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ABSTRACT: The prenylation of peptides and proteins is an
important post-translational modification observed in vivo.
We report that the Pd-catalyzed Tsuji−Trost allylation with a
Pd/BIPHEPHOS catalyst system allows the allylation of Cys-
containing peptides and proteins with complete chemo-
selectivity and high n/i regioselectivity. In contrast to recently
established methods, which use non-native connections, the
Pd-catalyzed prenylation produces the natural n-prenyl-
thioether bond. In addition, a variety of biophysical probes
such as affinity handles and fluorescent tags can be introduced
into Cys-containing peptides and proteins. Furthermore,
peptides containing two cysteine residues can be stapled or
cyclized using homobifunctional allylic carbonate reagents.

■ INTRODUCTION

Over the last three decades it has been recognized that post-
translational modifications (PTMs) (glycosylation, phosphor-
ylation, sulfation, acylation, lipidation, etc.) play an important
role in controlling protein function and localization. Among
the PTMs, prenylation is essential for associating certain
proteins to specific membranes. A particularly intriguing
example for this is the Ras superfamily of small GTPases
involved in signal transduction processes that lead to cell
growth and differentiation as well as in vesicular trafficking.1

For the biophysical and cell biological investigation of
proteins in general and of PTMs in particular, chemoselective
methods are needed that enable access to modified proteins
via synthetic manipulations at the reactive side chains of
proteinogenic amino acids using either chemical reagents or a
transition-metal catalyst.2−5 The formation of new covalent
bonds allows the attachment of affinity tags, fluorophores,
click handles, or PET tracers. Cysteine represents an attractive
handle for the introduction of such chemical modifications, as
it is the second least frequent amino acid in proteins (1.7%)6

and shows a very strong inherent nucleophilicity, which makes
it especially attractive for reactions with electrophilic reagents.
Maleimides7 and iodoacetamides8 represent the earliest
electrophiles used to alkylate Cys (Figure 1, A) and have
been frequently applied to date. More recent developments
include a variety of carbonylacrylic reagents as well as
vinylpyridines.9 Since then numerous different bioconjugation

strategies have been developed.2,10 One of them involves the
transformation of Cys into dehydroalanine (Dha) upon
treatment with 2,5-dibromohexanediamide (DBHDA)11 or
O-mesitylenesulfonylhydroxylamine (MSH)12 (B), which is
then reacted with a thiol nucleophile (C). A disadvantage of
this method is that the formation of Dha is associated with
racemization at the α-carbon because the diastereoselectivity
of the thiol addition in simple Dha peptides is reported to be
low.13 A more direct access to S-allylcysteine without
epimerization can be accomplished by selenenylsulfide
reductive rearrangement (D),14 followed by further derivatiza-
tion either by olefin cross-metathesis15 or a Kirmse−Doyle
reaction.16 Alternatively, allylic halides might be used to
directly allylate Cys (E),14,17 although these highly reactive
reagents are more difficult to handle and preclude more
elaborate reagent structures. Very recently Buchwald et al.
introduced arylpalladium reagents, which can be used for the
arylation of Cys-containing peptides and proteins (F).18 This
concept has been extended to Au(III) complexes.19 Pentelute
et al. reported site-selective Cys conjugation with perfluor-
oarene reagents at the π-clamp motif FCPF (G)20 and ligation
with cyclooctynes.21
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■ RESULTS AND DISCUSSION
Reaction Optimization. We envisioned that Cys could be

selectively modified using the Pd-catalyzed Tsuji−Trost
reaction, which would give rise to an allylthioether linkage,
as present in naturally prenylated proteins, in a single step.
The Tsuji−Trost allylation with C-, N-, or O-nucleophiles is
well established in organic synthesis,22 and Francis et al.23

have impressively demonstrated the site-selective modification
of proteins via Pd-catalyzed O-allylation of Tyr residues using
the water-soluble phosphine ligand TPPTS. In contrast, the
reaction with S-nucleophiles has been rarely studied,24,25 as it
faces intrinsic difficulties: (a) S-nucleophiles can also function
as efficient ligands for Pd and poison the catalyst and (b)
thiols are easily oxidized and the reactions have to be carried
out under exclusion of air. We hoped that with a prudent
choice of ligand we could design a Pd catalyst system suitable
for the allylation of Cys-containing peptides and proteins. In
contrast to classic allylation procedures14,17 using an excess of
highly reactive allylic halides, a Pd-mediated reaction would
allow the use of easily accessible allylic carbonates as
electrophiles. These reagents are much more versatile, as
they are bench stable and can contain highly functionalized
structural motifs. Furthermore, in situ activated electrophiles
could be sterically controlled by the Pd complex so that the
nucleophilic attack is directed to the terminal end of the η3-
Pd-allyl complex intermediate to produce the n-allylation
product in high selectivity, as the corresponding i product
(resulting from internal attack) would be impossible to
separate on the peptide or protein level. From a screening of a
diverse set of mono- and bidentate phosphorus ligands we
identified the bisphosphite ligand BIPHEPHOS as by far the
most suitable ligand producing the desired n products in high

selectivity. Furthermore, the n/i ratio was found to increase
over time even when complete conversion was already
reached, indicating the reversibility of this reaction (Table
S1).

