicate

increased lipid synthesis is mediated by post-transcriptional control

not captured in this analysis. Metabolites involved in the synthesis

of several aromatic amino acids were also found to be associated

with up-regulated genes by DPA analysis. The results are

consistent with the finding that many amino acid auxotroph of

M. tuberculosis are attenuated in vivo indicating that the pathogen is

unable to obtain these amino acids from the host [48] [49].

Concomitant with the DPA signal indicating increased cell wall

lipid synthesis, the analysis indicated that metabolites involved in

central metabolism were generally associated with down-regulated

genes when M. tuberculosis enters the macrophage. This down-

regulation of many (but not all) central metabolic pathways was

also found for in vitro perturbations such as slow growth in the

chemostat and exposure to hydrogen peroxide and is consistent

with our previous study indicating that down-regulation of growth

rate is likely to be a key early component of the adaptation of M.

tuberculosis to the macrophage environment [18]. This finding is

perhaps puzzling given the above indications of increased

biosynthetic metabolism towards lipid and amino acid synthesis.

Once again, the explanation may be that the early adaptation of

the tubercle bacillus to the macrophage environment is achieved

mostly by a redirection of metabolism using preexisting metabo-

lites, rather than de novo synthesis of the those metabolites via the

metabolic precursors generated from central metabolism: a

remodeling rather than a renewal of the cell.

DPA of sputum-derived M. tuberculosis similarly revealed an up-

regulation of metabolites involved in cell wall and virulence factor

synthesis, with some similarities but also clear differences from

analysis of the macrophage data. Metabolites associated with up-

regulated genes from M. tuberculosis cells derived from human

sputum (but not mouse macrophages) were involved in synthesis of

the sulfolipid virulence factor SL-1 and also peptidoglycan

synthesis; whereas the macrophage derived cells (but not

sputum-derived cells) were associated with phenolic glycolipid

(PGL) and acyltrehalose synthesis. The results indicate that

mycobacteria isolated from human sputum have quite a different

metabolic signature from mycobacteria grown in mouse macro-

phages. DPA of sputum down-regulated genes also identified

several metabolites involved in molybdenum synthesis, a cofactor

of nitrate reductase, narX, involved in anaerobic respiration. It is

possible that this response indicates a switch away from anaerobic

respiration in sputum-derived M. tuberculosis cells.

It is also notable that none of the in vitro conditions examined

generated the same DPA metabolic profile as in vivo-grown M.

tuberculosis cells indicating that there are aspects of in vivo

metabolism of M. tuberculosis that are not captured by any single

in vitro model. The analysis may thereby shed light differences

between drug sensitivity in vivo and in vitro. For instance, isoniazid is

widely used to prevent progression from latent to active disease

[50] but has no effect on M. tuberculosis in the Wayne model of

dormancy [51]. DPA provides insight into the underlying

similarities and differences between the metabolic state of M.

tuberculosis in vitro and in vivo that may provide clues to development

of novel in vitro systems that more closely simulate the

environmental conditions experienced by M. tuberculosis in vivo.

In summary, the method described here provides a novel way

of using a metabolic network to analyze gene expression data.

The method can be automatically applied to data to provide

novel hypotheses concerning hidden metabolic signals. Poten-

tially, DPA can be applied to other high-throughput data sets

(e.g. proteomics) to integrate more information and capture

other levels of control (e.g. protein degradation as opposed to

mRNA degradation). Here we have demonstrated the utility of

the method by using DPA to analyze the gene expression

response of M. tuberculosis to the macrophage environment. The

data suggests that the tubercle bacillus responds to the

macrophage environment by shutting down central metabolic

pathways but increasing activity in lipid biosynthetic pathways

possibly in an effort to remodel its surface in anticipation of

attack by host defenses. The analysis also demonstrated that the

response of M. tuberculosis to the intracellular environment could

be deconstructed into components that can be studied in vitro.

The DPA method may be used to extract metabolic information

from any microarray dataset where the appropriate metabolic

model is available.
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Materials and Methods

The aim of DPA is to identify a set of metabolites whose

production/consumption (producibility) is expected to be different

between two conditions on the basis of gene expression differences.

