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Marco Sealey-Cardona, Dorothea Anrather, Wiktor Kozḿinśki, and Robert Konrat*

Cite This: Biochemistry 2021, 60, 1347−1355 Read Online

ACCESS Metrics & More Article Recommendations *sı Supporting Information

ABSTRACT: Protein phosphorylation is an abundant post-trans-
lational modification (PTM) and an essential modulator of protein
functionality in living cells. Intrinsically disordered proteins (IDPs)
are particular targets of PTM protein kinases due to their
involvement in fundamental protein interaction networks. Despite
their dynamic nature, IDPs are far from having random-coil
conformations but exhibit significant structural heterogeneity.
Changes in the molecular environment, most prominently in the
form of PTM via phosphorylation, can modulate these structural
features. Therefore, how phosphorylation events can alter
conformational ensembles of IDPs and their interactions with
binding partners is of great interest. Here we study the effects of
hyperphosphorylation on the IDP osteopontin (OPN), an
extracellular target of the Fam20C kinase. We report a full characterization of the phosphorylation sites of OPN using a combined
nuclear magnetic resonance/mass spectrometry approach and provide evidence for an increase in the local flexibility of highly
phosphorylated regions and the ensuing overall structural elongation. Our study emphasizes the simultaneous importance of
electrostatic and hydrophobic interactions in the formation of compact substates in IDPs and their relevance for molecular
recognition events.

Protein phosphorylation is an abundant post-translational
modification that adds an extra layer of complexity to the

regulation of cellular fate, particularly in intrinsically disordered
proteins because of their inherent accessibility.1 Regulation of
cellular signaling by phosphorylation is associated with
conformational changes2−7 and modulation of binding events8,9

and, recently, has been linked to the formation of membraneless
organelles.10

The extracellular matrix (ECM) contains a large fraction of
phosphorylated proteins, and many of them have been observed
in breast and lung cancer samples.11−13 Among these ECM
proteins, osteopontin (OPN) and caseins have the highest
fractions of potential phosphorylation sites.12 OPN, also known
as secreted phosphoprotein 1 (SPP1), is a secreted extracellular
protein that exerts its functionality by binding to integrin and
CD44 receptors and is reported to be implicated in apoptosis,
wound healing, inflammation, tumor growth, tumor progression,
and tumor metastasis.14−16 It is tightly regulated by glyco-
sylation, phosphorylation and cleavage,17,18 and is secreted in its
unphosphorylated19 or phosphorylated20 form. Human OPN is
mainly phosphorylated by Fam20C (67% of the reported
phosphorylated sites).21,22 Fam20Ckinase is located in theGolgi
lumen and responsible for most of the phosphorylation in the
ECM. It recognizes primarily a S-x-E/pS motif but also shows a
certain promiscuity with respect to other amino acidmotifs (e.g.,

T-x-E or S-x-D).21 OPN contains 28 potential Fam20C specific
motifs, causing≤14% of the residues being phosphorylated. The
degree of OPN phosphorylation has been associated with Raine
syndrome, a rare disease characterized by generalized osteo-
sclerosis with periosteal bone formation, characteristic facial
dysmorphism, brain abnormalities, including intracerebral
calcifications, and in some cases neonatal death.13,23,24 Its
abnormal phosphorylation patterns are directly connected to
Fam20C mutations. Furthermore, the phosphorylation of OPN
regulates its binding interaction with hydroxyapatite and hence
the formation and growth of the mineral phase in bone
material,25−31 as well as bone remodeling and calcifica-
tion.13,28,32,33 On top of that, ECM phosphoproteome
homeostatis, in particular OPN phosphorylation, has been
associated with tumor cell progression,34 macrophage migra-
tion,35 and host−cell interactions.36
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Nuclear magnetic resonance (NMR) spectroscopy has
matured into an exquisite tool to tackle PTMs and to study
the structural dynamics of the protein of interest under nativelike
conditions.37−44 Although denaturing conditions have been
particularly useful for characterizing modified sites,43,44 it is
important to take into account the fact that the conformational
ensembles of IDPs are drastically affected by the presence of
denaturing agents, as IDPs are far from being merely unfolded.45

