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This PLoS Computational Biology tuto-

rial was presented at ISMB 2008

This article describes the typical stages

in the analysis of microarray data for non-

specialist researchers in systems biology

and medicine. Particular attention is paid

to significant data analysis issues that are

commonly encountered among practition-

ers, some of which need wider airing.

The issues addressed include experimental

design, quality assessment, normalization,

and summarization of multiple-probe da-

ta. This article is based on the ISMB 2008

tutorial on microarray data analysis. An

expanded version of the material in this

article and the slides from the tutorial can

be found at http://www.people.vcu.edu/

,mreimers/OGMDA/index.html.

Introduction: Why Is Data
Analysis Still an Issue?

High-throughput methods are revolu-

tionizing biological research, and numer-

ous published articles describe innovative

insights obtained through analysis of

microarray data. Microarray technologies

are now available for measuring gene

expression, DNA copy number, methyla-

tion, chromatin state, protein binding,

SNPs, and other aspects of gene physiol-

ogy. To address the needs of many

biomedical researchers who do not often

have the resources to perform sophisticat-

ed data manipulation, several companies

and institutions have prepared pre-pack-

aged software to guide the researcher

through and perform all the steps of

standard microarray analysis. Commercial

packages include Genespring, Nexus (from

Biodiscovery), GeneSifter (from Geospiza),

Expressionist (from Genedata), Partek

Genomics Suite, and many others. Several

institutional packages are described at the

end of this article. With such packaged

software readily available, who really

needs to think about microarray analysis

or to collaborate with array analysis

specialists?

The premise of this review is that

innovative microarray analyses are rarely

straightforward and that most analyses

present problems and opportunities that

are not readily identified or adequately

addressed by packaged, comprehensive

software. For example, one common

problem in my experience is that com-

mon quality assessment (QA) practices

may be unable to eliminate all seriously

compromised chips. Furthermore, the

current best practices for expression

arrays don’t work well for many of the

new kinds of arrays (see Text S1, section

S2). Certainly, commercial software has

valuable uses; e.g., the quality and

flexibility of commercial graphics pro-

gramming for data visualization that

outstrips that of open-source software.

However, this review proposes a Malthu-

sian maxim for microarrays: that the

number of potential complications in

high-throughput biology grows exponen-

tially, while the expertise embodied in

packaged software has grown only linear-

ly. Thus, a researcher must know enough

about high-throughput methods to ascer-

tain when commercialized software can

be helpful and when an expert in micro-

array analysis should be consulted.

Most data analyses consist of the steps

outlined in Figure 1. This review will

follow these steps. The last two steps

(significance tests and biological interpre-

tation) and exploratory analysis are not

covered here. A complementary approach

to some of the early stages of a study was

presented recently in [1].

Experimental Design

Researchers know good data depends

on good experimental design. There are

several design issues that benefit from

statistical thinking, but the most promi-

nent issue is whether there will be enough

samples to find most of the genes that are

changed. Most researchers are aware of

the multiple comparisons issue; when they

perform a straightforward power calcula-

tion, they know to set the target signifi-

cance threshold much lower than it would

be for single tests. However, the actual

level of significance one would need to

detect a significant difference after stan-

dard Bonferroni multiple comparisons

adjustments to the p-value would be so

small that an experiment would require far

too many samples to be practical. For this

reason, in practice most researchers use

the false discovery rate (FDR) [2] to assess

significance in data analysis. It makes

sense, therefore, to perform power calcu-

lations using FDR, but such a calculation

is not so easy to perform. Another

approach to power estimation is to make

an analogy with published data to estimate

the power of one’s own study; such an

approach is implemented in the Micro-

array Power Atlas ([3] and http://www.

poweratlas.org).

A general principle of experimental

design is to make comparisons under

circumstances as closely matched as pos-

sible. A second issue that has tripped up

many researchers is that arrays processed

at different times or by different techni-

cians often show pronounced batch differ-

ences [4,5]. For example, there may be

different dynamic ranges in different

batches, or certain subsets of probes may

show greater signal independent of bio-

logical differences. Thus, it is important to

try to process all the arrays under as close

to identical conditions as possible, or, if

that is impossible, to randomize the

assignment of samples to processing times.
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Variations in ozone concentration make a

significant difference (R. Lucito, E. Ljung-

strom, personal communications; [6,7]).