S-Allylation of Model Substrates. With these optimized
conditions in hand, we wanted to apply the Pd-catalyzed S-
allylation to a dipeptide substrate (P1) featuring Tyr as the
second amino acid, which could give rise to O-allylation as
described by Francis et al.23 before. Importantly, with our Pd/
BIPHEPHOS catalyst system we observed exclusively S-
allylation of Cys, as confirmed via NMR by HMBC
experiments (Figure S1). With a series of allylation reagents
(Figure 2) we could demonstrate that a diverse set of labeled

peptides could be easily prepared by this method (Table 1,
entries 1−7). Moreover, we successfully subjected unpro-
tected glutathione (P2) to Pd-catalyzed S-prenylation in an
aqueous solvent mixture (Table 1, entry 8), indicating a
broader applicability of this method for the modification of
longer peptides and proteins. This is corroborated by the fact
that the reaction proceeds with fast kinetics. Full conversion
of 10 mM Ac-Cys-OMe was observed within 10 min upon
treatment with 2 equiv of Ra in the presence of 2.0 mol % of
Pd/BIPHEPHOS at 35 °C. Even 0.5 mol % of the catalyst
was found to be sufficient to obtain quantitative conversion
after 30 min, demonstrating the high efficiency of the reaction
(Figure S2). However, strictly oxygen free conditions were
crucial for the activity of the catalyst.

Chemoselective Peptide Modification. As a next step
we tested the Pd-catalyzed Cys allylation on a series of more
complex oligopeptides. For this purpose, the substrate
concentration was reduced to 1 mM to account for the
lower solubility of the peptides and the reaction temperature
was adjusted to 40 °C to ensure peptide integrity. To
compensate for slower kinetics under these conditions, the
amounts of Pd and ligand were increased, which fully restored
the reactivity of the system. As a relevant target protein for
prenylation, we selected ubiquitin-like protein 3 (UBL3) and
started out with modifying its C-terminal domain (peptide
P3) with polyprenyl groups, bioconjugation handles, fluo-
rescent and affinity tags, highlighting the versatility of this

Figure 1. Selected examples of Cys modifications established to date
(A−G) in comparison with the Pd-catalyzed Cys allylation described
in this work.

Figure 2. Allylic carbonate reagents prepared for the Pd-catalyzed
Cys modification.
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method (Figure 3). Furthermore, we could show that
farnesylation is feasible at internal as well as terminal Cys
and that this bioconjugation strategy offers access to adjacent
and nonadjacent difarnesylated products, which are of special
importance in naturally occurring proteins.26 The high
chemoselectivity of this reaction was showcased on a 32aa

polypeptide (P7) featuring nearly all functional group
containing amino acids, which was found to undergo
farnesylation exclusively on Cys, as proven by tryptic digest
and mass spectrometric analysis (Figure S3).

Peptide Stapling/Cyclization. Having established a
series of highly selective monofunctional allylic carbonate
reagents that were successfully applied on a broad set of
peptide substrates, we were eager to see if our methodology
could also be extended to bifunctional allylation reagents. This
would enable us to implement an additional type of a peptide
stapling protocol,27 which is based on Pd-mediated S-
allylation. To this end, we prepared two bifunctional allylic
carbonates (Ri and Rj) with different geometries, which were
subjected to Pd-mediated allylation using two α-helical
peptides (P8 and P9)28 with cysteine residues spaced by i
+3 and i+4 as well as peptide P10 with more distant residues
(i+11)29 (Figure 4). Reactions leading to P8j, P9j, and P10i

Table 1. Scope of the Pd-Catalyzed Allylation of Small
Peptides

aIsolated yields after column chromatography. bDetermined by 1H
NMR spectroscopy; n.a. = not applicable. c0.5 equiv of bifunctional
allylation reagent was used. dReaction was performed in 2/1 CH3CN/
H2O as the solvent for 18 h.

Figure 3. Peptide and reagent scope of the Pd-mediated allylation of oligopeptides. Peptide sequences containing internal, terminal, and multiple
Cys residues were subjected to site-selective allylation, enabling the introduction of native prenyl groups and bioconjugation handles (azide/
alkyne groups) as well as a fluorescent NBD tag and a biotin affinity tag. All modified peptides were purified, isolated, and characterized by LC-
MS analysis.