With respect toOPN, several important features that account for
the modulation of compaction, binding and function of the
unphosphorylated form have been identified.46−48 Here, we
present an NMR-based strategy for structurally characterizing

the fully phosphorylated protein and the dynamics of the
hyperphosphorylatedOPN. For this purpose, a stableHEK293T
cell line expressing Fam20C was used to obtain the pure
functional kinase.21 The degree of phosphorylation and the
homogeneity of the modified phospho-residue patterns were
optimized in a controlled in vitro reaction. NMR signal
assignment experiments reveal a downfield shift of a majority
of the serine and individual threonine 1HN NMR signals due to
intraresidue hydrogen bonding between the phosphate and
backbone amide groups in unstructured regions.49 The
experimental NMR data set is complemented by a mass
spectrometry (MS) analysis. The putative biological relevance

Figure 1. Scheme of OPN residues phosphorylated in vitro by Fam20C, identified by MS and NMR spectroscopy. White circles represent previously
identified phosphorylation sites.21,22 Blue and red circles indicate the phosphorylation sites newly identified by MS and NMR spectroscopy,
respectively. The blue and red bars indicate the coverage of MS and HN NMR assignments, respectively.
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of these findings is outlined with studies of the interaction with
heparin and hyaluronic acid, which are present in proteoglycans
and the ECM, and the comparison of our results to reported
affinities for integrin receptors, natural binders of OPN.

■ RESULTS

NMR/MS-Based Phosphoprofiling of OPN.A highly pure
unphosphorylated 13C/15N Homo sapiens OPN was expressed

recombinantly in Escherichia coli (Figures S1 and S2). The
functional wild type (wt) and D478A (kinase-dead mutant)
Fam20C kinases were expressed in HEK293T stable expression
cells (Figure S3). The in vitro phosphorylation reaction of OPN
was optimized from previously reported conditions13 (see the
Supporting Information for detailed method protocols). A
combined approach using MS and NMR spectroscopy was
carried out for the identification of the phosphorylation sites.

Figure 2.NMR fingerprint of OPN hyperphosphorylation. (A) 1H−15N HSQCNMR spectra of OPN before (black) and after (red) phosphorylation
by Fam20C.Note howmany serine residues [δ (15N)≈116 ppm] experience a downfield shift in the 1H dimension. (B) Close-up of the serine region of
1H−15N HSQC NMR spectra of OPN before (black) and after (red) phosphorylation by Fam20C. The protein sequence with the S-x-E/pS sites
colored red is shown in the top left corner. The signal peptide, which is not present in our construct, is colored gray.

Figure 3. 15N NMR relaxation data of OPN (A) before and (B) after phosphorylation, measured at 18.8 T. A charge plot of the protein sequence is
shown at the top. Yellow circles indicate the identified phosphorylated residues. 15NR1,

15NR2, and
15N−{1H}NOE relaxation parameters, from top to

bottom, respectively, of OPNmeasured at 293 K. Error bars indicate the fitting errors (15N R1 and
15N R2) and the error propagation of intensity ratios

based on the noise level (hetNOE).
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The results are summarized in Figure 1. The total sequence
coverage of the MS/MS experiments is 68.5%, and 28
phosphorylation events are identified (see Figure S4). Among
them, 17 of the 22 canonical motifs are found to be
phosphorylated (S24, S26, S27, S62, S63, S195, S224, S234,
S254, S263, S270, S275, S280, S291, S303, S308, and S310). A
plausible alternative motif (T-x-E) is also found to be
phosphorylated in position T185. Other phosphorylated
residues do not follow the mentioned motif, although some of
them were found to be phosphorylated in mammalian cells21 or
bodily fluids (milk)22 (Figure S5), suggesting a certain
promiscuity of the kinase and/or the activity of other unreported
kinases.21

Among those (e.g., S162, Y165, and S169), previously
unreported sites are reliably identified by MS on peptides
GDSVVYGLR and GDSVVYGLRSK. The fragment pattern is
continuous and shows the properties of phospho spectra.
Resonance assignment by NMR spectroscopy was achieved for
78.7% of all HN signals (deposited in the BMRB50 as entry 50447
and Table S1). Twenty-eight phosphorylation events are
identified on the basis of the 1HN downfield shifts (Figure 2).
Twenty of the 22 canonical phosphorylation motifs are found to
be phosphorylated (S24, S26, S27, S62, S63, S78, S81, S120,
S126, S129, S195, S224, S234, S254, S263, S270, S275, S280,
S308, and S310), and four noncanonical but plausible
phosphorylated motifs (T185, T-x-E; and S99, S105, and
S108, S-x-D), previously also found in phosphorylated OPN
extracted from milk.22 The four remaining phosphorylated
residues display a noncanonical phosphorylation motif. Some of
these noncanonical phosphorylations are identified both by MS
phosphomapping and NMR assignment [S191, S215, S228, and
S258 (see Figure 1 and Figure S5)].
Phosphorylation Increases Local Flexibility in OPN.

