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Abstract.  The microtubule-depolymerizing drug 
Nocodazole has been used to experimentally manipu- 
late the form of PC12 neurites. Both time-lapse pho- 
tography and serial electron microscopy demonstrate 
that microtubule depolymerization leads to varicosity 
formation due to a clustering of membranous or- 
ganelles in young neurites (nerve growth factor acti- 
vated within 7 d). Neurites that have been nerve 
growth factor activated 7 or more d before Nocodazole 
application are resistant to microtubule depolymeriza- 
tion. These data and data from previous papers has 

been combined in an attempt to predict quantitatively 
the volume and the shape of a neurite. The relation- 
ship is described mathematically by Vn = 4.52 Vo + 
0.0054 MT/, where Vn is local neurite volume, Vo is 
organelle volume, and MT/is  MT length (the constant, 
0.0054 is lxm2), and 4.52 is the obligatory volume 
constant derived from serial electron microscopic 
studies. The equation predicts the total volume of 
neurites despite alterations of morphology due to No- 
codazole and despite changes in morphology during 
development. 

F 
OR over a century anatomists and physiologists have 

assumed that neuronal form and function must be 
related, but little was known about the actual cellular 

mechanisms responsible for the control of form. It has only 
become clear in the last decade that an internal "cytoskele- 
ton S consisting of neurofilaments, microtubules (MTs), ~ 
and a subcellular matrix was in some way responsible for 
neurite shape control (Lasek and Hoffman, 1976; Ellisman 
and Porter, 1980; Brady et al., 1984; Hirokawa, 1982; 
Schnapp and Reese, 1982; Yamada et al., 1971; Berthold, 
1978). In a previous set of papers we have refined this 
cytoskeleton concept by studying three-dimensional struc- 
ture of dendrites and axons (Sasaki et al., 1983, 1984; 
Jacobs and Stevens, 1983). We have suggested that the axial 
shape and neurite volume is largely controlled by four intra- 
cellular, variables: (a) the number and placement of or- 
ganelles within the neurite; (b) an obligatory volume con- 
stant associated with these organelles; (c) the number and 
distribution of MTs within the neurite; (d) the MT exclusion 
zone or what we believe corresponds to the size of the 
microtubule-associated proteins (MAPs). 

Other cytoskeletal components, such as intermediate illa- 
ments, undoubtedly contribute to shape control as well, par- 
ticularly in large peripheral axons (Hoffman et al., 1984), 
but much of our own past work suggests that in general, these 
four factors can be used to predict the shape and volume of 

1. Abbreviations used in this paper: AR, agmnular reticulum; EM, electron 
microscopic; MAP, microtubule-associated protein; MT, microtubule; 
NGF, nerve growth factor. 

most central nervous system neurites with a great deal of ac- 
curacy. We examine this possibility experimentally in the 
present paper. 

It is well known that the drug Nocodazole depolymerizes 
MTs in neurites (Solomon, 1980) and can be used to acutely 
alter the number of MTs in PCI2 cells (Jacobs and Stevens, 
1983). We use this drug to "perturb" the cytoskeletal shape 
control system of nerve growth factor (NGF)-activated PC12 
neurites. First, via time-lapse photography we have recorded 
the redistribution of neurite volume we predict should occur 
from acute MT depolymerization. Second, the treated mate- 
rial was fixed and through serial electron microscopic (EM) 
reconstruction, we quantified the relationship which the four 
key variables listed above have to these observed changes. 
These data and data presented in previous papers are then 
used to generate a comprehensive, quantitative model of the 
axial control of neurite shape that predicts axial volume quite 
accurately. 

