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Purpose: Dexmedetomidine, an α2-adrenergic agonist, provides sedative and analgesic effects without significant respiratory 
depression. Dexmedetomidine has been suggested to have an antiapoptotic effect in response to various brain insults. We de-
veloped an oral mucosa patch using dexmedetomidine for sedation. The effects of the dexmedetomidine oral mucosa patch 
on cell proliferation and apoptosis in the hippocampus were evaluated.
Methods: A hydrogel oral mucosa patch was adhered onto the oral cavity of physiologically normal rats, and was attached for 
2 hours, 6 hours, 12 hours, or 24 hours. Plasma dexmedetomidine concentrations were determined by liquid chromatogra-
phy–electrospray ionization–tandem mass spectrometry–multiple-ion reaction monitoring (LC-ESI-MS/MS-MRM). Cell 
proliferation in the hippocampus was detected by Ki-67 immunohistochemistry. Caspase-3 immunohistochemistry, terminal 
deoxynucleotidyl transferase-mediated dUTP nick end labeling staining, and Western blotting for Bax and Bcl-2 were per-
formed to detect hippocampal apoptosis. The levels of brain-derived neurotrophic factor (BDNF) and tyrosine kinase B (TrkB) 
in the hippocampus were also measured by Western blotting. 
Results: Plasma dexmedetomidine concentration increased according to the attachment time of the dexmedetomidine oral 
mucosa patch. Hippocampal cell proliferation did not change due to the dexmedetomidine oral mucosa patch, and the dex-
medetomidine oral mucosa patch exerted no significant effect on BDNF or TrkB expression. In contrast, the dexmedetomi-
dine oral mucosa patch exerted an antiapoptotic effect depending on the attachment time of the dexmedetomidine oral mu-
cosa patch.
Conclusions: A dexmedetomidine oral mucosa patch can be used as a convenient tool for sedation, and is of therapeutic value 
due to its antiapoptotic effects under normal conditions.
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INTRODUCTION

Dexmedetomidine is an α2-adrenergic agonist, and it provides 
sedative and analgesic effects without significant respiratory de-
pression. It has been used to promote postoperative and inten-
sive care sedation and analgesia. The sedative effect of dexme-
detomidine has led to the emergence of several interesting ap-
plications in the anesthetic field, with benefits in the periopera-
tive context. However, dexmedetomidine was approved for se-
dation in the intensive care unit in the United States in 1999, 
and its application as a form of anesthesia remains an off-label 
use. Further studies are needed to establish the role of dexme-
detomidine in the perioperative period [1].
  Anesthetic agents generally exert detrimental effects on the 
brain, causing apoptotic neurodegeneration and inducing 
learning and memory impairments [2]. Ketamine and isoflu-
rane initiate apoptosis and impair brain function in the devel-
oping brain of rats; in contrast, dexmedetomidine is known to 
attenuate ketamine and isoflurane-induced neurotoxicity [3,4]. 
Dexmedetomidine has been suggested to have neuroprotective, 
cardioprotective, and renoprotective effects [5].
  Dexmedetomidine exerts a protective effect against cerebral 
ischemia-induced injury by enhancing the expression of the 
antiapoptotic proteins Bcl-2 and Mdm-2 [6]. A preconditioning 
effect of dexmedetomidine on oxygen and glucose deprivation 
in hippocampal slices has been reported [7]. Dexmedetomidine 
was found to ameliorate isoflurane-induced injury in the brain 
of developing rats [8], and also inhibited staurosporine- or 
wortmannin-induced injury in cortical neuronal cultures [9]. 
Kim et al. [10] reported that dexmedetomidine increased the 
amplitude of evoked field excitatory postsynaptic potentials  in 
oxygen- and glucose-deprived hippocampal slices. Dexmedeto-
midine exerted an antiapoptotic effect in rats with intracerebral 
hemorrhage [11] and in gerbils with cerebral ischemia [12].
  Dexmedetomidine is widely used for patients in surgical and 
nonsurgical intensive care units. However, the intravenous ad-
ministration of dexmedetomidine is cumbersome and inconve-
nient for clinical applications. The instability of administration 
through the nasal mucosa is also a limitation to the clinical ap-

plication of dexmedetomidine. In particular, the use of safe seda-
tives in the dental field or in urological and gynecological proce-
dures that give patients vague fears is necessary. In order to avoid 
the fear and inconvenience associated with injections, we devel-
oped an oral mucosa patch for sedation using dexmedetomidine. 
  In this study, we evaluated the effects of the dexmedetomi-
dine oral mucosa patch on cell proliferation and apoptosis in 
the hippocampus. For this purpose, immunohistochemistry for 
Ki-67 and caspase-3 and terminal deoxynucleotidyl transferase-
mediated dUTP nick end labeling (TUNEL) staining were con-
ducted. Western blotting was performed to assess levels of Bax, 
Bcl-2, brain-derived neurotrophic factor (BDNF), and tyrosine 
kinase B (TrkB). Plasma dexmedetomidine concentrations ac-
cording to the attachment time of the oral mucosa patch were 
also determined. 