In designing two-color array experi-

ments, the most common advice is to make

contrasts that are the most informative

[1,8]. Such a design helps to maximize the

information available in a fixed number of

arrays. For various reasons, such as flexi-

bility in the face of hybridization failures,

and in order to allow comparisons between

present and possible future experiments,

many experimenters choose to co-hybridize

both case/treatment and control samples

with a common reference sample. In

keeping with the general principle in the

previous paragraph, it is better not to co-

hybridize samples that are expected to

differ markedly, because extreme ratios of

gene expression, far from one, usually have

much larger errors. Therefore, if one is

using a common reference, it is better to use

a reference from a tissue similar to the

samples under study, rather than a refer-

ence from a different tissue.

Quality Assessment

Once an experiment has been designed

and performed, the next question is how to

decide which data are worth the effort to

analyze. Data are only as good as the

samples, and many researchers scrupu-

lously check RNA quality before hybrid-

ization. However, few researchers are able

to check the subsequent labelling and the

physical chemistry that occurs during

hybridization. In typical lab practice

focused on characterization of a single

gene, researchers draw on their experience

to optimize conditions for a particular

RNA target. However, it isn’t possible to

optimize conditions for all probes simulta-

neously on an array. Microarray measures

represent a dynamic balance among many

competing processes, and many factors

can shift these processes noticeably; for

example, the ratio of off-target hybridiza-

tion to true signal from each probe

depends on the relation among the

hybridization temperature, ionic strength,

and the thermodynamic characteristics of

the probe. Sometimes technical faults or

differences in technique peculiar to one

array can give very odd results without any

obvious indication in the QA metrics that

are routinely monitored in many labs. In

my experience with several labs at leading

institutions, arrays have slipped by with

particles of dust or scratches on a chip, air

bubbles in the hybridization, or wipe

marks (or even fingerprints!) on a glass

cover slip. These faults are often not visible

to the naked eye but can make a big

difference to data quality.

One general statistical approach to

address QA issues is to compare each chip

to an ideal reference and look for unusu-

ally large departures from the ideal that

seem correlated with known technical

variables [9–11]. In practice we don’t

know what the ideal reference values

should be, but for data sets drawn from

similar tissue types a robust mean of each

probe value across all arrays approximates

the ideal for that probe reasonably well. A

good way to look for technical faults is to

plot deviations of values on one chip from

their averages across many chips against

any technical variable [11]. For samples all

taken from one tissue type, most intensities

are roughly constant, and so average

probe intensity is a sensitive indicator of

probe saturation and quenching. Figure 2

shows a plot of log deviation against

average probe intensity. The average bias

is indicated as a function of intensity. Note

that the bias is very strongly negative for

the lower intensities; in fact, bias accounts

for much more difference from other chips

than all other sources of variation, which

includes biological differences. A well-

prepared array from an unusual sample

may well show substantial dispersion

around the bias curve, but the variation

in the bias curve will be smaller than the

standard deviation of the dispersion.

Some of the most striking images come

from representing variability across the

physical extent of a chip. Figures 3 and 4

Figure 1. Steps in a typical microarray
analysis.
doi:10.1371/journal.pcbi.1000786.g001

Figure 2. Plot of log ratio of intensity of an Affymetrix array. This plot represents
deviations of measures from chip GSM25526 (from GSE2552 in GEO) relative to the average across
all chips (on the vertical axis) plotted against that average (in log2 units on the horizontal axis) as
a technical variable. The black line indicates no trend; a loess fit to the trend is plotted in yellow.
Clearly, the deviation of the trend from 0 is bigger than the standard deviation of the variation
around the trend, a sign of a significant technical artifact.
doi:10.1371/journal.pcbi.1000786.g002
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show representations of variability across

the chip surface on an Agilent spotted

array and on an Illumina array. Figure S1

in Text S1 shows variation across spotted

arrays and on Affymetrix chips [9]. No

technology is immune from these kinds of

artifacts, although the measures from

multi-probe technologies, such as Affyme-

trix and Illumina, and to some extent

NimbleGen, are more robust to artifacts,

because many probes for a particular gene

will lie outside the area affected by a

regional artifact. A more sophisticated

approach to spatial variability, designed

specifically for Affymetrix arrays, uses the

idea of fitting a linear model to the profile

of each probe set separately. This ap-

proach eliminates from the QA metrics

differences between chips due to true

differences in gene expression, such as

those that occur in Figure 3. A ‘‘rogues’

gallery’’ of images from several public

Affymetrix data sets is at http://www.

plmimagegallery.bmbolstad.com/.