Materials and Methods 

Materials and methods are as described in the previous paper (Jacobs and 
Stevens, 1986). To depolymerize MTs, Nocodazole (gift of Janssen Phar- 
maceutica, Beerse, Belgium) was used at a final concentration of 5 ttg/ml, 
diluted from stock solution of I mg/ml in dimethyl sulfoxide. Threshold for 
gross morphological response was judged by the generation of varicose neu- 
rites visible with the phase-contrast microscope. The threshold with 
Nocodazole varied from 0.5 to 5.0 ~tg/ml. Final dimethyl sulfoxide concen- 
tration was 0.5% or lower, well below threshold for disruption of axonal 
transport and ultrastructural effects (Donoso et al., 1977). The MT- 
depolymeriziog properties of Nocodazole are well documented. It was cho- 
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sen because it is as effective as other agents (Colchicine, Coleemid), while 
showing greater consistency and reversibility of effect (DeBrabander et al., 
1981; Jacobs and Stevens, 1983). Linear regressions are based upon Model 
one assumptions. These assumptions are as follows: (a) the independent 
variable is measured without error; (b) the dependent variable varies 
linearly with respect to the independent variable; (c) values are normally 
distributed; and (d) variance is independent of the magnitude of the vari- 
able. There were not enough data to fully test all these assumptions. 
Confidence limits for slopes and testing of hypotheses for equivalence of 
slopes are based on the t test statistic (Sokal and Rohlf, 1969). Volume data 
on all membranous organelle types were treated identically, based upon the 
results of Sasaki et al. (1984), which established the equivalence of all mem- 
branous organelle types in volume contribution to neurites. Serial EM and 
computer methods used are described in Stevens and Trogadis (1984). 

Resu l t s  

Nocodazole Treatment and Changes 
In Neurite Morphology 

When Nocodazole is added to NGF-activated PC12 cultures 
it induces neurites of uniform caliber to develop varicose ex- 

pansions connected by thin necks (Jacobs and Stevens, 1983) 
within a very short period of time. The threshold for this 
effect varies between 0.5 and 5 txg/ml. Varicosities appear af- 
ter 1-2 h at threshold doses, and sooner at higher doses. The 
Nocodazole effect on gross neurite shape is very pronounced 
with young (<7-d-old) neurites. This is shown in Fig. 1 
(bottom). 

In contrast, neurites that have been in NGF for >7 d seem 
to be less sensitive to Nocodazole. The gross morphology of 
mature neurites seems to be unaffected by Nocodazole treat- 
ment (Fig. 1, top). Consistent with the observations of the 
previous paper (Jacobs and Stevens, 1986), we will refer to 
the cells that have been in NGF for <7 d as immature and 
those that have been in NGF >7 d as mature. While this 
difference in Nocodazole sensitivity is of direct interest, we 
will examine it here primarily as a fortuitous control system 
for fixation, changes in osmolarity, and any other possible 
artifacts from drug treatment that might lead to neuritic 
shape changes. 

Figure 1. The effect of Nocodazole on gross neurite morphology. Light micrographs at left are typical views of differentiated PCI2 cells 
27 (top) and 6 (bottom) d after addition of NGE The same region is shown at right after 2 (top) or 4 (bottom) h in 5 ltg/ml Nocodazole. 
Bar, 1130 ~tm. 
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Direct EM Observations 

Fig. 2 illustrates the ultrastructure at the EM level of young 
neurites after Nocodazole treatment in longitudinal sections, 
and Fig. 3 compares immature and mature neurites in cross 
section after Nocodazole treatment. Young neurites contain 
numerous varicosities, which are filled with randomly 
oriented membranous organelles. The agranular reticulum 
(AR) is broken into an atypical wispy cobweb-like lattice 
(see especially Fig. 2 b and Fig. 3, a and b). Necks of young 
Nocodazole-treated neurites have few, if any, membranous 
organelles (Fig. 2). They contain many 10-nm filaments and 
occasionally a few MTs. In contrast, the ultrastructure of ma- 
ture neurites that have also been treated with Nocodazole ap- 
pears normal (Fig. 3, c-e). Neurite caliber is uniform, 
numerous MTs are found regularly placed within the neurite, 
and organelles are longitudinally oriented within the neurite. 

Quantitative Analysis of  Nocodazole-treated 
MT Exclusion Zones 

The MT exclusion cylinder is present in Nocodazole-treated 
neurites (Fig. 3). Histograms similar to those shown in the 
preceding paper (Fig. 6 in Jacobs and Stevens, 1986) are vir- 
tually identical to the normal. The average inter-MT distance 
for Nocodazole-treated neurites after 22 d in NGF (67 nm) 
or 6 d in NGF (71 nm) is not statistically different from nor- 
real (69 nm) (approximate t test for means assuming unequal 
variance). 

