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ABSTRACT: In this study, cadmium sulfide (CdS) quantum dots
(QDs) and barium (Ba) (3 and 6 wt %)-doped CdS QDs were
synthesized via a hydrothermal technique. The basic purpose of
this work is to degrade methylene blue (MB) dye and evaluate
density functional theory (DFT). The synthesized samples were
characterized through X-ray powder diffraction (XRD), selected
area electron diffraction (SAED), Fourier transform infrared
spectroscopy (FTIR), scanning electron microscope (SEM),
high-resolution transmission electron microscopy (HR-TEM),
UV−vis spectrophotometer, PL, and density functional theory
(DFT). The XRD (structural analysis) confirmed that the
hexagonal crystal structure and crystallinity increased upon doping.
Selected area electron diffraction (SAED) analysis confirmed the
polycrystalline nature of the prepared QDs. The functional groups have been investigated using FTIR analysis. The surface and
structural morphologies of the synthesized specimen have been investigated by applying TEM and FE-SEM, and it was found to
exhibit the topology of QDs. In addition, optical characteristics have been investigated via UV−vis absorption spectroscopy, which
exhibited a bathochromic shift (red shift) as a consequence of the reduction of the band-gap energy upon doping from 2.56 to 2.38
eV. PL analysis was used to observe the electron−hole recombination rate. Moreover, the electronic and optical properties of Ba-
doped CdS were further explored using density functional theory. Pristine and Ba-doped QDs exhibit sufficient catalytic activity
(CA) against the MB dye in all media as 62.59, 70.15, and 72.74% in neutral, basic, and acidic solutions, respectively.

1. INTRODUCTION
Water pollution has become a major issue with increasing
population growth. A large amount of industrial waste is
disposed of directly in water resources without purification.1

Water resources get contaminated with dyes and phenolic
compounds harmful to the environment, and they are difficult
to degrade via natural phenomena.2 Annually, 1 × 106 to 107

ton dyes are produced in various industries such as rubber,
paper, pigment, paint, printing, plastic, textile, and leather.3,4

Approximately 10−15% of industrial dyes are directly dis-
charged into freshwater resources and the surrounding
environment, causing critical diseases in humans.5 Moreover,
methylene blue (MB)-contaminated water causes many
harmful issues in aquatic life.6 These dyes are highly soluble
in water; both mutagenic and poisonous effects are caused by a
substance with high stability to light, which can disrupt the
transmission of sunlight into water.7 Wastewater treatment for
removing toxic dyes poses a big problem for protecting the
environment and human health.8 Various techniques, including

transition-metal sulfides,9,10 metal oxides,9,11 chemical precip-
itation, conventional coagulation, electrodeposition, filtration,
electrolysis, ion exchange, adsorption catalysis, and photo-
catalysis degradation, have been applied to wastewater
treatment for the removal of dyes. These techniques are either
slow or nondestructive to some persistent organic pollutants
and have limitations in large-scale implementation.12 Catalytic
degradation has been used for the degradation of various dyes
because it is environment-friendly, cost-effective, and effi-
cient.13 The use of semiconductor catalysts is favored in dye
degradation due to the fact that it is a sustainable and
environmentally friendly method for wastewater treatment.14
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Several catalysts have been synthesized, such as transition-
metal oxides,11,15,16 metal sulfides,10,17 composite struc-
tures,18,19 and dopant materials,13,18,20 to improve the
efficiency of degradation. Synthesis of low-cost and high-
activity catalysts for removal of toxic dyes is still a challenge.21

Metal sulfides such as cadmium sulfide (CdS), which has an
ideal band gap of 2.42 eV, can function as a potential catalyst
for the reaction.22 CdS has unique properties, including
decomposition of toxic organic compounds and resistance to
optical and chemical corrosion,23 as well as detection of visible
radiation and conduction band.24,25 Because CdS has only a
few surface trapping states, it works well in electrical and

optical applications. The fluorescent semiconducting colloidal
crystals are known as CdS QDs. With their exceptional optical
and electrical characteristics, CdS NPs or QDs can be used in a
variety of applications.26,27 It exists in three crystalline phases:
wurtzite, zinc blende, and high-pressure rock salt.28 CdS has
been used in many applications such as in solar cells,29

photodetectors,30 gas sensors,31 and antibacterial activities32 as
well as in catalytic degradation of dyes.

