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Abstract: Agricultural robots are one of the important means to promote agricultural modernization
and improve agricultural efficiency. With the development of artificial intelligence technology and
the maturity of Internet of Things (IoT) technology, people put forward higher requirements for the
intelligence of robots. Agricultural robots must have intelligent control functions in agricultural
scenarios and be able to autonomously decide paths to complete agricultural tasks. In response
to this requirement, this paper proposes a Residual-like Soft Actor Critic (R-SAC) algorithm for
agricultural scenarios to realize safe obstacle avoidance and intelligent path planning of robots. In
addition, in order to alleviate the time-consuming problem of exploration process of reinforcement
learning, this paper proposes an offline expert experience pre-training method, which improves the
training efficiency of reinforcement learning. Moreover, this paper optimizes the reward mechanism
of the algorithm by using multi-step TD-error, which solves the probable dilemma during training.
Experiments verify that our proposed method has stable performance in both static and dynamic
obstacle environments, and is superior to other reinforcement learning algorithms. It is a stable and
efficient path planning method and has visible application potential in agricultural robots.

Keywords: reinforcement learning; agricultural robot; path planning; obstacle avoidance; intelligent
control; Internet of Things

1. Introduction

With the development of artificial intelligence technology and the increasing mate-
rial and spiritual needs of humans, Internet of Things (IoT) technology is maturing [1].
Increasing modernization and intelligence in all walks of life is a trend that conforms to
the development of the times. In addition, agriculture is the top priority of all industries
and the most indispensable demand of humans. Determining how to improve agricultural
efficiency and increase crop yield is one of the most urgent issues in the current era. In
recent years, artificial intelligence technology has brought new solutions to this problem.
Promoting agricultural modernization, saving human labor, and improving agricultural
efficiency are the advantages of artificial intelligence.

At present, many scholars have carried out intelligence research [2] and IoT research [3]
in agricultural systems. In the work of [4], they study the perception system of crop nutri-
ent elements for agricultural robots, which lays the foundation for agriculturally precise
fertilization and saves human labor. In [5], they build a test platform for agricultural
mobile robots, using multi-sensor fusion and a self-encoding network to predict the robot’s
high-precision position, and prevent the location accuracy of the robot being affected by
signal interference. RGB-D cameras are used to process the scene image to perceive and
detect the obstacles in the image, so that the automatic lawnmower can cope with the
challenging work area [6]. In the study by [7], they review the IoT systems in agriculture,
and analyze the status and challenges of automatic harvesting robots and automatic picking
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robots. Additionally, ref [8] uses CNN and SSD model to detect the life cycle of tomatoes
in greenhouses and improves the perception ability of picking robots. The above research
reflects the necessity and effectiveness of artificial intelligence technology in the agricultural
field, and most task-oriented agricultural robots are inseparable from the problem of au-
tonomous path planning. Therefore, this paper focuses on the path planning of agricultural
robots, and uses reinforcement learning methods to train agricultural robots to plan paths
autonomously, so as to complete a series of agricultural tasks.

Traditional path planning methods such as potential field method [9] and A* search
method [10] are mature and widely-used methods that have been used for quite some time.
Refs. [11,12] carried out dynamic planning for system scheduling and reasonably handled
route states to avoid deadlock, which is a classic planning problem. Lin et al. took the UAV
as the research object, and adopted the RRT algorithm to complete offline path planning.
During the navigation process, they used the vision-based obstacle detection technology
to achieve online obstacle avoidance [13]. Han et al. combined the ant colony algorithm
for full coverage path planning and obstacle avoidance for the underwater glider in the
ocean area [14]. These methods perform well in their applicable scenarios, but there are still
some limitations. When the target point or obstacles change slightly, these methods need to
re-plan because of the lack of adaptability and flexibility. With the rapid development of
deep learning in recent years, intelligent methods have played an increasingly important
role in smart agriculture [15,16], image screening [17], environmental monitoring [18], edge
computing [19], and path planning [20]. At the same time, it provides an effective technical
means for agricultural production, automatic driving, and other fields. Reinforcement
learning is a method that is suitable for the environments for which there is a lack of prior
knowledge, and learns through the interaction with the environment. Therefore, in order
to make the robot have certain flexibility and autonomy, more and more scholars use deep
reinforcement learning to train the robot, which has the ability to plan autonomously and
tolerate some subtle changes. As a result, it has higher efficiency and better adaptability
than traditional methods.