Numerous public domain tools exist for

quality assessment of array data. Bioconduc-

tor (http://www.bioconductor.org) features

several packages for Affymetrix, such as

affyQCReport, and for spotted arrays, such

as arrayQuality and arrayQualityMetrics.

Some code examples used in this paper will

be posted at http://www.people.vcu.edu/

,mreimers/OGMDA/index.html.

Normalization

Many researchers have tested reproduc-

ibility of array data by assaying the same

samples on the same platform at different

times or by employing different techni-

cians. The results are often unsettling;

when sample profiles from such studies are

compared, the technical differences are

often comparable to the biological differ-

ences [12]. Identification of key factors in

reproducibility is challenging because data

analysts generally don’t have access to

records of the procedures with sufficient

detail to identify crucial differences in

technique. And if such differences were

in fact known in advance, technicians

would attempt to minimize them. The

aim of normalization is to compensate the

measures for the effects of the differences

in procedures among the samples being

compared without delving into exactly

what the crucial technical differences

actually were.

A key decision researchers must make,

with consequences for normalization, is on

what scale to analyze their data. It is

common practice to transform to a

logarithmic (usually base 2) scale. The

principal motivation for this transforma-

tion is to make variation roughly compa-

rable among measures that span several

orders of magnitude. This often works as

intended; however, such a transformation

may actually increase variation of the low

intensity probes relative to the rest. In

particular, when a measure can be report-

ed as zero, the logarithm isn’t defined. A

simple remedy is to add a small constant to

the measures before taking the logarithm.

A more sophisticated approach is to use a

non-linear variance-stabilizing transform;

one such simple transform is f(x) = ln( (x+
(x2+c2)1/2/2), where c is the ratio of the

constant portion of the variance to the rate

of increase of variance with intensity. For

more details and options, see [13–15].

A second major decision is whether to

use a background compensation, and if so,

which method to use. Many assays in

molecular biology, including early radio-

activity-based array assays for gene ex-

pression, show an ubiquitous background

signal, onto which is added specific signal

from the gene of interest. The situation

with microarrays is more complex. Some

kinds of scanners and dyes clearly show

luminescence across the whole array that

seems to be added onto the signals. This

kind of background can be estimated from

non-probe areas of a chip nearby each

probe. In many other types of array, the

probes seem to be completely opaque and

do not return luminescent signal from the

same causes as the surrounding areas. In

most arrays, cross-hybridization to probes

(which depends on the probe sequence) is

a bigger source of background than any

uniform physical cause, such as may be

inferred from the areas surrounding each

probe. In my experience, it is rare that a

simple background correction brings a

substantial improvement in accuracy (as

measured, say, by similarity of replicate

chips). Similar results were found by [16].

However, sometimes background com-

pensation may be advantageous, and in

those cases some methods are better than

others (see [16,17] for more details).

Once decisions about scale and back-

ground are made, researchers often com-

pare the overall distribution of measures

on their chips. For microarray pioneers in

the late 1990s, the most obvious differenc-

es between chips were that some arrays

had much brighter scans than others.

These differences in measures seemed

most likely due to technical differences

during the procedures rather than whole-

sale changes in gene expression; such

differences could be explained by varia-

tions in the amount of cDNA that was

hybridized, by differences in the efficiency

of the labelling reaction, and/or by

different scanner settings. The simplest

compensation for such technical differenc-

es was agnostic about the cause of the

Figure 3. False-color images of an Agilent array (AG1-Lab2-C1 from the MicroArray
Quality Control project). Green pixels represent probes whose value on this array is close to
their average values across all samples. Red pixels represent probes whose values are more than
1.41 (square root of 2) times their average values across all samples, while dark blue pixels
represent probes whose values are less than 0.71 (reciprocal of square root of 2) times those
averages.
doi:10.1371/journal.pcbi.1000786.g003

Figure 4. False-color image of an Illumina array. Colors represent how the signal from a
particular bead deviates from the average signal from that bead type across the array. The color
scale is as for Figure 3.
doi:10.1371/journal.pcbi.1000786.g004
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difference: divide all the values on each

chip by the mean over that chip. This

normalization made the mean value of all

gene measures on each chip to be the

same; for two-color arrays, this normali-

zation made the average log ratio between

channels on the same chip to be zero.

