
ARTICLE

Sustainable scalable synthesis of sulfide
nanocrystals at low cost with an ionic liquid sulfur
precursor
Bin Yuan1,2, Timothy Karl Egner3, Vincenzo Venditti3,4 & Ludovico Cademartiri 1,2,5

Increasing the sustainability of nanocrystals is crucial to their application and the protection

of the environment. Sulfur precursors for their synthesis are commonly obtained through

multiple steps from H2S, only to be converted back to H2S during the synthesis of the

nanocrystals. This convoluted process requires energy, reduces yields, increases waste and

auxiliaries, and complicates recycling. Using H2S directly could drastically improve sustain-

ability, but is prevented by toxicity and handling. We here show that H2S is stabilized by

reaction with oleylamine (the most common and versatile ligand in nanoparticle synthesis) to

form an ionic liquid precursor that addresses all major principles of green chemistry: it is

made in one exothermic step, it leaves the reaction yielding a safer product and allowing the

separate recycling of the precursors, and it produces high quality nanocrystals with high

yields (sulfur yield > 70%) and concentrations (90 g L−1) in ambient conditions.
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Sustainability is an important and necessary driver for new
chemistry. For example, the translation of colloidal nano-
particles to technologies is limited by the poor sustainability

of their synthesis1–3. According to the principles of green
chemistry4, a renewable feedstock that leads to a product with
high yield and atom economy, with little to no waste, the smallest
number of steps, minimal processing and solvents, high-energy
efficiency and safety is always preferable5–7. Finding such a pre-
cursor for the synthesis of nanoparticles is very challenging8,9

because their size and shape have to be tightly controlled to yield
the desired physical properties. Therefore, less sustainable syn-
thetic approaches5,10,11 (e.g., high-temperature reactions12, reac-
tions carried out at low concentration (mM), non-stoichiometric
reaction mixtures13, size-selective precipitation14, terminating
reactions well before their completion15 due to ripening at low
supersaturation2) are usually used to obtain the desired particle
quality.

Efforts to find sustainable approaches to nanoparticle synthesis
(mostly oxides and metals, rarely other compositions11,16,17) have
focused on finding renewable feedstocks2,16–21. Other green
chemistry principles, such as reducing waste, recycling, improv-
ing yield and atom economy, and minimizing auxiliaries and
reaction steps have rarely been addressed13,22,23.

Hydrogen sulfide is the most abundant (and in part renewable)
sulfur feedstock24,25. Traditional precursors for the synthesis of
sulfide nanocrystals (e.g., elemental sulfur (S8), Bis(trimethylsilyl)
sulfide ((TMS)2S), thiols, xanthates, dithiocarbamates, thiourea,
substituted thioureas) are obtained from H2S through multiple
energy/material intensive steps26 (Fig. 1a). Usually through the
application of heat, these precursors release H2S during the
synthesis (and, if unreacted completely, during the purification
process), often together with a number of by-products.27–30 It has
been shown that H2S is the active sulfur source in several
syntheses2,31. In summary, a lot of energy and chemicals are used
to store H2S into a dirtier (but safer) precursor of itself, and to
convert it back to H2S to initiate the synthesis.

In this paper, we show how an ionic liquid precursor formed
from the reaction between H2S and oleylamine (OLA) addresses
all the most relevant green chemistry principles for the synthesis
of sulfide nanocrystals, and allows for a sustainable synthesis of
nanoparticles, from feedstock to product, in two synthetic steps
(Fig. 1a, b). It is worth pointing out that ionic liquids have shown

great potential in sustainable applications32–34, such as serving as
green solvents for synthesis and catalysis35–37. Here an ionic
liquid is used as a reaction precursor for the synthesis of
monodisperse colloidal nanocrystals38–43. Besides achieving sus-
tainable synthesis, this ionic liquid sulfur precursor also shows the
capability of synthesising metal sulfide nanocrystals under large
scale (i.e. liter scale and >100 g scale) and at low cost.

Results
Achieving a sustainable synthetic process using oleylammo-
nium hydrosulfide (OLAHS). H2S is commonly trapped and
stabilized in industrial processes by scrubbing it with amines to
form ammonium hydrosulfide salts44. By scrubbing H2S with
OLA—one of the most commonly used ligands in nanoparticle
synthesis45, and a biorenewable chemical—we discovered that the
resulting salt, OLAHS, is a stable, highly viscous ionic liquid that
forms exothermically and quantitatively. Using OLAHS as a
precursor releases H2S and OLA in situ. The former reacts or
leaves the system as a gas to be scrubbed back into OLA forming
new precursor. The latter acts as ligand and solvent. Therefore,
making OLAHS releases energy with high atom economy and
using it yields a cleaner product whose excess reagents can be
easily recycled (Fig. 1b).

Characterization and versatility of OLAHS. OLAHS can be
produced by bubbling H2S (either from a cylinder or produced in situ,
e.g., by a reaction between bulk metal sulfide ores with an acid) into
OLA. The reaction is exothermic (ΔH298

0=−93.05 kJmol−1 for
NH3+H2S=NH4HS46) and forms a stable, highly viscous fluid (it
flows readily above 35–40 °C; mesitylene or other organic solvents can
also be added to decrease its viscosity and facilitate handling at room
temperature).