Bianca et al. adopt a dual-mode combination of classical planning algorithms and
deep reinforcement learning methods to realize the robot’s obstacle avoidance, and achieve
the mechanism of offline training and real-time execution [21]. David et al. combine
unsupervised learning with reinforcement learning to achieve robust multi-agent path
planning in a two-dimensional unknown environment [22]. The globally guided rein-
forcement learning method also has good versatility. Wang et al. make full use of the
environmental spatiotemporal information to solve the robot path planning problem in
various scenarios [23]. Yao et al. combine the black-hole potential field with reinforcement
learning to solve the problem that the agent can easily fall into the local stable point, and
adopt curriculum learning to learn a series of obstacle avoidance tasks from easy tasks to
difficult tasks [24]. Yan et al. use the D3QN method in reinforcement learning to study
the evasion path planning of UAV when encountering enemy detection and attack, and
simulate the UAV’s survival route based on a simulation platform [25]. Guo et al. [26]
and Chen et al. [27], respectively, use a DDPG algorithm and a Q-learning algorithm in
reinforcement learning to study the autonomous navigation of ships. They ensure that
ships follow navigation rules and drive safely. Most of the research objects of path planning
are UAVs, unmanned ships, or miniature ground robots, and there are few studies on
agricultural scenarios. Aiming at the lack of research on the path planning problem of
agricultural robots, this paper adopts a reinforcement learning method to carry out a series
of studies on obstacle avoidance and path planning tasks.

The main contributions of this paper are as follows.

1. Currently, reinforcement learning algorithms used in path planning are mainly earlier
algorithms. This paper proposes a novel Residual-like Soft Actor Critic (R-SAC)
algorithm, which combines the residual-like structure with the SAC algorithm to
optimize the network structure of SAC. The improved algorithm is able to complete
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dynamic obstacle avoidance tasks. Experiments show that our method is more efficient
than other reinforcement learning algorithms.

2. Aiming at the time-consuming problem of the interaction process of reinforcement
learning, a supervised learning method based on offline expert experience is proposed
as a pre-training of reinforcement learning. This method greatly reduces the training
time and improves the efficiency of learning, and realizes an efficient mechanism of
single exploration and multiple utilization.

3. The one-step TD error of the SAC algorithm only considers the reward of the current
step and ignores the periodic or long-term reward. As a result, if the agent misses
the target point, it may not adjust in time, which reduces the success rate of the task.
Therefore, we add a multi-step TD error mechanism, so that the agent can comprehen-
sively consider the long-term reward, and can choose the optimal adjustment policy
in the inferior situation.

The rest of this paper is arranged as follows. Section 2 introduces the related work of
path planning in the agricultural field and the current progress of reinforcement learning in
path planning. Section 3 introduces the R-SAC algorithm, offline expert experience method
and multi-step TD error proposed in this paper. In Section 4, we conduct the static obstacle
avoidance experiments and mobile obstacle avoidance experiments. We also compare the
proposed algorithm with other reinforcement learning methods. In addition, we conduct
multi-step contrast experiments and ablation experiments of R-SAC algorithm to discuss
the improved mechanism in Section 5. Lastly, we summarize the full work in Section 6.

2. Related Work

Regarding path planning problems, reinforcement learning methods have been veri-
fied and recognized by many scholars, but in terms of the algorithm, most of them are still
at the primary level. Hyansu et al. apply DQN to complete the multi-agent path planning
task, and use convolutional neural networks to process image input [28]. Lei et al. utilize
the DDQN algorithm to enable the agent to achieve local path planning in an unknown dy-
namic environment, and combine it with the ROS framework for physical verification [29].
In the study of Beomjoon et al., they utilize a feature extraction module to extract local
features, and then use inverse reinforcement learning to learn a cost function from human
experience to assist local path planning, and make the agent trajectory similar to human
behavior to improve the safety of the robot [30]. Zhou et al. combine DDPG with ANFIS
network to realize real-time dynamic planning of vehicles to maximize vehicle energy
efficiency and state of charge [31]. Lin et al. combine DDPG with LSTM network to fully
memorize and utilize the robot’s past state in order to complete the collision-free path
planning and picking of tasks of picking robots in the orchard [32]. Although these earlier
reinforcement learning algorithms can achieve tasks, there are still many problems that can
be optimized, and the update and innovation of algorithms can help robots complete more
difficult tasks.