Several variations on this procedure are

current: for example, Agilent recommends

that the 75th percentiles of intensity

distributions be aligned across arrays

[18]. This makes some sense if one thinks

that in a typical tissue about half the genes

are actually expressed; hence, the 75th

percentile would be the median of the

expressed genes. In our experience, align-

ing the 75th percentiles doesn’t actually

perform much better than aligning the

medians, and in fact loess or quantile

normalization (see below) are much better

[19,20].

The next development in array nor-

malization came in 2001 when Terry

Speed and co-workers noticed residual

bias in two-color log ratios depending on

average intensity; this bias could be seen

by plotting the log ratio (log(R)/log(G))

against the average brightness in the two

channels. The same bias can be seen in

one-color arrays by plotting the intensi-

ties on one chip against the intensities

averaged across chips as a reference as

shown in Figure 2. Terry Speed and co-

workers [21] proposed estimating the

bias by a non-parametric curve, known

as a local regression (loess). The values of

log ratios are adjusted by subtracting the

estimated bias (the height of the loess

curve) at the same average brightness.

Such treatment improves most chips but

cannot fully compensate for an extreme

intensity-dependent bias such as that

shown in Figure 2. The method intro-

duced in [21] is now known as ‘‘loess

normalization’’. Loess normalization op-

erates on chips individually, but was

intended to make measures comparable

across chips as well. Further investigation

identified some biases between chips.

Hence, there is now a distinction be-

tween ‘‘within-chip’’ and ‘‘between-

chip’’ (or ‘‘across-chip’’) normalization.

Often, within-chip normalization may be

a first step before, or a part of, between-

chip normalization.

By 2003, statisticians were developing

more complex normalizations. Some stat-

isticians noticed that there were pro-

nounced differences in the loess curves fit

to log ratios in different regions of the same

chip; they tried to fit separate loess curves to

each set of probes produced by a common

print tip of a robotically printed cDNA

array. Others tried to fit two-dimensional

loess surfaces over chips. Further compli-

cations included estimating a clone order

effect, and re-scaling variation within each

print-tip group [22,23]. In 2003, Benjamin

Bolstad, one of Terry Speed’s students,

proposed cutting through all the complexity

by a simple non-parametric normalization

procedure, at least for one-color arrays

[24]. He proposed shoe-horning the inten-

sities of all probes on each chip into one

standard distribution shape, which is deter-

mined by pooling all the individual chip

distributions. The algorithm mapped every

value on any one chip to the corresponding

quantile of the standard distribution; hence

the method is called ‘‘quantile normaliza-

tion.’’ This simple between-chip procedure

worked as well as most of the more complex

procedures that were current at the time,

and certainly better than the regression

method, which was then the manufactur-

er’s default for Affymetrix chips. This

method was also made available as the

default in the affy package of Bioconductor,

which has become the most widely used

suite of freeware tools for microarrays (see

http://www.bioconductor.org). For all

these reasons, quantile normalization has

become the normalization procedure

which I see most often in papers.

While quantile normalization is a sim-

ple, fast, one-size-fits-all solution, it engen-

ders some problems of its own. For

example, the genes in the upper range of

intensity are forced into the same distri-

bution shape; such shoe-horning reduces

biological differences as well as technical

differences. A recent adjustment to the

quantile procedure in the latest versions of

the affy package fixes that problem. A

second issue is more subtle. For reasons

that are still not entirely clear, the errors in

different sets of probes are highly corre-

lated [12,25]. For probes for genes that are

in fact not expressed in the samples under

study, these correlated errors comprise

most of the variation among chips. When

quantile normalization acts on these

probes, the procedure preserves this ap-

parent but entirely spurious correlation

among low-intensity probes and some-

times seems to amplify that correlation.

Hence, sophisticated data mining methods

that depend on subtle analysis of correla-

tions may pick up spurious relationships

[26]. Finally, quantile normalization ex-

plicitly depends on the idea that the

distribution of gene expression measures

does not change across the samples. This

assumption is unlikely to be true when

testing treatments with severe effects on

the transcription apparatus or studying

cancer samples with severe genomic

aberrations.

Despite these problems, quantile nor-

malization seems to offer the best mix of

simplicity and effectiveness of all the

general methods for normalization that

have appeared in the past six years [19].