NMR observables such as chemical shifts or 15N relaxation rates
are very informative for IDP structural dynamics.51,52 Possible
changes in the structural dynamics of the protein were studied by
a series of 15N relaxation experiments (Figure 3).
The 15N R1 patterns of both unphosphorylated and

phosphorylated OPN show similar features, however with
systematically larger R1 values for the modified protein.
Interestingly, 15N R2 values of the residues in the second half
of the protein (residues 200−314) decrease for the phosphory-
lated form, while fast NH vector motions are retained, as
measured with 15N−{1H} NOE relaxation experiments. Overall,
the region of residues 200−314 experiences an increase in
backbone dynamics on the nanosecond time scale while faster
picosecond time scale motions are nearly unaffected. In
summary, the experimental data suggest enhanced dynamics in
protein segments that comprise the majority of the phosphor-
ylation sites. Further analysis, e.g., by applying the model free
approach, was not pursued because connections between the
measured phenomenological relaxation rates and the motions of
a protein are far from trivial, especially for IDPs, where
experimental rates are a mixture of polymer-like properties and
non-uniform chain behaviors caused by secondary structure
propensities, residue-dependent motions, and long-range
correlated segments.53

Phosphorylation Induces Structural Elongation of the
Main Compact State in OPN. Long-range structural contacts
in unphosphorylated (Figure 4A) and hyperphosphorylated
OPN (Figure 4B) were probed bymeasurements of PRE profiles
for several cysteine mutants for unphosphorylated OPN, while
the hyperphosphorylated state of OPNwas probed using the two

representative cysteine mutants D130C and T185C. In total,
nine cysteine mutants were studied for the unphosphorylated
OPN, which is necessary to overcome the intrinsic limitations of
PRE measurements due to the r−6 averaging and to achieve a
proper modeling of the long-range contacts, as shown else-
where.54 Importantly, 1H T2 rates were measured instead of
intensities, which adds a certain robustness to the experimental
PRE data of IDPs. It is important to note that in the case of IDPs
the measured R2 rates are the weighted population average, and
therefore, conformations with greater R2 enhancements will be
heavily weighted even if they are scarcely populated.55 A

Figure 4. Effect of phosphorylation on long-range interactions
measured by PRE experiments. (A) 1HN Γ2 PRE profiles of different
OPN cysteine mutants obtained from 1HN T2 NMR experiments. (B)
1HN Γ2 PRE rates of the phosphorylated OPN mutants D130C (top)
and T185C (bottom) determined from 1HN T2 NMR experiments. (C)
Plot of the PRE rate difference of OPN and phosphorylated OPN
mutants D130C (top) and T185C (bottom). Orange bars indicate the
respective mutated cysteine residue with the attached spin-label.
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comparison of the PRE profiles obtained for cysteine mutants
D130C and T185C clearly shows a striking reduction of long-
range contacts within the central compact core region (residues
120−250), at the N-terminal region around residues 25−30, and
within the whole C-terminus of the protein, while most of the
negatively charged regions remain unaffected (Figure 4C). To
conclude, our data suggest a significant structural elongation of
OPN due to hyperphosphorylation, accompanied by an increase
in local flexibility in the C-terminal region (residues 200−314)
that is particularly rich in phosphorylation sites.
Decrease in the Binding Affinity for Heparin Due to