CdS has a high capacity for degradation; however, this
capacity is contingent on its interaction with an appropriate
dopant material. Transition-metal (Mn, Co, Ti, Ba, etc.)-doped
CdS showed optical, electrical, and magnetic properties.21,33 Ba

Figure 1. Schematic diagram of CdS quantum dot-doped Ba.

Figure 2. (a) XRD pattern of synthesized doped CdS. (b) FTIR spectra (c−e) and selected area electron diffraction (SAED) pattern of CdS, 3 and
6% Ba-doped CdS.
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doping in CdS offers potential electrical, optical, and magnetic
properties. The nanoparticle was synthesized using various
methods, including chemical coprecipitation, sol−gel, and
hydrothermal methods. The hydrothermal method was used
because it is environment-friendly, economical, had easy-to-
prepare required material, and milder.34

In this work, pristine and Ba (3 and 6%)-doped CdS
quantum dots (QDs) have been effectively synthesized via a
hydrothermal approach. The synthesized QDs have been
employed to remove the toxic MB dye. A number of
characterization techniques have been used to investigate the
detailed analysis of the prepared QDs. Also, we looked into the
Ba-doped CdS surface using density functional theory
calculations. We demonstrate that the changes in the electronic
structure of Ba doping into the CdS surface can be explained
by combining experimental findings with theoretical calcu-
lations.

2. EXPERIMENTAL SECTION
2.1. Materials. Cadmium chloride 2,5 hydrate (CdCl2.

5H2O, 99%) was obtained from PRS Panreac (Barcelona).
Thiourea (NH2CSNH2, >99%) as the sulfide source, ammonia
solution (max. 33% NH3), and barium chloride dihydrate
(BaCl2.2H2O, >99%) were procured from Sigma-Aldrich
(Germany).

2.2. Synthesis of Ba-Doped CdS. The hydrothermal
technique was adopted to synthesize CdS and Ba-doped CdS
quantum dots (QDs). A 0.2 M solution of CdCl2, 5H2O, and
NH2CSNH2 was prepared under continuous heating and
stirring at 80 °C for 30 min. Then, 0.5 M NaOH was poured
dropwise to maintain the pH ∼ 12 and the formation of
precipitates. The required amount of ammonia was added to
obtain a yellowish precipitate. The solution was kept in an
autoclave at 150 °C for 24 h, and yellowish precipitates were
washed with DI water using centrifugation at 7500 rpm and
the synthesized sample was dried at 150 °C overnight.
Different concentrations of Ba (3 and 6%) as a doped material
were incorporated in the CdS solution using the above-

mentioned method to obtain Ba-doped CdS fine powder, as
indicated in Figure 1.

3. RESULTS AND DISCUSSION
XRD diffraction analysis was used to confirm the chemical
composition, crystallographic structure, and crystalline size of
the synthesized undoped and Ba-doped samples, as repre-
sented in Figure 2a. The hexagonal structure of the prepared
sample has been exhibited in JCPDS card no. 00−001−0783.
Figure 2a ́ shows the JCPDS card matched with the obtained
XRD data. The diffraction peaks observed at 2θ are 25.10,
26.62, 28.29, 30.40, 36.40, 43.93, 48.21, and 52.21°, which
correspond to (100), (002), (101), (200), (102), (110),
(103), and (112) planes. The strongest peak was observed at
an angle of 26.62° with the (002) plane, as described by several
other researchers.35 The peak observed at 36.43° showed a
hexagonal structure of the pure sample, which corresponds to
JCPDS card no. 01-075-0581, and the one at 30.37° has been
well matched with JCPDS card no. 01-075-0581, demonstrat-
ing a cubic crystal structure. The crystallite size was measured
with the Debye−Scherrer formula of pure CdS is 20.73 nm,
which drops to 17.27 nm for 3% Ba-doped and increases to
18.73 nm for 6% Ba doped. A similar crystalline size variation
was observed in previously reported results.36 Compared to
pure CdS, the 6% Ba-doped CdS peak position at the angle
58.38° slightly shifted toward a high angle and extra peaks were
observed at angles 56.79 and 60.42°, matching with JCPDS
card no. 01-079-1644. Peak shifting was detected due to
variation of the ionic size of the host and the dopant material,
as induced by compressional and tensile stress and the thermal
expansion of the dopant and host ions in the XRD pattern.