Organization of  Membranous OrganeUes 

MT depletion in Nocodazole-treated neurites is associated 
with massive spatial reorganization along the neurite length. 
Fig. 4 shows a serial EM reconstruction and complete vol- 
ume distribution analysis for a Nocodazole-sensitive neurite 
after 6 d in NGF. The necks between varicosities contain 
only 10-rim filaments, MTs, and very little AR. Most AR, 
and all other membranous organelles, are now found in vari- 

cosities. This is in contrast to untreated PC12 neurites (of. 
Fig. 8 in Jacobs and Stevens, 1986) where AR is nearly uni- 
formly distributed. A complete reconstruction of a Nocoda- 
zole-insensitive neurite (22 d in NGF, Fig. 5) shows a volume 
distribution indistinguishable from control neurites of simi- 
lar age. MT volume is the major component of neurite vol- 
ume and AR volume is uniformly distributed. 

Obligatory Volumes 

In the normal PC12 and other neurites we found a direct rela- 
tionship between organdie volume and varicosity volume. 
We call this excess volume associated with the organelles an 
"Obligatory Volume." In Nocodazole-treated neurites, large 
clusters of membranous organelles that result from MT 
depletion in PC12 neurites are associated with the creation 
of unusually large varicosities. 

We measured the total organdie volume and neurite vol- 
ume for seven Nocodazole-treated varicosities and carried 
out a regression analysis between these two variables. Vari- 
cosities with obvious breaches in the plasrnalemmal mem- 
brane were excluded from this analysis. Each micrometer of 
MT was attributed 0.0054 cubic micrometers of volume, 
which is 1.42 times the volume ofa 1-1xm length of MT exclu- 
sion cylinder (assumed diameter = 69 rim). A regression 
analysis was performed with this data and the membranous 
organelle volume for each corresponding neurite region. 

The regression analysis (least squares method) is summa- 
rized in Fig. 6. Neurite volume (Vn) is 4.43 times organelle 
volume (I/b) (r = 0.96, n = 7, 90% confidence limits are 4.43 
+ 0.51). In Nocodazole-treated neurites, clusters of or- 
ganelles are associated with an additional neurite volume 
that is 4.4 times that needed to enclose the organelles. As in 
the normal PC12 neurites there is a very tight correlation be- 
tween the local neurite volume and the local organelle vol- 
ume. The normal neurite obligatory volume (Vn) is 4.52 
times organelle volume (I/b) (r = 0.998, n = 17, 90% 
confidence limits are 4.52 + 0.37). The slope for the volume 

Figure 2. Nocodazole-sensitive neurites in longitudinal section, a and b are from neurites after 6 d of NGF exposure, treated with 5 gg/ml 
Nocodazole for 1 h. Bar, (a) 2 gin; (b) 0.2 gm. 
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Figure 3. Typical cross sections of Nocodazole-treated neurites, a and b are neurites treated for 1 h with 5 ttg/ml Nocodazole, 6 d after 
NGF induction, a contains cross sections through both a neck and a varicosity of MT-depleted neurites. (c-e) Nocodazole-treated neurites 
22 d after NGF induction, showing a normal complement of neuritic MT. Bar, (a and b) 0.5 gm; (c-e) 0.2 ttm. 

regression from Nocodazole-treated neurites (4.43) is not 
statistically different from the slope for normal neurites (two- 
tailed t test, P > 0.5). 

Discussion 

Microtubule Contribution to Neurite Shape 

Many workers have suggested that MTs are a direct contribu- 
tor to axon caliber (Friede and Samorajski, 1970; Zenker and 
Hohberg, 1973; Nadelhaft, 1974; and Berthold, 1978) and 
dendrite caliber (Sasaki et al., 1983, 1984). As discussed in 
previous papers (Sasaki et al., 1983, 1984; Jacobs and 
Stevens, 1986), MTs are associated with a cylindrical volume 
component which other organeUes do not penetrate. This is 
called the MT exclusion cylinder. The size of the cylinder 
does not vary in size during development. MTs that survive 
Nocodazole treatment seem to have an unaltered MT exclu- 
sion cylinder. As MT distribution is uniform along neurite 