The method utilizes has some features in common with another

method, Analysis of Differentially Affected Metabolites (ADAM) that

will be described elsewhere (E. Laing et al., paper in preparation). To

perform DPA analysis we first utilize a FBA-based metabolite

producibility plot to identify, at a system-level, the sets of genes that

participate in the production of each metabolite. This is essentially a

binary matrix that links genes with metabolites on the basis of

whether or not each gene is essential for production of each

metabolite. Subsequently, for each of the metabolites, we calculate a

metabolite signal, defined as the median microarray-derived data

signal for those genes that affect its production. Therefore, for each

microarray dataset, representing the experimental condition of

interest, we generate a vector of metabolite signals that we sometimes

refer to as the metabolite state. These data may then be subjected to

cluster analysis to identify experimental conditions that result in

similar changes in global metabolite state (the sum of all metabolites

in the cell) and metabolites that have common metabolite signal

profiles across the experimental conditions examined. To avoid

negation of gene expression signals for metabolites which were

associated with different sets of up- and down-regulated genes, the

analysis was performed separately for up and down-regulated genes.

Each metabolite in the network was then ranked according to the

average intensity of microarray signal associated with genes that affect

its production (Figure 1, step 3) using the non-parametric Rank

Products Analysis [32], which has been shown to be the method of

choice for meta-analysis of microarray datasets derived by different

research groups on different experimental platforms. Rank Product

Analysis has been shown to be robust against experimental noise and

performs well in comparison to other typical microarray analysis

strategies [52]. The workflow of DPA analysis is illustrated in Figure 1;

below we describe in detail the individual steps.

Flux balance analysis
We used Flux Balance Analysis (FBA) to interrogate our genome

scale model of M. tuberculosis metabolism to obtain lists of genes

associated with the synthesis of metabolites in the network. FBA

has become a standard method for large-scale metabolic network

modeling and is discussed in detail in numerous articles [53–55].

In this work we calculate the maximal theoretical flux towards

each metabolite in the network. Following definition of the

metabolite producibility in [56] the row of the stoichiometric

matrix corresponding to the metabolite in question is used to

define the objective function. Note that exactly the same value of

metabolite producibility is obtained if a new reaction that

consumes the metabolite as its only substrate is introduced to

the model and the flux through this reaction is used as the

objective function. The GSMN-TB model provides Boolean

formulas describing association between genes and reactions.

These formulas are used to identify reactions, which require

activity of each gene. A detailed description of the FBA

calculations can be also found in our previous work, which

describes the development of the GSMN-TB model and accounts

for assumptions specific to this model such as ‘‘replenishing flux’’

used to model requirement for enzyme cofactors. All FBA

calculations were as described in [18].

Producibility plot
In the first step of DPA, for each metabolite, a set of genes that

are required for the reactions affecting the cellular level of the

metabolite is obtained. Our aim was to not only take into account

the genes participating in reactions synthesizing or consuming

each metabolite, but to also consider global effects i.e. the existence

of reactions anywhere in the network that affects the flux towards

that metabolite. For this analysis we utilized the producibility plot

method formulated by Imielinski [56], making each metabolite m

an objective function of a single Flux Balance Analysis optimiza-

tion and iterate the procedure over all metabolites in the network.

For the analysis of M. tuberculosis, to capture gene-metabolite

associations under a variety of conditions, the FBA was performed

separately with the substrates glucose, glycerol, acetate, propano-

ate and cholesterol and the resulting associations pooled. The

maximal theoretical flux towards metabolite m in a wild-type

model in which all genes are active was first calculated.

Subsequently, we calculate the maximal theoretical flux towards

metabolite m in the network in which each reaction in the model

annotated as catalyzed by product of gene g is inactivated, i.e. the

fluxes of all reactions, which involve g are constrained to 0. For

each pair m, g we then calculate a difference DFm,g = Fm,g2Fm,wt,

between the maximal flux towards m in the gene g knockout model

(Fm,g) and the wild type model (Fm,wt). This results in a matrix P, in

which rows are indexed with metabolites, columns are indexed

with genes and which cells contain DFm,g values for all gene-

metabolite pairs. We represent P in binary form in which we assign

1 to all DFm,g values different from 0 (0.001 absolute value cut-off

is used) and assign 0 to the remaining cells in the matrix, where no

change is observed as the result of g inactivation. The binary form

of matrix P can be visualized as a dot-plot and is referred to as the

Producibility Plot. In the remaining part of this article we will also

refer to the maximal flux towards metabolite m as the producibility of

m.

The resulting metabolite producibility is a function of the

‘‘structural network’’ and reaction reversibility (and hence reaction

bounds), or simply, topology and physical constraints of the

network.