Phosphorylation while Retaining Striking Carbohydrate
Specificity. The binding of OPN to heparin, a chemical mimic
of the natural glycosaminoglycan heparan sulfate (HS) in the
ECM, was investigated by a series of titration experiments
employing 1H−15N HSQC NMR spectroscopy (Figure 5A,B).
In the unmodified form of OPN, binding to heparin mainly
induces chemical shift changes in the positively charged regions
(residues 180−190 and 240−260), while modest chemical shift
perturbations are found for residues located in the region of
residues 140−160 (Figure 5C). A quantitative fit analysis reveals
a binding affinity in the micromolar range (48 ± 8 and 52 ± 20
μM) for both positively charged regions (Figure 5C middle
panel, blue; Figure S7) in accordance with ITC data from
previous work on a protein homologue.46 The observed affinity
is very similar to that of the quail homologue form.46 As
previously reported, the chemical shifts observed in the region of
residues 140−160 may arise from a local “unfolding-upon-

binding” process that occurs when OPN binds to this
polyanionic carbohydrate.46

This phenomenon, also known as “cryptic disorder”, is a
widespread mechanism of folded proteins and IDPs in response
to environmental changes (such as binding or protein
modifications).56,57Upon binding, the compensation of entropic
loss (from a large conformational ensemble in the free form to a
restricted set of conformations in the bound form) can be
established in different mechanisms.58 Among them, IDPs may
maximize the entropic gain by increasing the flexibility in regions
distant from the binding sites, as it was reported for the
mechanism of binding ofOPN to heparin: a local rigidification in
the heparin binding cleft (central core region) leads to a
conformational entropy penalty that is reduced by a
compensatory increase in the conformational flexibility of the
negatively charged regions.46 Upon phosphorylation of OPN,
the binding affinity is clearly reduced and consequently more
heparin was needed to reach saturation (Figure 5B), presumably
due to stronger electrostatic repulsions involving the numerous
phosphorylation sites in the region of residues 240−260. Here,
the entropic penalty of retaining a partially structured central
region in phosphorylated OPN is accommodated by increasing
the dynamics of charged regions. A similar mechanism was
described for the mode of binding of Sic1 to Cdc4, where
entropic compensatory events are also present.59,60 Quantitative
analysis of the observed chemical shift changes for both
positively charged regions reveals an approximately 20/40-fold
decrease in affinity [1230 ± 890 and 2020 ± 1280 μM (Figure
5D)]. Besides that of heparin, the binding of OPN to hyaluronic

Figure 5. Binding of (phosphorylated) OPN to heparin, monitored by NMR titrations. 1H−15N HSQC NMR spectra in the presence of increasing
amounts of heparin (red to blue) for the (A) unphosphorylated and (B) hyperphosphorylated forms. Chemical shift perturbations (bottom panel) and
fittedKD of binding regions (middle panel in blue) and the uncompacted region (middle panel in pink) plotted against the residue numbers of (C)OPN
and (D) phosphorylatedOPN.The corresponding charge plots are shown at the top. Yellow circles indicate the identified phosphorylated residues. The
grayscale (from white to black) represents the increasing OPN:hep molar ratio from 1:0.2 to 1:10 (unphosphorylated) and 1:20 (phosphorylated).
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acid (HA), another ubiquitous extracellular matrix glycosami-
noglycan,61,62 was tested (Figure S8). HA is composed of N-
acetylglucosamine and glucuronic acid and binds to the
abundant extracellular receptor CD44 through a conserved
HA binding domain (CD44HABD).

63,64 OPN was also described
as a binding partner of CD44 (with and without HA).65 Given
the polyanionic nature of HA and heparin, a similar mode of
binding toOPN can be anticipated. Surprisingly, however, NMR
titration experiments show no binding betweenHA andOPN, in
the unphosphorylated or in the phosphorylated form of the
protein. Additionally, no binding to CD44HABD is identified in
the presence or absence of HA [HA forms a tight complex with
CD44HABD (Figure S9)]. This points to an interesting and
unexpected (charge-independent) differential specificity of
OPN toward the various glycosaminoglycans of the ECM and
clearly questions the notion of OPN being a disordered protein
lacking structural preformation. Moreover, it restricts the CD44
binding site of OPN to the disordered CD44 region, where the
HS modification is present.
Decompaction of OPN Due to Hyperphosphorylation

Modulates the Binding Affinity for Integrins. The seminal
work of Tagliabbracci et al. on the characterization of Fam20C
and its extracellular substrates reported the unexpected
observation that Fam20C knockout MDA-MB-231 cells (i.e.,
no Fam20C-mediated phosphorylations) have superior adhe-
sion properties.21 Moreover, Schytte et al. recently reported that
the phosphorylation of an OPN construct, which covers the
integrin binding motif, and full-length OPN, co-expressed with
Fam20C, strongly hampers the interaction with αvβ3 integrin.