length, MT volume is also distributed uniformly along the 
length of the neurite. Regions of neurite which contain only 
MTs are regions of minimum neurite caliber. Though MT 
exclusion cylinders are likely the physical basis of MT con- 
tribution to neurite caliber, the real volume is 42 % beyond 
the summed MT exclusion cylinder volumes. This is at- 
tributable to volume trapped by packing of MT exclusion 
cylinders. Ideally, if the MTs were straight tightly packed 
cylindrical tubes, it would represent the maximal packing 
configuration and would trap only an extra 16 % of volume. 
We suspect that since the MTs are not straight cylinders, and 
in fact tend to weave between each other, the remaining extra 
volume is simply due to deviation from this ideal packing 
conformation. 

In the preceding paper (Jacobs and Stevens, 1986), it was 
noted that young neurites with few MTs contained organelles 
with variable shape and orientation, while mature neurites, 
containing many more MTs, have membranous organeUes 
with a longitudinal orientation along the same axis as the 
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Figure 4. Regional volume 
distribution in a Nocodazole- 
sensitive neurite. (i~p) Com- 
puter plot of all neuritic com- 
ponents of a complete 6-~tm 
reconstruction of a neurite 
from a PC12 cell after 6 d of 
NGF induction and 1 h of 5 
Izg/rnl Nocodazole treatment. 
(Bottom) Cumulative plot of 
neurite contents, beginning 
with microtubules (MT), fol- 
lowed by all membranous or- 
ganelles (OR), and finally 
plasmalemmal volume (N). 
Abscissa: length along the re- 
construction. Ordinate: total 
volume of reconstructed ele- 
ments for each section in the 
series. 

MT. When MT number is depleted with Nocodazole, the 
longitudinal orientation of  membranous organelles is lost. 
Without MTs, the organelles will cluster together and form 
large irregular varicosities similar to those in the immature 
neurites but larger with many membranous organelles found 
in any shape or orientation. 

Developmental Microtubule Stability 
and Morphological Stability 

MTs from different cytoplasmic regions, or even within the 
same region differ in their stability to cold or Colchicine 
(Jones et al., 1980; Black and Greene, 1982; Brady et al., 
1984). MTs in young neurites are vulnerable to depolymer- 
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Figure 5. Regional volume 
distribution in a Nocodazole- 
insensitive neurite. A com- 
plete reconstruction of a neu- 
rite after 22 d in NGF and 1 h 
in 5 ~tg/ml Nocodazole is 
shown on top. Below is a plot 
of the regional distribution of 
plasmalemmal and organelle 
volume over neurite length. 
Membranous organelle vol- 
ume graph has been added to 
MT volume. Axes as in previ- 
ous figure. 
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ization by Nocodazole, while MTs in mature neurites are 
not. Other workers have noted that MTs stable to cold or Col- 
chicine are not present early in neuronal differentiation but 
do appear later in development (Daniels, 1975; Mareck et al., 
1980; Black and Greene, 1982). Our own results also show 
that the MTs found in mature neurites are far less sensitive 
to Nocodazole depolymerization than immature neurites. It 
is interesting that this change in sensitivity correlates well 
with changes in the behavior of the neurites as seen with 
time-lapse photography (Jacobs, 1985). In the early stages of 
differentiation, the neurites are highly labile and mobile, un- 
dergoing frequent extension and retraction. In the later 
stages of differentiation, (>8 d) they become quite stable 
with greatly reduced mobility. 