Charge separation causes the appearance of a broad and weak
FTIR absorption shoulder at ~2520 cm−1 (Fig. 2a), which is
attributed to the ion NH3+…SH− 47, and of a weak peak at 2564
cm−1 attributed to S–H stretching vibration48,49. The symmetric
and asymmetric stretching vibration from the amine (νs(NH2)
and νas(NH2) at 3291 and 3374 cm−1) instead disappear47,50. A
10 min exposure to 120 °C or 10−3 torr results in the recovery of
the original amine vibration modes, indicating the dissociation of
the ionic liquid into H2S and OLA.
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The precursor is stable and yields highly reproducible
nanoparticle syntheses. Three days of storage in a closed vial at
room temperature did not change the FTIR spectrum of the
precursor (Fig. 2a). Reactions that used fresh and 3-day-old
OLAHS produced PbS quantum dots with closely matching
optical spectra (Fig. 2b) throughout the course of the reaction.
The difference in particle size between the two reactions was less
than 0.04 nm based on the absorption spectra while the sulfur
yield differed by 10.1% (mean). The sulfur yield (about 72.9%) is
comparable to or higher than the ones reported for other sulfur
precursors, e.g., (TMS)2S and sulfur51,52. The high stability and
reproducibility (also see Supplementary Figure 7) are of great
advantages over the most commonly used sulfur precursor S8/
OLA53.

The FTIR results are supported by 1H NMR data (Fig. 2c).
Upon charge separation, the proton peak from amine (~0.97
ppm) shifted downfield and broadened out (cf. Supplementary
Figure 1). Upon exposure to heat or vacuum, the signal from the
amine protons is recovered. The rapid release of H2S by vacuum

allows for the rapid termination of a synthesis, providing control
over the growth of the nanoparticles even at room temperature
(a major challenge with reactive, non-volatile sulfur precursors
like (TMS)2S) and greatly improving the safety of the reaction
mixture (traditional precursors, such as the commonly used
S8/OLA and (TMS)2S, if in excess, release H2S during the
purification steps).

OLAHS acts as an effective general sulfur precursor for the
synthesis of colloidal sulfide nanoparticles of various composi-
tions (PbS, Cu2S, ZnS, Au@Ag2S, CuInS2, Bi2S3), sizes (from 3 to
7 nm), and shapes (from spheres to rods to wires to janus
particles) (Fig. 2d) (cf. Supplementary Figures 2–5 for the x-ray
diffraction (XRD) patterns).

Using OLAHS allows for the recycling of excess precursors. At
high temperatures, the ionic liquid dissociates completely during
reaction and the unreacted H2S is released as a gas. FTIR spectra
show that crude reaction product (10 min at 120 °C) does not
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show absorption from NH3+…SH− bonds or from S–H bonds
(Fig. 3a). FTIR analysis of the volatile by-products (Fig. 3b)
identified them as a mixture of H2S and NH3 (present in OLA).

The lack of sulfur by-products is a very significant sustain-
ability advantage over other precursors, like S8/OLA, which
produce complex mixtures of chemicals27. OLAHS lead to the
formation of a minimal number of by-products, specifically (at
least for ionic metal precursors, like oleates, acetates, chlorides)
the conjugate acid of the metal precursor’s anion. Depending on
the choice of metal precursor, this by-product can be also
removed easily from the reaction mixture (e.g., HCl from PbCl2).
The spontaneous separation of the excess sulfur from the reaction
mixture and the minimal amounts of by-products allows for
ligands, excess metal precursors, and solvents to be easily recycled
and reused. Recycling, if not too resource intensive, is essential for
sustainability as it increases atom economy and reduces waste.
This is especially true for reactions, like most nanocrystal
syntheses, that are conducted with large excesses of one reagent13

and that are terminated before completion15. In the case of
homogeneous reactions, i.e., where the metal precursor is fully
solubilized, the mixture of unreacted precursor and ligands can be
replenished with fresh precursor and reused in the following
reaction. For example, Fig. 3c compares Cu2S nanocrystals

obtained from fresh and recycled mixtures of CuCl, OLAHS, and
OLA. The products have identical particle shape, and comparable
particle size and UV–Vis–NIR absorption spectrum.

In the case of heterogeneous reactions, i.e., where the majority
of the metal precursor is present as a solid23, recycling of the
unreacted metal precursor is even simpler: excess precursor is
recovered by centrifugation and reused. PbS nanocrystals with
low polydispersity (3.9 ± 0.3 nm) were synthesized in high sulfur
yields (~68%) by reacting a slurry of PbCl2 in OLA with OLAHS
(Fig. 3d). Recycled PbCl2 was used in a follow-up reaction leading
to monodisperse colloids of similar size and polydispersity (3.6 ±
0.6 nm) in similar sulfur yields (~73%).