66

OPN is not only the most phosphorylated substrate of Fam20C
but also a natural binder to integrin receptors.48 Thus, its
phosphorylation may have a major impact on the mediation of
cell−ECMadhesion properties through integrin binding. Recent
studies of Coturnix japonica OPN showed that an expansion of
the compact states due to rational mutations of the hydrophobic
residues of the central core region leads to higher affinities for
heparin47 and lower affinities for integrins. BothC. japonicaOPN
and H. sapiens OPN form compact central states exploiting
electrostatic attractions between differently charged regions as
well as backbone hydrophobic interactions.67 The existence of
compact substates in OPN has been demonstrated.46,47

Correlated conformational fluctuations within the structure of
both H. sapiens OPN and C. japonica OPN are visualized in a
Pearson correlation map (Figure 6),54,68 derived from multiple
PRE rates. H. sapiens OPN (Figure 6A) reveals two compacted
regions (residues 14−115 and 116-314), whereas C. japonica
OPN (Figure 6B) reveals three compacted regions (residues
46−90, 80−200, and 160−247). Interestingly, the residue
segments ofH. sapiensOPN, where the phosphorylation sites are
located, show significant correlations. Therefore, we conclude
that (hyper)phosphorylation of OPN releases long-range
correlations (by weakening stabilizing/attractive electrostatic
interactions) and leads to the observed decompaction. Thereby,
it abolishes energetically favorable interactions between OPN
sites that are distant from the canonical RGDmotif and integrin
receptors.48,66 However, the central part that contains the
(integrin binding) RGD motif (residues 159−161) retains its
local rigidity (15N R2 rates) and maintains a preformed template
for receptor recognition.

■ CONCLUDING REMARKS
In conclusion, we investigated the effect of phosphorylation of
OPN by Fam20C. To this end, an optimized protocol for in vitro

phosphorylation has been developed using Fam20C expressed in
mammalian HEK293T cells. Furthermore, almost complete
assignment of phosphorylated S-x-E/pS motifs has been
achieved by a combination of MS and NMR spectroscopy.
NMR studies of the hyperphosphorylated OPN reveal an
increase in flexibility in regions, which comprise the Fam20C
phosphorylation sites, and weakened long-range interactions.
The role of electrostatics and side chain−backbone interactions
has emerged recently as a potential mechanism for modulating
the formation of rigid segments and overall compaction.47,69

Figure 6. Pearson correlation maps of (A) H. sapiensOPN determined
from nine PRE profiles and (B) C. japonica OPN determined from 10
PRE profiles. The maps show correlated (red to orange), uncorrelated
(light yellow to light blue), and anticorrelated (light blue to dark blue)
structural fluctuations. The dashed squares enclose regions of distinct
structural compaction. The orange dots represent the spin-label sites.
The data for the C. japonica OPN correlation matrix were previously
published.47 Corresponding charge plots are shown at the top.
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Moreover, weak side chain−backbone interactions involving
proline residues are important for stabilizing OPN’s central
compact state. Most importantly, the observed decompaction is
also in accordance with the reported biological behavior of OPN
(a decreased binding affinity for integrins) and illustrates the
importance of compact states formolecular recognition events in
which IDPs are involved. However, it is challenging to address
the degree of decompaction in a quantitativemanner because it is
extremely difficult to know the extent to which those
conformations are populated. At the same time, the existence
of functional minor populations (or excited stats) in IDPs may
play a key role in binding events. Low-resolution techniques such
as SAXSmay not fully grasp the subtleties of IDP ensembles. On
the contrary, PRE data accentuate the minor populations that
seem to be relevant for understanding OPN function.
Furthermore, the unexpected proteoglycan binding preference
(heparan sulfate vs hyaluronic acid) of OPN suggests an
interaction specificity of IDPs and questions the notion of IDPs
being fully disordered and exhibiting random-coil type behavior.
To conclude, post-translational modifications, in our case
phosphorylation, are effective mechanisms for modifying
conformational ensembles of IDPs and populating suitable
substates for molecular recognition events. Structural disorder is
clearly not adequate for grasping the subtlety of these processes,
and more sophisticated concepts have to be involved to fully
appreciate how IDPs can respond to changing molecular
environments and how they can engage in permanently varying
protein interaction networks.
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