Quantitative analysis at the serial EM level shows no 
change in MTs themselves or the MT exclusion cylinder that 
correlates with a change in MT stability. Yet, these results 
and the results of others show clear developmental differ- 
ences. One possiblity is that the MTs in mature neurites are 
stable simply because they are packed more closely in arrays. 
A second possibility is that some direct biochemical changes 
take place. It has been demonstrated that the presence of MT- 
associated proteins (MAPs) on MTs confer stability to depo- 
lymerization (Schliwa et al., 1981)• Some MAPs preferen- 
tially associate with segments of MTs that are more labile to 
cold (Tytell et al., 1984). Cold insoluble MTs from retinal 
ganglion cell axons are composed of different tubulin iso- 
types than cold labile MTs (Brady et al., 1984). Different iso- 
types of MAPs and tubulins are expressed at different times 
in development (Francon et al., 1982; Ginsberg et al., 1983) 
and are produced in different amounts during differentiation 
(Feinstein et al., 1984). There is growing evidence, there- 
fore, that regional specialization in MT or MAP structure 
can be a variable in the development of axons. It is possible 
that a change in composition of the MT or the MT exclusion 
cylinder (e.g., a change in MAPs), not detectable from elec- 
tron micrographs, will modify the stability of MTs during de- 
velopment. This is a subject for further study at the biochem- 
ical level. 

The Cytoplasmic Matrix 

These results may at first seem inconsistent with other 
reports of a structural cytoskeletal matrix of actin filaments 
filling the spaces between organelles (Ellisman and Porter, 
1980; Schnapp and Reese, 1982; Stossel, 1984). A view con- 
sistent with these data is simply that these actin filaments are 
not structural in the sense that they create or control neurite 
shape, but rather they may represent an active fill that oc- 
cupies the volume controlled by and surrounding the or- 
ganelles. 

Important to this point is the observation that our obliga- 
tory volume differs from the exclusion zone of the MT in a 
fundamental way. The obligatory volume is a volume as- 
sociated with the organelle-it  is not a region or zone sur- 
rounding the organelle. For example, two organelles often 
come into close contact with each other (e.g., Figs. 2 and 3), 
and in many cases membranes may actually touch. When 
this occurs, their obligatory volumes simply add to create a 
larger total obligatory volume. This total obligatory volume 
simply surrounds the two organelles and is freely penetrated 
by MTs and intermediate filaments as well as other organ- 
elles. In contrast, the MT exclusion zone represents an abso- 
lute region surrounding the MT that can never by impinged 
upon by another organelle, or another MT. 

A second important point comes from recent work with 
enhanced video methods. Several workers have demon- 
strated that organelles are moved along MTs (Brady et al., 
1985; Schnapp et al., 1985). Additionally, time-lapse obser- 
vations of non-experimental living material show that over 
a period of several hours, varicosities often move along the 
length of a neurite (Jacobs, 1985; and our personal observa- 
tion). Upon fixation we find without exception, organelles 
associated with these moving varicosities. In the present 
study we have observed (Fig. 1) the active redistribution of 
volume as the MTs depolymerize and as the organelles move 
to form varicosities. 

Thus, in simple mechanical terms, it would appear as if 
the cytoplasmic matrix that presumably occupies this obliga- 
tory volume is being moved or dragged along with the or- 
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l~gure 7. Three-dimensional plot of neu- 
rite volume predictions. Actual values of 
total neurite volume (Vn) from recon- 
structions (boxes) and the predicted value 
for the same reconstruction based upon 
the equation Vn = 4.52 Vo + 0.0054 MTI 
(stars) are plotted together in this three- 
dimensional graph. Microtubule length 
(MT/) is the X-axis, organdie volume 
(l/b) is the Y-axis (depth), and neurite vol- 
ume is the Z-axis (height). 

ganelle. The interesting question raised by this suggestion is 
how do the organelles actually control the total volume and 
the distribution of the matrix? We discuss one possibility in 
the following section. 

Membranous Organelle Contribution 
to Neurite Shape 

The Nocodazole-treated neurites make it posssible to exam- 
ine the influence of membranous organelles on neurite shape 
in isolation from the MT contribution. In neurites without 
any MTs, or reduced numbers of MTs, neurite volume is ex- 
clusively associated with clusters of membranous organdies. 
As we have shown previously (Sasaki et al., 1983, 1984; 
Jacobs and Stevens, 1984, 1985), the neurite volume is much 
higher than that necessary to enclose the organelles. There 
is, in addition, a tight correlation (r = 0.959) between neu- 
rite varicosity volume and the total volume of organelles in 
the varicosity. The slope of the correlation for normal neu- 
rites of 4.52 is not statistically different from the slope of the 
regression for Nocodazole-treated neurites of 4.43. Addi- 

tionally, as demonstrated in the preceding paper, the volumes 
of mature neurites and immature neurites show identical 
correlations with organelle volume. 