In the agricultural field, Santos et al. make a summary review of the current agricul-
tural path planning applications. They analyze and compare a variety of point-to-point
methods and coverage path planning methods, and conclude that path planning appli-
cations in the agricultural field are very few, and the methods need to be optimized [33].
Han et al. adopt a path tracking method based on slip estimation to implement a path
planner for agricultural robots with auto-steering control, which reduces the restriction of
the shape of the farmland [34]. Saba et al. apply a model-based reinforcement learning
method to build an accurate environment model in an unknown dynamic environment to
enable multiple UGVs to learn an environment map, and then implement path planning in
the established environment model [35]. In [36], the 3D farmland terrain required by agri-
cultural robots or autonomous tractors is considered by Hameed et al., and a 3D coverage
method is proposed to avoid skips or overlaps in 3D terrain. Wu et al. use a 3D scanner
to collect terrain and obstacle information and establish a spatial model of hill areas, and
then adopt an ant colony algorithm to complete path planning in 3D space [37]. In the
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study of [38], Han et al. model the dynamics of agricultural robots, and develop a method
that can control the angle and speed of the robot. Liu et al. adopt the fuzzy clustering
method to realize the obstacle avoidance of the robot, and fuse multiple sensors to collect
information to assist obstacle avoidance, which performs well in physical experiments [39].
Li et al. apply a DQN algorithm to complete the intelligent path tracking task based on the
agricultural machinery driving scenario, and maintain a fast convergence speed and good
stability in the dynamic environment [40].

The above studies demonstrate the feasibility of various methods in path planning.
Most of traditional methods require pre-planning, and require knowledge of accurate
map information before planning. When some factors change in the environment, such
as movable obstacles, these methods cannot adjust in time and even need to re-plan as
a new environment. For reinforcement learning, due to its characteristics of real-time
interaction and learning from environmental feedback, changes in the environment can
be acquired and the policy can be adjusted in real time. Therefore, reinforcement learning
has a certain tolerance for dynamic changes or disturbances in the environment, and
has obvious advantages and adaptability in dynamic environments. Compared with the
existing application of reinforcement learning in the agricultural field, the method in this
paper speeds up the algorithm convergence. It improves the performance in dynamic
obstacle avoidance scenarios, and can be applied to more complex path planning tasks.

3. Algorithm

The principle of reinforcement learning is that the agent interacts with the environment
in real time and learns to make decisions. It models and solves problems based on the
Markov Decision Process (MDP). (S, A, P, R, γ) are key elements in the interaction process
of reinforcement learning, where S = {s1, s2, . . . , st} represents the state space of the
environment, including the state information of the agent at each step. A = {a1, a2, . . . , at}
represents the action space of the agent, including the range of the agent’s action choices. P
is the state transition probability, and R = {r1, r2, . . . , rt} is the feedback of the environment
based on the state and chosen action at each step, from which the agent learns the policy. γ
is the discount factor for discount calculation of the cumulative rewards, and the cumulative
rewards can be expressed as

R(t) = r(t+1) + γr(t+2) + γ2r(t+3) + . . .

=
∞

∑
n=0

γnr(t+n+1) (1)

The basic framework of reinforcement learning is shown in Figure 1.

Figure 1. The framework of reinforcement learning.
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3.1. R-Sac Algorithm

In this paper, the R-SAC algorithm is proposed for the path planning of the agent. The
SAC algorithm is based on the actor-critic framework, where the actor network outputs the
policy π and is updated by the policy gradient method. The parametric representation of
policy π is expressed as

πθ(at | st) = Pθ{A = at | S = st} (2)

where θ is the parameter vector of the policy π, and Pθ is the probability of output action at
based on state st. The state-action pairs in a complete episode constitute the trajectory τ,
and its probability is expressed as

πθ(τ) = pθ(s1, a1, . . . , sn, an)

= pθ(s1)
n

∏
t=1

πθ(at | st)pθ(st+1 | st, at)
(3)

The essential optimization goal of reinforcement learning is to maximize the cumula-
tive reward

J(θ) = E[R(τ)] (4)

The optimization idea of the policy gradient method is to find a set of optimal parame-
ters θ in the parameterized policy function to maximize the cumulative reward.

θ∗ = arg max
θ

Eτ

[
n

∑
t=1

R(st, at)

]
(5)

Therefore, the gradient of the optimization goal J(θ) is the policy gradient, and the
policy gradient is approximated by the mean value of N samples:

∇θ J(θ) =
1
N ∑

N

[
n

∑
t=1
∇θ log πθ(at | st)

][
n

∑
t=1

r(st, at)

]
= Eπθ

[
Aπθ (st, at)∇θ log πθ

(
a(n)t | s(n)t

)] (6)

where Aπθ means the advantage function. It represents the advantage of action at relative
to other actions in state st, which is equivalent to the deviation of the variable relative to
the mean value.