Figure 4. Peptide stapling/cyclization using Pd-mediated allylation.
Three model peptides with various distances (i+3, i+4, i+11)
between the Cys residues were subjected to stapling/cyclization using
two bifunctional reagents with different geometries.
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gave only one peak corresponding to the desired product,

whereas for P8i and P9i two separate peaks with the expected

mass occurred presumably due to the formation of E/Z

isomers. Although the intramolecular reaction was favored for

P10j, we observed also the dimer of P10j (approximately

10%), consisting of two peptides and two staples, as a side

product. It is worth mentioning that the stapled products

provide motifs for further functionalization by taking

Figure 5. Application of the Pd-mediated allylation for the modification of ubiquitin-like protein 3 (UBL3). Both UBL3 variants with one (A, B)
and two (C) C-terminal Cys groups were successfully modified when they were treated with 1.2 equiv of allylation reagent per Cys residue. The
HPLC traces (214 nm) and mass spectra of the purified products are depicted for UBL3-1Cys-alkyne (A), UBL3-1Cys-Gerger (B), and UBL3-
2Cys-(Gerger)2 (C).

Figure 6. Attachment of azide as well as alkyne handles onto heat shock protein 27 (A, B), which can be employed for click derivatization to
introduce labels (biotin). HPLC traces (214 nm) of substrate and crude reaction mixtures (after 2 h) of the Hsp27 modifications (C) and mass
spectra of the purified Hsp27 with bioconjugation handles and crude CuAAC product are depicted (D).
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advantage of the double bond and that allylated peptides with
identical staple motifs have recently been shown to function as
substrates in decaging strategies using transition-metal
catalysis as well.5

Modifications of UBL3 Protein. To further evaluate the
potential of our method, we chose the full-length protein
UBL3 as a substrate, which extends the application beyond
classic reactions based on alkyl halides with peptide
substrates.17 UBL3 undergoes post-translational geranylger-
anylation in vivo, and direct access to such membrane-bound
UBL3 variants will help to elucidate their so far unknown
physiological role(s).30 Two variants, with one and two C-
terminal Cys groups, were used here since mono- and
dilipidation occur in nature. In order to find the appropriate
reaction conditions for the Pd-mediated protein allylation, we
first applied our alkyne-carrying reagent Rf to UBL3-1Cys
using a 1/1 CH3CN/H2O mixture as the solvent to reconcile
protein, reagent, and catalyst solubility. To our delight we
observed full conversion in 4 h to the corresponding alkyne-
tagged protein that could be isolated in 60% yield with >95%
purity after HPLC purification (Figure 5A).
Having demonstrated that our methodology is suitable for

the modification of proteins, we introduced the natively
occurring geranylgeranyl group with reagent Rd into both
UBL3 variants using similar conditions. These enabled
geranylgeranylation of both UBL3 variants with a conversion
of 30% in 4 h. A 1/1 mixture of 3 M aqueous Gdn·HCl with
CH3CN was also tested and increased the conversion of
UBL3-2Cys to 60%. After HPLC purification both variants
were obtained in high purity (>95%) and with isolated yields
of 12% for UBL3-1Cys and 22% for UBL3-2Cys, respectively
(Figure 5B,C). Dialysis against a buffer containing 50 mM
potassium phosphate at pH 7 gave folded, prenylated UBL3
variants, as confirmed by CD spectroscopy (Figure S4A).
Modifications of Hsp27 Protein. In order to assess more

general applications of our Pd-catalyzed protein allylation, we
chose heat shock protein 27 (Hsp27) as our next target. It
represents a more challenging protein target due to its higher
molecular weight and its buried cysteine residue but led to
similar prenylation results (Figure S5). Applying reagents Re
and Rf, respectively, under conditions established above for
UBL3, gave full conversion into the azide- as well as the
alkyne-tagged protein conjugates in just 2 h (Figure 6A,B).
The peak-to-peak conversion of Hsp27 is nicely illustrated by
HPLC chromatograms at t = 0 and after 2 h (Figure 6C).
Both modified Hsp27 variants were isolated in excellent yields
(78% and 81%) and high purity (>95%). Direct dissolution of
the obtained purified Hsp27 products in 50 mM phosphate
buffer at pH 7 led to correctly folded proteins as
demonstrated by CD measurements (Figure S4B). To
demonstrate the utility of Hsp27-alkyne, we carried out a
CuAAC reaction with a commercially available azido-biotin
reagent, which led to full conversion into the desired product
after only 10 min (Figure 6B).

■ CONCLUSION
In conclusion, we have developed a chemoselective method
for the prenylation, functionalization, and stapling of Cys-
containing peptides using Pd/BIPHEPHOS as a catalyst and
readily accessible allylcarbonates as reagents. This method was
applied to the modification of peptides and proteins for the
installation of native prenyl groups as well as artificial
bioconjugation handles. In contrast to many established

peptide and protein modification reactions, our new Pd-
catalyzed Cys-prenylation has the advantage that it forms
natural allylthioether linkages as found in prenylated
biomolecules and thus can be regarded as a chemical in
vitro post-translational modification reaction, which is
compatible with all proteinogenic amino acids. In addition,
it is general regarding the allylic electrophiles that are applied
in minimal excess (1.2 equiv) and therefore provides an
efficient tool to introduce labels and tags as well as stabilizing
staples into peptides and proteins, affording correctly folded
products of high purity.
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I.; Corzana, F.; Knowles, T. P. J.; Jimeńez-Oseś, G.; Bernardes, G. J.
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