Calculation of metabolite signals from microarray data
In the second step of DPA we incorporate data from the

microarray datasets representing different experimental condi-

tions. The log2 ratios of treatment and reference sample signals as

calculated by authors of these datasets were used (no processing of

data was conducted); genes were classed as up-regulated if they

had positive log2 signal ratios and down-regulated if negative.

To analyse microarray data in the context of the GSMN-TB

model we define a ‘metabolite signal’ as the median log2

microarray signal ratio of genes influencing producibility of the

given metabolite. To calculate metabolite signals we first use the

producibility plot to identify for each metabolite m in the network

a set Sm of genes that affect its producibility. These genes are

identified from a set of non-zero elements in the rows of the binary

producibility plot corresponding to m. To integrate data from

array a, for each metabolite we calculate the median up-regulated

metabolite signal, Um,a , from all up-regulated genes in array a in

Sm. Similarly, all down-regulated genes in Sm were used to

calculate the metabolite signal of downregulated genes Dm,a. As a

result, we obtain metabolite signal matrices U and D, where rows

are metabolites, columns arrays, and values are metabolite signals

due to the up and down regulated genes respectively. It is these

matrices upon which all subsequent clustering and Rank Products

analysis are based.

Cluster analysis
We performed hierarchical cluster analysis (HCL) to identify

groups of experimental conditions that induce similar metabolic
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PLoS Computational Biology | www.ploscompbiol.org 12 June 2011 | Volume 7 | Issue 6 | e1002060



responses, as identified by DPA, in the M. tuberculosis bacillus. Here

we ranked all metabolite signal values in each column of the U and

D metabolite signal matrices, resulting in matrices Uranked and

Dranked. Thus the row for each metabolite m in Uranked and Dranked

contains the ranks of the metabolite signal of m across all

treatment/reference microarrays. Subsequently, the hierarchical

clustering was performed with the pvclust package of the R

environment, with Pearson correlation as a distance measure and

complete linkage [57]. The pvclust package was also used to

calculate statistical significance of clusters by the bootstrap method

[57] for assessing the uncertainty in hierarchical cluster analysis,

10,000 bootstrap replicates were generated. Tree nodes, which

were retained in 90% of the replicates, as calculated by the

Approximately Unbiased (au) multiscale bootstrap method [57],

were considered statistically significant.

Rank products analysis
The Rank Product analysis is a non-parametric statistical test,

which has been developed for identification of differentially

expressed genes in microarray data [32]. Briefly, the method

analyses a data table where rows represent cases (genes) and

columns represent repeated measurements. In the one-class case

the columns of the data table contain signal log ratios for the

comparison of two conditions. In a two class-case the columns are

assigned to two classes and the software calculates all pairwise

differences between the log signal ratios of columns belonging to

the two classes. In the next step the program ranks each column of

log-signal ratios and identifies cases (genes), which consistently

rank at top of the list in each repetition of the experiment. For

each case the product of ranks of this case in each of the replicates

is calculated. This obtained value is compared to the values

calculated in multiple randomized datasets (shuffling of case

names) to calculate P-values and corresponding Percentage of

False Discovery. Because the method is based on ranks it is robust

with respect to many assumptions, such as normality and is

particularly suitable to meta-analysis of datasets collected in

different laboratories and on different experimental platforms.

In our work we used Rank Products analysis to identify

differentially produced metabolites. The U and D matrices

described above were submitted to the RankProd function of the

Bioconductor package in the R environment. By using all

treatment/reference log2 ratios as input to one-class Rank

Products analysis (a method typically applied to two-colour direct

comparison microarray experiments) we feed all the replicates of

the experiments as a data column (if no replicate available then

treat every experimental condition as a ‘replicate’); for any

metabolite to be identified as being significantly different between

the ratio numerator and denominator there must be consistency

across experimental conditions. Thus, this analysis identifies

common features of E. coli and M. tuberculosis metabolic response

to different experimental conditions. To identify differences

between metabolite states between experimental conditions a two-

class Rank Products analysis of multiple treatment/reference ratios

for each condition was employed. The P-value and PFP

(probability of false prediction) value obtained from the output

of Rank Products analysis was used to determine the significance

of the metabolic response.

To check the robustness, we examined the DPA based rank

product analysis in M. tuberculosis and E. coli datasets.