Finally, θ is updated by gradient ascent, and the optimal parameter θ∗ is obtained by
multiple iterations.

θ ← θ + α∇θ J(θ) (7)

The critic network evaluates the actions selected by the actor network and fits the
cumulative return of each state-action pair. The loss function can be expressed as

L(θ) =
1
2 ∑

st ,at

[Q(st, at)−Qθ(st, at)]
2 (8)

where Q and Qθ are, respectively, the actual action value and the fitted action value
estimated by the network. The optimization goal of the algorithm is to minimize the gap
between the two, so the update of the network parameter θ is:

θ ← θ + α[Q(st, at)−Qθ(st, at)]∇Q(st, at) (9)

θ ← θ + α[r(st, at) + Qθ(st+1, at+1)−Qθ(st, at)]∇Q(st, at) (10)

The improvement of the SAC algorithm based on the AC framework is mainly to
maximize the entropy of the action while maximizing the cumulative reward, which can
make the selected action more random at each step, and thus increases the exploration
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ability of the agent and avoids the centralized selection of one action. The agent trained
by the SAC algorithm has better exploration and robustness, and can avoid premature
convergence to a local optimum. The entropy of the action is expressed as:

Hπ(at+1|st+1)
= −Ea[log π(at+1 | st+1)] (11)

The entropy of the action is considered while calculating the cumulative reward, so
the optimization goal is changed to:

J(θ) =
1
2
E(st ,at)

[
r(st, at) + γ

(
Qθ(st+1, at+1) + αHπ(at+1|st+1)

)
−Qθ(st, at)

]2
(12)

where α is the temperature coefficient of the SAC algorithm, which controls the randomness
of the policy π. Usually, α is adaptively changed during training to adjust the weight of
entropy Hπ in the overall optimization goal.

This paper proposes the R-SAC algorithm, which modifies the network structure of
SAC, adding a residual-like structure. The residual-like structure adds skip connections to
each layer of the SAC network; in other words, it adds the state input to the output of each
layer as a joint input to the next layer of the network. Appropriately increasing the layers of
the neural network can enhance the network’s expressive ability and improve performance
to a certain extent, but at the same time, it may cause problems such as gradient vanishing.
After adding the residual-like network structure, since the derivative contains an identity
entry, effective back-propagation can be maintained. On the other hand, the residual-like
network structure can supplement the feature information of state input lost through the
network, which is more conducive to the autonomous learning of the agent.

Our residual-like network refers to the residual block structure of ResNet [41]. As
shown in Figure 2, the principle is directly introducing a short connection from the input to
the output of the nonlinear layer, so the mapping becomes

y = f (x, w) + x (13)

where x denotes the input and w is the network parameters.

Figure 2. The structure of residual block in ResNet.

In short, residual structure is just a way of building the network. The difference
between our residual-like network with the standard residual block is that our skip connec-
tions are not connected every two layers as commonly used, but every layer performs this
operation. The network structure is shown in Figure 3.

Next we discuss why the residual structure can alleviate the training problem of deep
networks. Suppose the mapping of the residual block of the ith layer is

F(xi, wi) = xi + f (xi, wi) (14)
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Figure 3. The residual-like network used in reinforcement learning.

Then the input of the i + 1th layer is

xi+1 = F(xi, wi)

= xi + f (xi, wi)
(15)

Loop this calculation, we get the input of the Nth layer

xN = xi +
N−1

∑
n=i

F(xn, wn) (16)

The above formula shows good back-propagation characteristics. Assuming that the
loss is l, according to the chain derivation rule, we can get

∂l
∂xi

=
∂l

∂xN

∂xN
∂xi

=
∂l

∂xN

(
1 +

∂

∂xi

N−1

∑
n=i

F(xn, wn)

) (17)

From the formula, it can be seen that the gradient consists of two parts, which are,
respectively, the value weighted by networks and the value without weighting. The linear
connection of these two parts ensures that information can be back-propagated to shallow
layers, and the gradient will not be 0 even if the weights are very small. Therefore, the
vanishing gradient problem does not exist in a residual-like network.