It is widely used for multiple-probe oligo-

nucleotide arrays, such as Affymetrix

arrays, where it is applied at the probe

level. Some people apply quantile normal-

ization at the summary level for Illumina

arrays [27]. In my experience, a quantile

normalization of both channels in a two-

channel microarray is at least as good as,

and sometimes better than, the standard

loess normalization for these arrays. Per-

haps the next stage in normalization will

need to address the technical causes of

variation. Since each kind of technical

variation affects many probes, such an

approach may also address the problem of

spurious correlations.

Recently, several papers have appeared

that address the issue of identifying and

compensating batch effects. The comBAT

method [5] uses an empirical Bayes

methodology: that is, it assumes that the

batch effects induce fairly similar devia-

tions in the majority of genes. In my

opinion, such an assumption is too strong.

However, the author provides an easy

software package in R to implement the

method. The method of [28] allows for

substantially different effects in different

genes, and infers a batch structure, which

may reflect differences in processing un-

known to the data analyst. The paper [28]

provides some compelling examples in the

field of the genetics of gene expression,

showing that systematic technical effects

lead to the (false) impression of systemic

biological effects, unless some correction is

performed, and suggests a method for

addressing such effects. The method of

[29] infers covariates, which may be

affecting many genes simultaneously, using

an algorithm related to principal compo-

nents analysis (PCA).

All of these methods indicate a renewed

interest in addressing systematic variation.

While these papers do not describe their

methods for compensating systematic ef-

fects as performing ‘‘normalization,’’ that

is in fact what normalization is supposed to

do: compensate systematic technical vari-

ation. In my opinion, several methods

under development will make this ap-

proach even more effective and accessible.

Naturally, I think two good ones will be

[30,31].

Summarization

The original idea behind the multiple

probe oligonucleotide arrays manufactured
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by Affymetrix and NimbleGen is that many

probes targeting a single gene (a ‘‘probe

set’’) yield many measures; in principle, the

average of those measures should give a

better estimate of gene expression than any

single measure. The reality is more com-

plex, and statisticians have enjoyed consid-

erable debate over how best to construct

single expression estimates based on multi-

ple-probe hybridization data. All of these

debates presume that the probes in a probe

set match a common unique transcript. In

light of current knowledge about splice

variation and alternate termination, that

assumption seems unlikely to be true,

although both Affymetrix and NimbleGen

did make a reasonable effort to design

probe sets to match the specific splice

variants that were known at the time of

their chips’ design. Hence, the signals from

one probe set may not all measure the same

population of transcripts. One way a user

can assess whether this is the case is to plot

measures from all probes of one probe set

across a set of samples. In my experience,

about half the Affymetrix probe sets show

consistent changes of all probes in a probe

set across samples. In recent years, several

authors have attempted to remap Affyme-

trix probes to ensure that all probes map to

the same transcript [32,33].

The ‘‘multi-chip’’ methods, such as

RMA (Robust Multichip Average), are

summarization schemes inspired by study-

ing the covariation of probes in a probe set

across a set of samples [34–36]. The

motivation for multi-chip methods comes

from reasoning that the signal from one

probe in a probe set should depend both on

the amount of that transcript in the sample

and on the specific affinity of the probe for

that transcript. Therefore, although probe

signals may differ on any one chip, the

signal from each probe should change by

the same factor between chips where the

amount of transcript in the samples differs.

Comparisons of processing algorithms

for oligonucleotide data have shown that

the multi-chip methods, which employ

comparisons of probe signals across chips,

generally have the best signal-to-noise ratio.

There is still considerable debate over

exactly which multi-chip methods are

optimal. Rafael Irizarry has organized a

Web-based comparison tool, the AffyComp

project (http://affycomp.biostat.jhsph.

edu/ and [37]), based on high-quality

spike-in data sets published by Affymetrix.

In this comparison the gcRMA method,

which estimates the non-specific hybridiza-

tion background of each probe based on

sequence, comes out on top. In my opinion,

the very well-performed hybridizations

done in the manufacturer’s own facility

are not typical of results in most labs. In

particular, I see evidence that the pattern of

non-specific hybridization varies substan-

tially between chips in the same experi-

ment, for example by comparing the ratios

of PM and MM across chips. Furthermore,

when analyzing Affymetrix data produced

by typical core facilities, I often find more

variability between replicates when pro-

cessing the raw data by gcRMA than by

RMA. Therefore, I prefer to use the more

robust plain vanilla RMA.

Other Array Types

Many of the same issues (QA, normal-

ization, and summarization) arise for new

types of arrays; however, many of the

methods that have worked well for expres-

sion arrays don’t apply well to the new

array types. Some details of normalization

for several new array types are included in

the Text S1 section S2.