MATERIALS AND METHODS

Preparation of Oral Mucosa Patch for Sedation
Polyacrylic acid (3% by weight, 100 mL) was prepared by dis-
solving polyacrylic acid (molecular weight, 450,000 g/mol; 3 g) 
in distilled water (97 mL). The aqueous solution of polyacrylic 
acid was poured into a petri dish with a diameter of 1 cm to a 
thickness of 3 mm, sealed with a polyethylene film, and irradi-
ated with 10 kGy of radiation to prepare a crosslinked poly-
acrylic acid hydrogel. The prepared hydrogel was dried in an 
oven at 37˚C for 24 hours, cut into a diameter of 12 mm (weight, 
0.04 g; 7% by weight), and then immersed in a sieve with 0.5 
mL of dexmedetomidine (200 μg/2 mL/vial) for 24 hours. The 
drug-loaded hydrogel was dried in an oven at 37˚C for 24 hours 
to prepare an oral mucoadhesive patch for sedation (Fig. 1).

• HIGHLIGHTS
- �We developed an oral mucosa patch using dexmedetomidine for se-

dation.
- �This oral mucosa patch continuously delivered dexmedetomidine into 

the blood.
- �Dexmedetomidine oral mucosa patch exerted an antiapoptotic effect.

Fig. 1. The sedative hydrogel oral mucosa patch.
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Animals and Treatments
For this experiment, male Sprague-Dawley rats (weighing 
350±10 g, 15 weeks old) were used, and the experimental pro-
cedures were conducted according to the animal care guidelines 
of the National Institutes of Health and the Korean Academy of 
Medical Sciences. The rats were randomly divided into 4 groups 
(n=8 in each group): a control group, and groups in which the 
dexmedetomidine patch was attached for 2, 6, 12, and 24 hours, 
respectively.

Application of the Dexmedetomidine Oral Mucosa Patch
After performing anesthesia with Zoletil 50 (10 mg/kg, intraperi-
toneally; Vibac Laboratories, Carros, France), the rats were placed 
in the supine position. The oral mucosa patch was then adhered 
onto the oral cavity of the rats (Fig. 2). After 2 hours, 6 hours, 12 
hours, or 24 hours of attachment (depending on the treatment 
group), blood sampling via heart puncture was performed. 

Determination of Plasma Dexmedetomidine 
Concentration by Liquid Chromatography–Tandem Mass 
Spectrometry 

Plasma was collected from each group and a stock solution was 
prepared by dissolving 1 mg of a dexmedetomidine standard in 
1 mL of methanol, and then diluting it with 50% methanol in 
water (v/v) when necessary. Plasma samples (200 µL) were ex-
tracted by liquid-liquid extraction. Dexmedetomidine in plas-
ma was extracted with 1 mL ethyl acetate, with thorough shak-
ing for 5 minutes. The ethyl acetate layer was passed through a 
membrane filter and then dried under a gentle nitrogen stream. 
The dried residue was redissolved in 200 µL of 50% methanol 
in water (v/v) and centrifuged at 13,000 rpm for 5 minutes. The 
sample supernatant was injected into liquid chromatography–
electrospray ionization–tandem mass spectrometry–multiple-

ion reaction monitoring (LC-ESI-MS/MS-MRM). 
  All liquid chromatography-tandem mass spectrometry anal-
yses were performed with an Agilent 1200 series high-perfor-
mance liquid chromatography system coupled with an API 
3200 mass spectrometer (MDS Sciex, Concord, ON, Canada). 
The chromatographic separation was carried out with a Kintex 
XB C18 column (100 mm×2.1 mm; internal diameter, 2.6 μm; 
Phenomenex, Torrance, CA, USA). A binary gradient separa-
tion was performed using a flow rate of 0.2 mL/min using mo-
bile phases A (0.1% formic acid in water) and B (acetonitrile). 
The gradient profile was 0–2 minutes held at 15% B, a 2- to 
3-minute linear increase in B from 15% to 97%, 3–6 minutes 
held at 97% B; and 6–10 minutes (post acquisition time) start-
ing with a mobile phase of 15% B to re-equilibrate the column. 
The total run time for each injection was 10 minutes, and the 
injection volume was 5 μL. The mass spectrometer was run in 
the positive-ion mode of the electrospray ionization source, and 
the mass spectrometric conditions were as follows: curtain gas, 
20 psi; electron voltage, 5,500 V; temperature, 500˚C; nebulizing 
gas, 50 psi; and heating gas, 50 psi. 
  For the quantification analysis, the multiple-ion reaction 
monitoring (MRM) mode was applied using 2 characteristic 
MRM transitions, such as the quantitative ion and the confir-
mation ion. The selection criteria of the product ions were es-
tablished to choose the 2 most intense ions, in order to increase 
the specificity of the product ions and to minimize the back-
ground signal.