3.2. Offline Expert Experience

In this paper, the training of reinforcement learning is assisted by offline expert experi-
ence supervised learning. In the implementation of AlphaGo in 2015 [42], a large number
of human chess manuals are used to pre-train and initialize the algorithm networks before
the algorithm training. After that, AlphaGo learns more unknown chess compositions
through self-play. It can be seen that supervised learning by expert experience can raise the
lower limit of the agent and greatly reduce the time of training. After pre-training by expert
experience, reinforcement learning is an indispensable method to increase the upper limit of
the agent. In fact, expert experience has certain limitations, and more unknown situations
can only be met by continuous exploration of the agent. In the process of interacting with
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the environment, it learns to decide the optimal action in different states, and it also has a
certain adaptability of the unknown state.

The replay buffer in conventional reinforcement learning can only replay the expe-
rience for one training. In order to improve the training efficiency, this paper collects a
sufficient amount of expert experience for storage before training, and directly reads the
offline expert experience and conducts supervised learning first. Then the R-SAC algorithm
is trained after the pre-trained model is finished. Since the random exploration in the early
stage is saved in various scenarios, the training efficiency is greatly improved, and the
training mode of one exploration and multiple utilization is realized. The flow charts of
expert experience pre-training and the whole training process are shown in Figures 4 and 5.

Figure 4. The offline expert experience pre-training mechanism.

3.3. Multi-Step Td-Error

In terms of reward function, because of the advantages of the R-SAC algorithm, the
reward function can be greatly simplified. We judge whether the agent is closer to the
target point than the previous step, and decide to give it a positive reward or a negative
reward. If it collides with the obstacles on the way, a larger negative reward will be given.
If it moves beyond the bound of the map, a specific negative reward will be given. Finally,
a maximum positive reward will be given if it reaches the final target point. This mode
may have a drawback, as shown in Figure 6.

If the agent misses the target point, it will try to turn and correct to the target point.
During this process, it may move away for a short time. However, at this time it will get
the same negative reward, which makes the agent be confused and not know what to do
and where to go. In fact, as long as this short-term deceleration process is finished, the
subsequent reverse acceleration process can make it closer to the target point and trigger a
positive reward. However, the current reward mode prevents it from seeing future positive
rewards, and only gets stuck with immediate negative rewards. Therefore, we optimize
the original single-step TD error and change it to multi-step TD error to calculate rewards,
so that it can comprehensively consider the subsequent multi-step rewards. The update
mechanism of multi-step TD error is

G(n) = r(t+1) + γr(t+2) + · · ·+ γn−1r(t+n) + γnQ(t+n+1)(st+n, at+n) (18)

Therefore, the optimization goal of multi-step R-SAC algorithm is:

J(θ) =
1
2
E(st ,at)

[
r(n)(st, at) + γ(n)

(
Qθ(st+n+1, at+1) + αHπ(at+1|st+1)

)
−Qθ(st, at)

]2
(19)
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Figure 5. The training process of R-SAC algorithm.

Figure 6. The drawback existed in the training process. If the agent misses the goal point, it is difficult
to adjust the action to turn to the correct direction.
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4. Experiments and Results

We take agricultural robots as the research object and carry out groups of path planning
experiments. When the robot executes agricultural tasks, it needs to control its direction
automatically, which is essentially a path planning task. In the farmland scenario, there are
always some obstacles, such as working people and other agricultural machinery. Therefore,
the robot must have the ability of autonomous obstacle avoidance. We establish a 600 × 600
two-dimensional environment, and set eight rectangular obstacles in the environment, as
shown in Figure 7; the black rectangles represent the obstacles, and the red pentagram
represents the goal point. The goal of the robot is to avoid these obstacles and reach the
target point safely. Meanwhile, the optimal path is as short as possible, and the consumed
time is as fast as possible. The experiments are based on Python 3.7 and performed on
Ubuntu 18.04 with NVIDIA RTX 3070 GPU and 16G RAM. Considering that reinforcement
learning makes decisions through the interaction of each step, the experiment evaluation
metrics include the number of decision steps and the length of the entire path. The main
parameters of the algorithm and the location and shape settings of obstacles are shown in
Tables 1 and 2. After the algorithm is trained, we save the trained model for testing in the
same environment. During the test, we record the position of the agent and plot it, and
calculate the steps and path lengths it takes.

Table 1. The main parameters of the algorithm.

Parameter Value

Batch size 27

Buffer size 2× 104

Maximum training episodes 2× 104

Maximum time steps 103

Discount factor 0.99
Network hidden size 28

Learning rate 5× 10−4

Table 2. The position of the lower left vertex, width, and height of the rectangular obstacles.