Synthesis of metal sulfides nanocrystals under ambient con-
dition and large scale/high concentration. Besides minimizing
waste generation, carrying out syntheses under ambient condition
(in air, at room temperature) on a large scale, while minimizing
auxiliaries (here, minimizing the use of solvents) are essential
features of green chemistry processes. In nanocrystal synthesis,
these requirements appear to be mutually exclusive: increasing
the concentration of the product, usually requires high tem-
peratures, and reaction times (e.g., 180 °C for a few hours)13. To
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this day, even though some of the sulfur precursors are, in
principle, reactive enough for room temperature synthesis56–59,
they are too expensive ((TMS)2S), require time-consuming
energy-intensive steps to use ((NH4)2S56), or require inert
atmospheres ((TMS)2S57).

Several technologically relevant sulfides could be synthesized
with OLAHS in ambient conditions as high-quality nanocrystals.
Monodisperse Ag2S nanoparticles with a diameter of 8.5 ± 0.5 nm
were synthesized using OLAHS in ambient conditions using silver
nitrate as a metal precursor (Fig. 4a). The lack of a distinct
excitonic absorption peak in the UV–Vis absorption spectrum
(Fig. 4b) is consistent with previous reports60,61, while the XRD
pattern (Fig. 4c) is consistent with the acanthite phase of Ag2S.
Cu2S was also synthesized in ambient conditions with OLAHS
(Fig. 4d–f) using Cu(I) acetate as a metal precursor. Since Cu2S is
an indirect bandgap semiconductor, the UV–Vis absorption
spectrum (Fig. 4e) is featureless below ~600 nm, while the
absorption above 600 nm is due to a localized surface plasmon
resonance62. While Scherrer broadening prevents a conclusive
phase determination, the XRD pattern (Fig. 4f) best matches with
one of spionkopite phases.63 Synthesis in ambient conditions can

be further simplified by combining the synthesis of OLAHS with
the synthesis of the nanocrystals in one pot, i.e. combining H2S
with OLA in the presence of the metal precursor. Highly
monodisperse PbS nanocrystals (diameter 5.9 ± 0.3 nm) were
produced (Fig. 4g). This high monodispersity is attributed to the
high concentrations (0.864M of metal precursor) used for the
synthesis13. The UV–Vis–NIR absorption spectrum and XRD
pattern of the as-prepared PbS nanocrystals are shown in Fig. 4h,
i, respectively. Scaling this approach to a 1.18 L reaction volume
yielded 142.4 g of purified PbS nanoparticles (cf. Supplementary
Figure 8 for the TEM images). Excluding the weight of the ligand
(25 wt%, as determined by NMR) the net concentration of the
product was 90.2 g L−1. This concentration compares favorably to
the reported concentrations of metal chalcogenide nanoparticles
in crude reaction product from large-scale synthesis (180% higher
than the concentration51 from a reaction using (TMS)2S at 85 °C,
and 31% higher than the highest net concentration ever reported
(68.8 g L−1)13 (Fig. 4j).

Synthesis of metal sulfides nanocrystals at relatively low cost.
The commercial viability of colloidal metal sulfide nanocrystals is
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intimately connected to their synthesis cost64. Low synthesis cost
can be mainly achieved64 by (i) high-energy efficiency of the
synthetic procedure, (ii) low chemical/reagent cost, and (iii) low
labor cost. As shown above, this ionic liquid OLAHS sulfur
precursor provides high-energy efficiency because energy inten-
sive steps in making the sulfur precursor from H2S are avoided
(Fig. 1) and high temperatures and inert reaction conditions are
replaced with ambient condition (i.e. at room temperature in air).
Chemical/reagent cost, in principle, can be very low because this
sulfur precursor can be made in one step from the main feedstock
and reaction solvent can be very efficiently used via recycling and
high precursor concentration64. Lastly, high reproducibility (i.e.
robustness) of the synthetic procedure and large reaction scale, as
shown above, allow for the lowering of labor costs64.

In summary, we have demonstrated a simple solution to a
complex and long-standing problem in nanocrystal synthesis,
specifically the sustainable synthesis of high-quality colloidal
nanocrystals of chalcogenide phases. This approach fulfills all the
most significant principles of green chemistry, including high
atom economy and waste prevention through high reaction yields
and recycling, energy efficiency and minimization of derivatives
through the elimination of energy-intensive reaction steps, use of
renewable feedstocks by using H2S and OLA (both renewable),
minimization of auxiliaries through high precursor concentra-
tions and reduction of by-products, and accident prevention by
the facile and safe removal of H2S excess from the reaction
mixture. The work shows the potential of ionic liquids for the
stabilization of highly reactive, volatile precursors for sustainable
nanoparticle synthesis that can reach high yields, at high
concentrations and ambient temperatures, while reducing by-
products and enabling recycling. It also shows the potential of
ionic liquids for lowering the cost of colloidal nanocrystals and in
turn increasing their commercial viability.

Data availability
The data is available in the article, the Supplementary Information, and from the cor-
responding author upon request.
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