Tissue Preparation 
The rats were sacrificed immediately after blood sampling. The 
rats received a transcardial injection of 50mM phosphate-buff-
ered saline (PBS), and they were then fixed with a freshly pre-
pared solution consisting of 4% paraformaldehyde in 100mM 

Fig. 2. The procedure of oral mucosa patch application.
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phosphate buffer (pH, 7.4). The rats’ brains were dissected and 
stored overnight in the same fixative solution, and then they 
were immersed into a 30% sucrose solution for cryoprotection. 
Subsequently, 40-μm-thick slices were coronally sectioned us-
ing a cryostat (Leica, Nussloch, Germany). On average, 10 hip-
pocampal slice sections, from 2.5 to 2.7 mm posterior from the 
bregma, were collected from each rat.

Ki-67 Immunohistochemistry
Ki-67 immunohistochemistry was performed according to a 
previously described method [13,14]. The sections were incu-
bated in 0.05 M PBS for 10 minutes and then washed 3 times 
with 50mM PBS. The sections were incubated in 3% H2O2 for 
30 minutes, and then incubated overnight with mouse anti-
Ki-67 antibody (1:500; Novocastra Laboratories, Newcastle, 
UK). The next day, the sections were incubated with biotinylat-
ed anti-mouse secondary antibody (Vector Laboratories, Burl-
ingame, CA, USA) for 1 hour. The sections were subsequently 
incubated with an avidin-biotin-peroxidase complex (Vector 
Laboratories) at room temperature for 1 hour. Immunoreactiv-
ity was visualized by incubating the sections in a solution con-
sisting of 0.05% diaminobenzidine tetrahydrochloride (DAB) 
and 0.01% H2O2 in 50mM Tris buffer (pH, 7.6) for approxi-
mately 3 minutes. After the sections were mounted on gelatin-
coated glass slides, the coverslips were mounted using  Per-
mount (Fisher Scientific, New Jersey, NJ, USA).

Caspase-3 Immunohistochemistry 
Immunohistochemistry for caspase-3 was performed accord-
ing to previously described methods [15,16]. The sections were 
incubated overnight with caspase-3 antibody (1:500; Santa 
Cruz Biotechnology, Santa Cruz, CA, USA). The next day, the 
sections were incubated with biotinylated mouse secondary an-
tibody (1:200; Vector Laboratories) for 1 hour. The secondary 
antibody was amplified with a Vector Elite ABC kit (1:100; Vec-
tor Laboratories). Antibody-biotin-avidin-peroxidase complex-
es were visualized using 0.03% DAB. The sections were mount-
ed onto gelatin-coated slides, and the coverslips were mounted 
using Permount (Fisher Scientific).

TUNEL Staining 
TUNEL staining was performed using an In Situ Cell Death 
Detection Kit (Roche, Mannheim, Germany), according to pre-
viously described methods [15,17]. The sections were post-
fixed in ethanol-acetic acid (2:1), and then were rinsed. The 

sections were then incubated with proteinase K (100 μg/mL), 
rinsed, incubated in 3% H2O2, and permeabilized with 0.5% 
Triton X-100. After the sections were rinsed again, the sections 
were incubated in the TUNEL reaction mixture. After the sec-
tions were rinsed, the sections were visualized using Converter-
POD with 0.03% DAB. Mayer hematoxylin (DAKO, Glostrup, 
Denmark) was used as a counterstain. The sections were mount-
ed onto gelatin-coated slides, and the coverslips were mounted 
using Permount (Fisher Scientific).