Position Width Height

(50, 50) 100 30
(150, 300) 30 120
(100, 500) 100 30
(450, 350) 100 30
(250, 150) 50 50
(400, 50) 100 30

(300, 300) 30 100
(450, 200) 50 50

4.1. Static Obstacles Environment

First of all, we conduct different target points experiments with static obstacles based
on our proposed algorithm. As shown in Figure 7, the start point is (0, 0), and the target
point is set at (500, 500). There are obstacles in the map, so the agent must learn to avoid
collision and detour to reach the target point. The path in the figure verifies the collision
avoidance ability of the agent. The agent has indeed bypassed several obstacles in the
forward direction and reached the destination in a roundabout way. Moreover, the agent
chooses a closer path, which is the result that comprehensively considers efficiency and
safety. Figure 8 shows the paths with another two target points, respectively set at (200, 400)
and (400, 400), and our R-SAC algorithm performs well in these cases. Faced with different
destinations, the agent can independently decide to pass through different obstacles and
choose different paths. They successfully complete the task under the condition of saving
steps as much as possible.
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Figure 7. The planned path with start point of (0, 0) and target point of (500, 500).

Figure 8. The planned paths with target point of (200, 400) and (400, 400).

Table 3 shows the experiment results of other target points that we supplement based
on the same algorithm. We select target points in multiple directions to comprehensively
test the performance of the R-SAC algorithm. The results show that our method has
stable performance under conditions of different directions, different obstacle avoidance
difficulties, and different distances. The robot completes the path planning task in shorter
steps and path lengths. Figure 9 and Table 4 show the experiment results with the target
point of (500, 500) compared with the commonly used reinforcement learning algorithms
DQN and Dueling Double DQN (D3QN). Obviously, the DQN algorithm does not perform
well. Although its reward has a tendency to converge, the convergence speed is too slow,
so it cannot converge to the maximum reward value within 20,000 episodes. From the
results in Table 4, it can be seen that DQN finds a feasible path, but it is not optimal, and
the steps and path length of DQN algorithm are much higher than the other two. D3QN
algorithm achieves better performance because it utilizes double networks to estimate the
Q value, and thus solves the overestimation problem of DQN. Moreover, it uses the dueling
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architecture to separate the state from the action so that it learns more accurately. D3QN
algorithm converges faster, but some fluctuations still exist after convergence, and the steps
and path lengths it consumed are also larger than those of the R-SAC algorithm. Our R-SAC
algorithm comprehensively considers the Q value and action entropy, which avoids the
local optimum problem. At the same time, the residual-like network enables it to fully learn
the features of the input state, so the obtained path is the shortest. Figure 9 denotes that
R-SAC network has the fastest convergence speed and remains stable after convergence.

Table 3. The steps and path length of R-SAC algorithm with different target points.

Target Point Steps Path Length

(500, 500) 171 860.87
(600, 600) 198 996.94
(400, 400) 142 715.78
(600, 100) 149 754.39
(200, 400) 128 643.94
(300, 500) 148 748.44
(600, 300) 167 842.05

Figure 9. The reward curves of DQN, D3QN, R-SAC algorithm with target point of (500, 500).

Table 4. The steps and path length of DQN, D3QN, R-SAC algorithm with target point of (500, 500).

Algorithm Steps Path Length

DQN 195 981.34
D3QN 176 887.28
R-SAC 171 860.87

4.2. Dynamic Obstacle Environment

In actual agricultural scenarios, obstacles in the farmland, such as agricultural machin-
ery and working people, are always constantly moving, so robots are required to have a
certain ability to adapt to dynamic obstacles. Based on the obstacles above-mentioned, we
assume that all obstacles move toward a random direction at each step, which increases
the difficulty of obstacle avoidance. Figure 10 shows the path under the condition that
the target point is (500, 500), and the position of the obstacles shown in the figure is at the
last moment. Compared with the static situation of Figure 7, the path in Figure 10 passes
through the middle obstacles instead of traversing from the outer obstacles. The reason
for this may be that the obstacles tend to move outward during the training process, so
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they free up the middle area, giving the agent room to move through the middle. Figure 11
shows the results with the target points (200, 400) and (400, 400). Compared with the static
experiments in Figure 8, the paths are also significantly different. The path finally earned
by the agent is under the influence of dynamic obstacles, so it has a certain ability to adapt
to the movement of obstacles.