Fourier transmission infrared spectroscopy has been used to
search for the presence of various functional groups and the
chemical composition of host and Ba-doped CdS QDs in the
range of 4000−500 cm−1 (Figure 2b). The sharp absorption
band at 3410 cm−1 was linked with the O−H stretching
vibration of a water molecule that was absorbed on the surface
of pristine and doped CdS QDs. The weak band detected at

Figure 3. TEM images of (a) pristine CdS, (b) 3% Ba-doped CdS QDs, and (c) 6% Ba-doped CdS QDs.
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Figure 4. Interlayer d-spacing of (a) pristine CdS, (b) 3% Ba-doped CdS QDs, and (c) 6% Ba-doped CdS QDs.

Figure 5. Elemental compositions and surface morphologies of CdS and 3 and 6% Ba-doped CdS (a−c). FE-SEM images and (d−f) EDS analysis.
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1625 cm−1 exhibited the bending vibration of O−H,
confirming the presence of water molecules due to moisture.37

The spectra showed a band at 2158 cm−1, demonstrating the
stretching vibration of the −OH bond, which indicates the
strong interaction of CdS with water molecules.38 The
observed bands at 1736, 1490, and 856 cm−1 have been
attributed to the stretching vibration of the C�O bond, the
CH3 antisymmetric vibration, and the CH2 vibration,
respectively33,39 The CH3 and CH2 vibrations are observed
due to the use of thiourea and ammonia solution during the
synthesis process. The stretching vibration of the sulfide group
is connected with the wide band that may be seen at 1368
cm−1. The band appeared at 1123 and 1017 cm−1 and has been
assigned to the SO4− group. The absorption band appears at
720 and 618 cm−1, which can be attributed to Cd−S
stretching.40 The spectra of pristine and doped samples
showed that all spectra exhibit the same feature. Results
show that increasing the dopant concentration bands of O−H,
C�O, CH3, and CH2 decreased the intensity, with the peak
shifting toward lower wavenumbers. This phenomenon
indicates the coordination between host and dopant ions.
SAED analysis has been used to confirm the prepared single-
crystalline or polycrystalline specimens and observe only the
position of the diffracted beam. The synthesized sample
indicates bright circular rings of CdS and Ba-doped CdS QDs
that are polycrystalline, as indicated in Figure 2c−e. The
results of XRD measurements that satisfy Bragg′s diffraction

conditions are well matched with the various planes of the
synthesized QDs.

Transmission electron microscopy (TEM) analysis has been
employed to confirm the structural morphology of undoped
and Ba (3 and 6%)-doped CdS (Figure 3a−c). The CdS
morphology has cubic and spherical quantum dots, as
represented in Figure 3a. Upon various concentrations of Ba
(3 and 6%) doping, the particle exhibited aggregation and
agglomeration of quantum dots and a rodlike morphology
appeared, as can be seen in Figure 3b−c. High-resolution TEM
(HR-TEM) image with 5 nm resolution was used to find the
interlayer d-spacing. The measured d-spacing of pure and Ba
(3 and 6%)-doped CdS was measured using Gatan software
and was found to be 0.35, 0.20, and 0.24 nm, respectively. The
measured interlayer d-spacing is confirmed by XRD measure-
ment, as revealed in Figure 4a−c.

Scanning electron microscope (SEM) analysis was used to
exhibit the surface morphology of pure and Ba-doped CdS
depicting a nonhomogeneous cluster structure, as illustrated in
Figure 5a−c. The low- and high-magnification images of a pure
sample have been shown, as in Figure S1. Upon doping Ba 3%,
the cluster size increased, so a high degree of agglomeration of
quantum dots was observed. The particle size increases upon
increasing the Ba concentration by 6%, with a small
agglomeration observed. On increasing the cluster size, the
agglomeration decreased, and vice versa.41

Figure 6. Optical analysis of synthesized pure and 3 and 6% Ba-doped CdS QDs (a), PL spectra (b), and band-gap energy plot (c).
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The elemental composition evaluated by energy-dispersive
X-ray spectroscopy (EDS) confirms the successful formation of
CdS, as represented in Figure 5d−f. Ba-doped EDS spectra at
various concentrations (3 and 6%) confirmed the successful
doping of Ba in CdS. Additional peaks of Na have been
observed because of added NaOH to maintain the pH and
observe the precipitates, while additional Au has been
attributed to a sputtering-coating of Au to cover charge
dissipation.42