Next Steps

Most researchers want the chance to

explore their data, to discover unexpected

patterns beyond the ideas that informed the

study design. Two commonly used methods

are clustering and PCA. Clustering is useful

for discovering groups of genes with similar

expression patterns across a wide range of

biological conditions. Alternatively, cluster-

ing can be a first step toward identifying

molecular sub-types of a complex diagnosis

such as cancer [38]. Another exploratory

tool is PCA and its relative, correspondence

analysis [39,40]. These methods aim to

construct linear combinations of the vari-

ables (‘‘components’’) that can summarize

much of the information in all gene

measures across the samples. Space pre-

cludes an adequate discussion of these

approaches; for more information on

clustering, consult chapter 12 of [39] and

[41–43]. A nice package for multivariate

analysis specifically addressing microarray

data is MADE4 [44].

Often the goal of a study is either to

identify differentially expressed genes or to

make effective clinical predictions. Space

constraints prevent an adequate exposition

here of significance testing and the reader

is referred to [21,45–51].

There are a variety of important issues to

address in classification. Probably the best

single general reference on this topic is [52].

Prospects for the Next Five
Years

Both genomic technology and methods

for analysis are in rapid flux. Some issues,

such as normalization and summarization,

which are important for microarrays, may

be addressed by very different approaches

with the new technologies. Other issues

and approaches seem likely to be more

permanent, such as significance testing

and exploratory analysis.

Researchers are frequently interested in

biology that involves many types of mole-

cules, but DNA/RNA measures are the

most accessible with current technology.

So, when analyzing genomic data, many

researchers are looking at the shadows of

the biological processes of interest, e.g.,

protein activation, which may be better

reflected by another technology, e.g.,

protein arrays, when they become avail-

able. However, many of the same analysis

issues will arise when protein arrays finally

become operational. The technology will

be sufficiently different that we may need

some new methods for normalization.

However, it seems likely that many of the

methods worked out for assessing signifi-

cance of changes in genomic analysis will

apply directly to protein or other high-

throughput assays.

A current challenge for both basic

research and clinical investigation is the

integration of multiple data types: expres-

sion, genotype, and epigenetic data. All of

these may have relevance to predicting

clinical outcomes. A number of research-

ers are proposing methods for combining

these types of information [53].

Many researchers are enthusiastic about

the prospects for using high-throughput

sequencing (HTS) in genomic studies.

Some researchers expect that HTS tech-

nology will banish the shadows of technical

variability that have clouded microarray

studies. However, several studies suggest

that there is considerable technical vari-

ability even within the same lab [54], and

informal reports suggest considerable var-

iation between labs and between machines

in the same lab. Many of the data analysis

issues, which have arisen with microarray

technology, may be with us for a long time.

Practical Steps

If a researcher decides that in fact more

expertise is needed in experimental design

and subsequent analysis of array data, to

whom should she or he turn? Many

statisticians are becoming interested in

microarray data and may be able to give

advice on a project, or mentor a student

assistant. Furthermore, there is a great

deal of open-source and commercial

software for microarrays.

The largest single repository for open-

source software is the collection of Bio-

conductor packages [55,56] (http://www.
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bioconductor.org), which are written in

the R statistical programming language

(http://www.r-project.org). Several cours-

es on data analysis in R using the

Bioconductor tools are offered around

the world each year. Several commercial

software packages (e.g., GeneSpring) now

offer interfaces with Bioconductor. There

are also several freely available unified

suites of software, which include tools for

doing many of the functions described

here, including, TM4 (originally pro-

duced by The Institute for Genomic

Research, and now maintained by John

Quackenbush’s group at the Dana-Farber

Cancer Institute) at http://www.tm4.org;

BRBTools, maintained by the National

Cancer Institute (http://linus.nci.nih.

gov/BRB-ArrayTools.html); and GenePat-

tern from the Broad Institute (http://

www.broadinstitute.org/cancer/software/

genepattern/). The Robert S. Boas Center

for Genomics and Human Genetics pro-

vides a comprehensive survey of free

microarray software at http://www.nslij-

genetics.org/microarray/soft.html, and

Babru Samal maintains a list of free

and commercial software at http://

www.genetools.us/.

Supporting Information

Text S1

Found at: doi:10.1371/journal.pcbi.

1000786.s001 (0.31 MB DOC)
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