Figure 10. The planned path with target point of (500, 500) and dynamic obstacles.

Figure 11. The planned paths with target point of (200, 400) and (400, 400) and dynamic obstacles.

Table 5 shows the dynamic obstacle avoidance results of other target points. Compared
with Table 1, the path changes to become either longer or shorter. Since the obstacles move
randomly at each step, the position of the obstacles faced by the agent during the training
process is different, and the optimal path learned in the end is also different. Figure 12 and
Table 6 show the comparison results of the algorithms under the condition of (500, 500)
target points. Contrast with the static results, three algorithms are affected by dynamic
obstacles, the optimal paths and training curves change as well. The steps consumed by the
R-SAC algorithm is greatly reduced. Corresponding to Table 4, it can be seen that the steps
are saved by passing through the middle obstacles, and the path length is correspondingly
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shortened. From the reward curve, R-SAC algorithm converges as fast as before and
has high stability. The D3QN algorithm maintains the result similar to that of the static
experiments, probably because the obstacle movement does not have much influence on the
path of the agent. The over-estimation problem of DQN makes its convergence relatively
difficult, and the training process is very unstable. It can be seen from the table that the
consumed steps are significantly increased compared to the static scenario, which indicates
that the eventual path is probably not the optimal path. In summary, our proposed R-SAC
algorithm has stable performance in static and dynamic obstacles, and is better than other
algorithms, which verifies the effectiveness of the algorithm.

Table 5. The steps and path length of R-SAC algorithm with different target points and dynamic obstacles.

Target Point Steps Path Length

(500, 500) 159 800.17
(600, 600) 192 967.26
(400, 400) 145 732.95
(600, 100) 155 780.65
(200, 400) 132 665.36
(300, 500) 150 758.34
(600, 300) 172 873.45

Table 6. The steps and path length of DQN, D3QN, R-SAC algorithm with target point of (500, 500)
and dynamic obstacles.

Algorithm Steps Path Length

DQN 218 1097.56
D3QN 172 866.15
R-SAC 159 800.17

Figure 12. The reward curves of DQN, D3QN, R-SAC algorithm with target point of (500, 500) and
dynamic obstacles.

5. Discussions
5.1. Multi-Step Comparison

In order to compare the influence of the Multi-step mechanism on the algorithm
convergence, we conduct the contrast experiment with the single-step, 10-step and 5-step
mechanism, and other configurations are the same as the algorithm proposed in this paper.
From the point of view of the reward curve and TD-error curve in Figures 13 and 14, the
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5-step mechanism has a certain performance improvement compared to the single-step.
Due to the combination of reward evaluation in the next five steps, the agent has long-term
planning and makes more reasonable decisions, so it has a more stable training curve.
However, when we increase the multi-step to 10, the performance becomes worse. It is
speculated that the agent considers too many steps, which increases the learning difficulty
of the agent. It may take too many factors into consideration for a simple action and ignore
the most important reward at the current step, thus falling into confusion. Therefore, there
is a certain range for the choice of multi-step. In general, the long-term consideration of
three-five steps is more conducive to the training of the agent.

Figure 13. The reward curves of single-step, 10-step and 5-step mechanism based on R-SAC algorithm.

Figure 14. The TD-error curves of single-step, 10-step and 5-step mechanism based on R-SAC algorithm.

5.2. Ablation Experiments

For the sake of verifying the advantages of several improved mechanisms we proposed,
we conduct ablation experiments on residual-like network, offline expert experience, and
multi-step TD-error mechanisms. Figures 15 and 16 show the trends of rewards and
TD-error during training. In the figure, the scheme “w/o Expert Experience” means we
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only use the R-SAC algorithm with multi-step TD-error. The scheme “w/o Residual-like
Network” means we only use SAC algorithm with offline expert experience and multi-step
TD-error mechanism without residual-like structure. The scheme “w/o Multi-step TD-
error” means we only use the R-SAC algorithm with offline expert experience. The scheme
“Full” means our proposed complete algorithm.

Figure 15. The reward curves in the ablation experiment.

Figure 16. The TD-error curves in the ablation experiment.