Sasaki et al. (1984) demonstrated that the cytoplasmic vol- 
ume associated with membranous organelles was always 
present in proportion to the volume of organdie. The basis 
of this quantitative dependence was suggested to be osmotic, 
because it seems to be rapid (i.e., it moves with organdie) 
and ubiquitous, and because membranous organdies are 
known to sequester ions such as calcium (Alnaes and Ra- 
hamimoff, 1975; Blaustein et al., 1978). It is well known that 
other systems such as the red blood cell (Ganong, 1971) go 
through very rapid, major shape changes due to simple shifts 
in distribution of ions that result in osmotic swings. Release 
of a solute from membranous organelles might result in a lo- 
cal influx of water, to maintain osmotic equilibrium. This 
might generate a swelling of the neurite around the organelle. 
One possibility is that the actin filaments contained in the 
cytoplasmic matrix expand and contract to fill this osmotic 
volume. These suggestions require further testing before se- 
rious conclusions may be drawn. 
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It is interesting that the relationship between membranous 
organdie volume and its associated neurite volume does not 
change in PCI2 neurites, with Nocodazole treatment or de- 
velopment. Sasaki et al. (1984) encountered different slopes 
for the relationship between organelle volume and neurite 
volume for different amacrine cell types. Thus, it appears 
that this relationship might be a cell-specific phenotype that 
is invariant within a given cell type. 

A Simple Model  

In our original concept that the four basic factors, MT num- 
ber, MT exclusion zones, organdies, and organelle obliga- 
tory volume are responsible for shape control in neurites is 
valid, we should be able to create a simple linear equation 
that accurately predicts total neurite volume under all condi- 
tions. Specifically: Ph = OC × Vo + MTc x MTI where, 
Vn is the volume of the neurite, OC is the obligatory constant 
for the organelles or 4.52, Vo is the total organelle volume, 
MTc is the equivalent cylinder of the microtubules computed 
as 0.0054 ttm 2 per unit length, and MT/is the total length of 
microtubules in micrometers, or: Vn = 4.52 Vo + 0.0054 
MT/. As a test of this equation we took organelle volume and 
MT length data from all complete reconstructions of normal 
neurites from this study and the data from the preceding pa- 
per and these were used to calculate a predicted total neurite 
volume. The results were then plotted and compared to the 
actual volumes in a three-dimensional graph (Fig. 7). As Fig. 
7 illustrates, predicted values are very close to the original 
data. The calculated error from the predicted values (S~/n-1 
= 0.1863) can be compared to the error term from the linear 
regression (s = 0.2213) in a standard Ftest  statistic. The er- 
ror terms are not statistically different (P > 0.5), which 
strongly supports the suggestion that the neurite volume 
equation adequately describes the real data. 

Thus, given these constants for a specific cell type it is pos- 
sible to predict cell volume and shape, given only the number 
and distribution of microtubules and the organelle volume. 
It is important to point out that this model will work only for 
small neurites that do not contain intermediate filaments. A 
more general equation would also include a term for inter- 
mediate filaments. 

Summary 
Using the MT-depolymerizing drug Nocodazole, we have 
experimentally manipulated the form of PC12 neurites. Both 
time-lapse photography and serial EM demonstrate that MT 
depolymerization leads to varicosity formation due to a 
clustering of membranous organelles in young neurites 
(NGF activated within 7 d). Tests on older neurites do not 
lead to pronounced varicosities. These data and data from 
previous papers has been combined in an attempt to predict 
quantitatively the volume and the shape of a neurite. The 
relationship is described mathematically by Vn = 4.52 Vo + 
0.0054 MT/, where Vn is local neurite volume, Vo is organelle 
volume, and MT/ is MT length (the constant, 0.0054 is 
l~m2), and 4.52 is the obligatory volume constant derived 
from serial EM studies. The equation predicts the total vol- 
ume of neurites despite alterations of morphology due to 
Nocodazole and despite changes in morphology during de- 
velopment. 
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