Photoluminescence (PL) analysis was employed to obtain
the information based on impurities, derive the transitions of
the energy state, and study the emission spectra of dopants, as
indicated in Figure 6a. The PL spectra of host and Ba-doped
CdS QDs have been measured in the range of 370−500 nm to
elucidate the electron−hole pair recombination process. The
emission peak observed at 466 nm due to luminescence
originated from sulfur vacancies.43 The PL emission intensity is
directly related to electron−hole recombination, although a
higher recombination rate shows fluorescence and the lowest
peak intensity observed from phosphorescence. The PL spectra
exhibited a slight red shift upon doping of Ba, which correlates
with the absorption spectra, as shown in Figure 6a. Upon Ba
(3%) doping, a higher peak intensity was noted on increasing
the concentration (6%) of Ba, which reduced the peak
intensity owing to a lower recombination rate. The decrease in
PL intensity was because of the different energy states.44

Optical properties of pristine and Ba-doped CdS QDs were
studied using UV−vis spectrophotometry in the range of 200−
800 nm in Figure 6b. The absorption peak of pure CdS QDs
was observed at 483 nm.45 Using Tauc′s equation to calculate
the band-gap energy (Eg), the direct Eg was found to be 2.56
eV, which is consistent with previously reported findings.46,47

Incorporating various concentrations of Ba into pristine
samples indicates that the absorption spectra have shifted
toward a higher wavelength (red shift). The red shift in
absorption peak has been associated with the decrease in
carrier concentration by incorporation of the doped material
and a decrease in the band-gap energy. The ionic radius of Ba+2

ions is higher than the pristine exhibit of the red shift.15 The
decrease in band gap ascertained the interaction among s, p,
and d suborbitals of the shell. The d-subshell energy of the
Ba+2 ion is almost close to the s-subshell of the same ion.41

The structural and optoelectronic characteristics of Ba-
doped CdS were further clarified using first-principles
computation. Our calculations were performed using the
first-principles software package QuantumATK48 based on
density functional theory (DFT). The Perdew−Burke−
Ernzerhof (PBE) functional49 under the generalized gradient
approximation (GGA) was used to characterize the exchange
and correlation potentials. A Monkhorst−Pack k-point grid of
6 × 11 × 1 was employed in the calculation. To fully optimize
the structural geometry, the convergence accuracy of the
residual force during relaxation was set to less than 0.05 eV/Å
for each atom. The electronic structure was calculated by DFT
using the HSE06 functional.50,51 The CdS surface is
constructed from the primitive cell of bulk CdS. The calculated
lattice parameters of the bulk hexagonal CdS (a = b = 4.139 Å
and c = 6.733 Å) agree well with the experimental results (a =
b = 4119 Å, c = 6.7264 Å).52 The CdS surface is modeled by a
(1 × 2) 7-layer supercell along the11−19 direction having a
hexagonal structure containing a total of 56 formula units, as
shown in Figure 7. A vacuum region of 15 Å separated each
slab from one another along the (11−20) direction.53 To

explore the influence of the Ba-doping system, single and two
Ba atoms are introduced into the slab at Cd substitutional
positions on the surface slab, which correspond to total
dopings of 3.57 and 7.1%, respectively. The electronic
structure of Ba near the (11−20) surface is investigated,
where the densities of states (DOS) are computed and shown
in Figure 8 for different concentrations. As shown in Figure 8a,
HSE06 calculation results of the DOS plot and the band
structure (not shown here) for the pure CdS surface with the
band structure reported in previous theoretical works54 can be
found in the form of a direct band gap at the Γ-point. It is
observed that the highest occupied state of the CdS surface is
mainly derived from the S 3s states, while the lowest
unoccupied state is generated from the Cd 5s and Cd 4p
states. A significant optical band gap results from the principal
optical absorption occurring below the edge of the valence
band. Thus, the CdS surface indicates a band-gap value of 2.83
eV, which is consistent with the experimental results of 2.55−
2.65 eV.55 As illustrated in Figure 10, the band gap decreased
to 2.76 and 2.67 eV with the increase of the Ba concentrations
for 3.57 and 7.1%, respectively, which leads to a small
downshift to the lowest part of the conductor band and a small
upshift to the highest part of the valence band. We computed
the absorption coefficient spectra using the HSE06 functional,
as shown in Figure 8, to investigate the absorption features in
the pure and Ba-doped CdS surface. The examination of the
absorption coefficients revealed that the pure CdS surface
could absorb in the visible range. The impurity in the gap state