From the results in Figures 15 and 16, the offline expert experience mechanism has
the greatest impact on the algorithm. Directly using reinforcement learning for training
without expert experience is too hard for the agent to learn the task of this paper, and
it is difficult to quickly explore the correct direction, so the convergence speed is slow.
Collecting expert experience in advance for supervised learning as the initialization of
reinforcement learning network solves this problem. The initial network of the agent has
a good performance, and the later training only needs to adjust on this basis, which is
equivalent to reducing the difficulty of the task. Secondly, the residual-like network has a
certain influence. If the residual-like network is removed and the fully connected layer is
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used instead, the input state information may be lost when passing through the networks,
thus affecting the network performance. In addition, we remove the multi-step TD-error
mechanism and directly use the single-step error calculation. As a result, the agent may
not see the long-term feedback after a few steps, resulting in a “short-sighted” problem,
which is also the reason for the instability of the green curve in the later stage. Finally, the
complete algorithm with all the improved mechanisms converges fastest and remains at a
stable level to the end.

Table 7 compares the difference of steps and the path length in the ablation experiments.
The R-SAC algorithm without expert experience is relatively the longest path. Due to its
slow convergence speed, it may not converge to the shortest path in 20,000 episodes. The
algorithm without residual-like network and without multi-step TD-error mechanism lead
to a few steps difference from the complete algorithm. Although the gap is not large, the
number of steps is an important evaluation index for path planning problems. The gap of a
few steps determines whether the path is optimal, and reflects the performance gap of the
algorithm. Therefore, our proposed R-SAC algorithm with all improved mechanisms is an
efficient, safe, and stable path planning method.

Table 7. The steps and path length in the ablation experiment.

Algorithm Steps Path Length

w/o Expert Experience 192 967.56
w/o Residual-like Network 177 893.81

w/o Multi-step TD-error 174 876.42
Full 171 860.87

6. Conclusions

This paper focuses on the application of reinforcement learning algorithms in agri-
cultural scenarios, and completes the tasks of obstacle avoidance and path planning for
agricultural robots. In general, this paper proposes a novel R-SAC algorithm, which solves
the vanishing gradient problem and prevent the algorithm losing some state information
during the training process. This innovation improves the performance of the algorithm,
and enables the robot to have a stable performance with various target points in static and
dynamic scenarios. Secondly, this paper proposes a method that utilizes offline expert
experience for supervised learning, and uses the pre-training results as the initialization
parameters of the reinforcement learning network, which greatly improves the training
efficiency of the algorithm. In addition, this paper adds a multi-step TD-error mechanism
to the algorithm update, so that the robot has the ability to comprehensively consider
long-term feedback and adjust the policy flexibly. It is proved that our proposed method
is more stable and efficient by contrasting experiments with other algorithms. We also
conduct ablation experiments to analyze the various improved modules of the algorithm
to verify the effectiveness of these improved mechanisms. In future research, we will
further combine the real scenarios and robot control knowledge to make it closer to the real
applications, so that the algorithm can be implemented in physical experiments.

Author Contributions: Conceptualization, J.Y. and Y.L.; methodology, J.N.; software, D.C.; validation,
J.Y., J.N. and J.W.; formal analysis, Y.L.; investigation, J.N.; resources, D.C.; data curation, J.W.;
writing—original draft preparation, J.N.; writing—review and editing, J.Y., J.N. and J.W.; visualization,
J.N.; supervision, Y.L.; project administration, J.Y.; funding acquisition, D.C. All authors have read
and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China of grant
number 61871283.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Sensors 2022, 22, 4316 18 of 19

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Bolettieri, S.; Bruno, R.; Mingozzi, E. Application-aware resource allocation and data management for MEC-assisted IoT service

providers. J. Netw. Comput. Appl. 2021, 181, 103020. [CrossRef]
2. Guastella, D.C.; Muscato, G. Learning-based methods of perception and navigation for ground vehicles in unstructured environ-

ments: A review. Sensors 2020, 21, 73. [CrossRef]
3. Kim, W.S.; Lee, W.S.; Kim, Y.J. A review of the applications of the Internet of Things (IoT) for agricultural automation. J. Biosyst.

Eng. 2020, 45, 385–400. [CrossRef]
4. Wu, W.; Tang, T.; Gao, T.; Han, C.; Li, J.; Zhang, Y.; Feng, Y. Spectral diagnostic model for agricultural robot system based on

binary wavelet algorithm. Sensors 2022, 22, 1822. [CrossRef] [PubMed]
5. Gao, P.; Lee, H.; Jeon, C.W.; Yun, C.; Kim, H.J.; Wang, W.; Han, X. Improved position estimation algorithm of agricultural mobile

robots based on multisensor fusion and autoencoder neural network. Sensors 2022, 22, 1522. [CrossRef] [PubMed]
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