Datasets and metabolic model
For E. coli DPA we used the iAF1260 genome scale metabolic

network [33]. All the FBA simulation of producibility plot for E.

coli were performed in pyFBA (Python based unpublished toolbox)

with the GLPK linear programming toolkit. The E. coli

transcriptome database that was analyzed was taken from a

microarray study of the E. coli growing in aerobic and anaerobic

conditions, both wild-type and an FNR- strain [25].

DPA was also applied to transcriptome data sets representing

the global gene expression program of the M. tuberculosis bacillus in

the macrophage environment, human sputum and a range of in

vitro environmental perturbations. These data were analyzed in the

context of the previously published GSMN-TB genome-scale

metabolic network [18]. Transcriptome data sets and the GSMN-

TB model are described below.

The gene expression data obtained from Schnappinger [22], is

from M. tuberculosis cells harvested at 4, 24 and 48 hours after

infection of macrophages. Each dataset contains the result of a

‘two-color’ microarray hybridization experiment with the refer-

ence condition in each case being bacteria grown to mid-log phase

in 7H9, a standard M. tuberculosis culture medium. We chose the

activated macrophage 48 hr after infection (referred to as

macrophage) data as a representative of the in vivo state of the

TB bacillus. The in vitro conditions from the same experimental

dataset included experiments where the TB bacillus was exposed

to 5 mM hydrogen peroxide for 40 minutes (peroxide.1) and cells

grown on palmitic acid as a carbon source (palmitate.1). Other in

vitro datasets were taken from a large study of M. tuberculosis

exposed to a variety of environments [58]. We chose the following

datasets: Growth on succinate (succinate), oxygen-limited NRP-1

cells which represent cells grown in the ‘Wayne model’ of M.

tuberculosis dormancy [38], starvation, pH 4.8, UV radiation,

NaN3 treatment (azide), hydrogen peroxide treatment (peroxide.2)

and growth on palmitate (palmitate.2). These in vitro conditions

were chosen to model aspects of the presumed in vivo environment

of the TB bacillus. The third dataset was taken from the study of

[37] of human sputum-derived M. tuberculosis samples. Finally, we

also analyzed a transcriptional dataset obtained from our own

studies that represents the response of M. bovis BCG to slow growth

in the chemostat with glycerol as a sole carbon source [44]. All of

the microarray datasets were converted to log2 fold change

(treatment/reference) ratios for ease of comparison. Table 1 shows

the abbreviations used for each experimental condition and the

data source.

The previously published genome scale metabolic network of M.

tuberculosis [18] was modeled using flux balance analysis, as

described. An updated GSMN-TB model can be obtained in the

tab delimited text or SBML format from the website http://

sysbio3.fhms.surrey.ac.uk/.

Supporting Information

Figure S1 DPA of all M. tuberculosis experimental datasets

displayed as a heat map with metabolite rank displayed as

intensity of color. DPA of up-regulated genes is shown on the left

in red and DPA of down-regulated genes is displayed on the right

in green colour. Clustering of experiments is indicated as a

dendrogram at the top of each heat map and clustering of

metabolites is shown on the left.

(TIFF)

Table S1 Metabolites associated with up- and down-regulated

genes in E. coli. Table S1a, metabolites identified as associated with

down-regulated genes on exposure of wild-type E. coli to anaerobic

conditions (corresponding to regulatory patterns II, IV, V of [25]),

Table S1b, metabolites associated with up-regulated genes in the

wild-type in response to anaerobic growth (regulatory patterns I,

III, VII), Table S1c, metabolites associated with increased gene

expression in the FNR- strain grown under anaerobic conditions
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(regulatory patterns I, V, VI), and Table S1d, metabolites

associated with decreased gene expression in the FNR-strain

grown under anaerobic conditions (regulatory patterns II, VII,

VIII).

(XLS)

Table S2 Top 100 metabolites predicted by DPA and identified

by one-class Rank Products analysis (see Materials and Methods)

as associated with up-regulated and down-regulated M. tuberculosis

genes for each dataset.

(XLS)

Table S3 Metabolites that are shared between different

experimental conditions (Venn diagram, Figure 4) associated with

up-regulated M. tuberculosis genes.

(XLS)

Table S4 Metabolites that are shared between different

experimental conditions (Venn diagram, Figure 4) associated with

down-regulated M. tuberculosis genes.

(XLS)

Table S5 Metabolite assignments classified into broad areas of

metabolism based on the pathway(s) that involved each metabolite

in the GSMT-TB genome-scale metabolic network model.

(XLS)
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