Figure 7. Schematic of the (11−20) surface slab model with seven
CdS layers; the gray and yellow balls denote the Cd and S atoms,
respectively.
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caused a minor red shift of the absorption edge as a result of
the Ba doping.

With 400 L of NaBH4 serving as the reducing agent and 3
mL of freshly made MB solution (10 ppm) serving as the
oxidizing agent, the CA of pure and Ba-doped CdS QDs was
conducted. As a result, 400 mL of synthetic CdS QDs and CdS
QDs doped with Ba (3 and 6%) were added to the initial
solution. The degree of dye absorption revealed the
decolonization rate at a certain time. A UV−vis spectropho-
tometer was used to study the degradation rate, and the
percentage degradation was measured as follows:

= ×C C% degradation (( )/C ) 100o t o

where dye concentrations at initial and specific times are Co
and Ct, respectively.

Catalysts, in general, speed up reactions in ongoing
experiments; however, choosing a larger or lower amount of
catalyst than necessary can slow down a reaction. Therefore,
using the right amount of catalyst is crucial for a dye
degradation experiment to succeed. During catalysis, a
reducing agent (NaBH4) provides an e− to MB, as an
oxidizing agent. The transfer of e− from NaBH4 to MB is a
redox reaction that occurs during CA, resulting in the

degradation of the synthetic dye, as shown in Figure 9. In
the absence of a nanocatalyst, the process is very slow. The rate

of the reaction increases after the addition of a nanocatalyst
(CdS and doped QDs). Catalysts lower the activation energy
(Ea) of a reaction, which in turn stabilizes and enhances the
reaction rate.56

The degree of degradation is influenced by the pH of
solutions, and dye effluents are frequently released at different

Figure 8. Calculated total and partial DOS of (a) pure, (b) 3.57%, and (c) 7.1% Ba-doped CdS surface, and (d) optical absorption spectra.

Figure 9. Degradation mechanism of MB dye.
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Figure 10. % Degradation of synthesized QDs: (a) neutral medium, (b) basic medium, and (c) acidic medium.

Figure 11. (a) Plot of the concentration ratio (Ct/C0) versus time for CdS. (b) Plot of ln(C0/Ct) versus time spectra of CdS. (c) Stability of the
pure catalyst CdS.
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pH levels.57 The surface charge of dye molecules and catalysts
is strongly influenced by the pH of the solution. Positively
charged catalyst surfaces fight against cationic species
adsorption in an acidic medium. Due to the powerful
electrostatic interaction between the negatively charged
catalyst and the negatively charged cationic dye in the basic
media, the surface becomes negatively charged. Multiple
morphologies are observed after doping that give more active
sites for charge transfer. QDs have a large surface area and
crystallinity, describing more charge transfer. The reducing
capacity of NaBH4 was also studied in the absence of
catalysts.58 However, low degradation was observed after 20
min due to the small catalytic activity of NaBH4. The prepared
nanocatalyst (400 μL) was added to the solution, increasing
the dye degradation. The catalytic material acts as an electron
relay, and the transportation of electrons from BH4

− to the MB
results in degradation of the dye. In the oxidation−reduction
reaction, the catalyst enhanced the reaction rate by lowering
the activation energy and providing large nanocatalyst sites.59

The presence of a nanocatalyst and a reducing agent improves
the dye degradation efficiency; the mechanism is represented
in Figure 9.

The pure and Ba (3 and 6%)-doped CdS QDs exhibit
degradations of 55.86, 48.58, and 62.59% in neutral; 67.77,
66.75, and 72.74% in acidic; and 70.15, 65.90, and 71.33%, in
basic mediums, respectively, within 20 min, as represented in
Figure 10a−c. The absorption spectra that demonstrate the
reduction of the MB dye in an acidic medium have been shown
in Figure S2. The degradation was affected by the pH of the
solution, crystallinity, morphology, and surface area of QDs.

Catalytic activity increased in an acidic medium, which can
be associated with the increased production of H+ ions
adsorbed on the surface of the quantum dots.60 The
improvement in catalytic effectiveness for both acidic and
basic mediums observed in this study has been attributed to
the size and morphology of QDs acting as catalytic agents.61

The maximum degradation of MB has been observed in a basic
medium because with the addition of NaOH to make the dye
solution basic, the surface of the catalyst becomes negatively
charged and MB is positively charged. The electrostatic
attraction between the dye and the surface of the catalyst
increases the adsorption rate and results in dye degradation. At
low pH ∼ 4 (acidic medium), the surface of the catalyst
becomes positively charged and the MB is also positively
charged; the electrostatic repulsion between positive and
negative charges decreases the adsorption, which results in less
degradation in an acidic medium for pure and 3% Ba doping.
On increasing the doping concentration (6%), the maximum
degradation was noted, which increased the number of H+ in
the dye solution to degrade at a maximum of 72.74%.

The nanocatalysts considerably enhance the catalytic
degradation of MB and efficiently destroy the dye (Figure
11a). The large surface area of CdS QDs resulted in an
enhanced catalytic activity. Rate constants (k) for catalytic

degradation kinetics have been calculated using the ln(Co/Ct)
slope against time. The values of k for CdS in the acidic, basic,
and neutral media were calculated as 0.02173, 0.01417, and
0.00413 min−1, respectively (Figure 11b).

The stability of the nanocatalyst was monitored in an acidic
medium as CdS demonstrated sufficient degradation results;
thus, its stability was studied by allowing the experiment to
continue for 72 h to determine whether dye reduction in the
presence of a nanocatalyst is stable or not. Therefore, the
degraded dye was placed in the dark, and degradation was
observed via absorption spectra recorded through a UV−vis
spectrophotometer every 24 h. The results showed that no
degradation loss occurred under stable conditions for 72 h, as
shown in Figure 11c. Degradation was observed in its almost
original form, confirming the catalyst′s stability. A table of
comparison of catalytic activity of QDs reported with present
study shown in (Table 1).

4. CONCLUSIONS
The hydrothermal route has been used to synthesize cadmium
sulfide (CdS) with an increasing concentration of Ba (3 and
6%) as a doped material. The CdS exhibits a crystalline nature
with a hexagonal crystal structure, and the crystallite size
decreased (20.73−18.73 nm). The surface and structure
morphologies were confirmed through FE-SEM and TEM
analyses, exhibiting agglomerated QDs for pure and Ba-doped
samples. The elemental composition confirmed through EDS
analysis showed the presence of Cd and S for pure and Ba
elements for all doped samples. The interlayer d-spacings of
pure and Ba (3 and 6%) doped CdS were measured as 0.35,
0.20, and 0.24 nm, respectively. It was shown to have catalytic
activity for the degradation of the MB dye in the presence of
NaBH4, and the findings showed that it could degrade the MB
dye up to 62.59% in neutral, 72.74% in acidic, and 71.33% in
basic mediums. The densities of states of the pure and doped
CdS surface were computed to examine the impact of Ba
doping on the CdS surface from the perspective of electronic
structures. The band-gap values appear to be slightly
decreasing with rising Ba concentrations. The absorption
spectrum research revealed that the pure and doped CdS
absorbed photons in the visible range. This study degraded the
methylene blue dye and evaluated DFT.
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Figure S1, FE-SEM images with low and high
magnification; Figure S2, time-dependent UV−vis
absorption spectra in an acidic medium for reduction
of MB (PDF)

Table 1. Comparison of the Catalytic Activity of the Synthesized QDs with the Present Study

nanocatalyst synthesis route
%

degradation activity outcomes refs

TM-doped CdS Coprecipitation route catalytic activity Ni- & Co-doped CdS showed maximum degradation 21
Fe-CdS Coprecipitation 100 catalytic activity 15% Fe-CdS degraded MB dye 100% in 10 min 62
CNC-g-PVP-doped CdS QDs Coprecipitation 99.79 catalytic activity at 8 min, degradation was about 99.79% 60
Ba-doped CdS QDs hydrothermal method 72.74 catalytic activity 6% Ba-CdS showed maximum degradation 72.74% present work
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