Western Blotting for Bax and Bcl-2 
Western blot analysis was performed to determine the expres-
sion of Bax and Bcl-2, according to previously described meth-
ods [15,17]. Hippocampi were dissected and collected, and hip-
pocampal tissues were immediately frozen at –70˚C. The hippo-
campal tissues were homogenized on ice, and they were lysed in 
a lysis buffer containing 50mM N-2-hydroxyethylpiperazine-N-
2-ethanesulfonic acid (pH, 7.5), 150mM NaCl, 10% glycerol, 1% 
Triton X-100, 1mM phenylmethylsulfonyl fluoride, 1mM ethyl-
eneglycol-bis-(b-aminoethylether)-N,N,N’,N’-tetraacetic acid, 
1.5mM MgCl2·6H2O, 1mM sodium ortho-vanadate, and 
100mM sodium fluoride. Protein content was measured using a 
Bio-Rad colorimetric protein assay kit (Bio-Rad, Hercules, CA, 
USA). Protein samples (30 μg) were separated on sodium do-
decyl sulfate-polyacrylamide gel and transferred onto a nitrocel-
lulose membrane. The membranes were incubated with 5% 
skim milk in Tris-buffered saline containing 0.1% Tween-20. 
The membranes were then incubated at 4˚C with the following 
primary antibodies overnight: mouse anti-β-actin, mouse anti-
Bcl-2, and mouse anti-Bax (1:1,000; Santa Cruz Biotechnology). 
Subsequently, the membranes were incubated with following 
secondary antibodies for 1 hour: horseradish peroxidase conju-
gated anti-mouse antibody for Bax and Bcl-2 (1:3,000; Vector 
Laboratories) and horseradish peroxidase-conjugated anti-
mouse antibody for β-actin (1:2,000; Vector Laboratories). An 
enhanced chemiluminescence detection kit (Santa Cruz Bio-
technology) was used for band detection.

Western Blotting for BDNF and TrkB 
Western blot analysis was conducted to characterize the expres-
sion of BDNF and TrkB, according to previously described 
methods [12,14]. Mouse β-actin antibody (1:1,000; Santa Cruz 
Biotechnology), rabbit BDNF antibody (1:500; Santa Cruz Bio-
technology), and rabbit TrkB antibody (1:1,000; Santa Cruz 
Biotechnology) were used as primary antibodies. The second-
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ary antibodies were horseradish peroxidase conjugated anti-
rabbit antibody for BDNF and TrkB (1:3,000; Vector Laborato-
ries) and horseradish peroxidase-conjugated anti-mouse anti-
body for β-actin (1:2,000; Vector Laboratories). An enhanced 
chemiluminescence detection kit (Santa Cruz Biotechnology) 
was used for band detection.

Data Analysis 
In the selected samples of the hippocampal dentate gyrus, the 
numbers of Ki-67-positive, TUNEL-positive, and caspase-3- 
positive cells were counted hemilaterally using a light micro-
scope (Olympus, Tokyo, Japan). The area of the hippocampal 
dentate gyrus was measured using the Image-Pro Plus comput-
er-assisted image analysis system (Media Cybernetics Inc., Sil-
ver Spring, MD, USA). These values were expressed as the 
numbers of cells per square millimeter in the hippocampal 
dentate gyrus. The detected bands were calculated densitomet-
rically to characterize Bax, Bcl-2, BDNF, and TrkB expression 
using the Image-Pro Plus image analysis system (Media Cyber-
netics Inc.). Statistical analysis was performed with 1-way anal-
ysis of variance followed by the Duncan post hoc test. The re-
sults are expressed as the mean±standard error of the mean, 
and statistical significance was set at P<0.05.

RESULTS

Analysis of Plasma Dexmedetomidine by LC-ESI-MS/MS-
MRM
Plasma dexmedetomidine concentrations increased according 
to attachment time, reached a maximum level at 12 hours after 
attachment, and then rapidly decreased at 24 hours after attach-
ment (Table 1).

Effect of Dexmedetomidine on Cell Proliferation in the 
Hippocampal Dentate Gyrus
Cell proliferation in the hippocampal dentate gyrus was not 
significantly associated with the attachment time of dexme-
detomidine (Fig. 3).  

Effect of Dexmedetomidine on DNA Fragmentation in the 
Hippocampal Dentate Gyrus
DNA fragmentation in the hippocampal dentate gyrus was in-
versely associated with the attachment time of dexmedetomi-
dine (Fig. 4). 

Effect of Dexmedetomidine on Caspase-3 Expression in 
the Hippocampal Dentate Gyrus
Caspase-3 expression in the hippocampal dentate gyrus was in-
versely associated with the attachment time of dexmedetomi-
dine (Fig. 5). 

Effect of Dexmedetomidine on Bax and Bcl-2 Expression in 
the Hippocampus
Bax expression did not change until 12 hours after the attach-

Table 1. Plasma dexmedetomidine concentration in each group	

Analyte
Attachment time

2 Hours 6 Hours 12 Hours 24 Hours

Dexmedetomidine 6.62 
ng/mL

10.13 
ng/mL

14.16 
ng/mL

1.88 
ng/mL

Fig. 3. Effects of dexmedetomidine on the number of Ki-
67-positive cells in the hippocampal dentate gyrus. Upper panel: 
photomicrographs of Ki-67-positive cells. The scale bar repre-
sents 50 µm (W) and 150 µm (A–E). Lower panel: The number 
of Ki-67-positive cells in each group. W, whole brain; A, control 
group; B, the group in which dexmedetomidine was attached 
for 2 hours; C, the group in which dexmedetomidine was at-
tached for 6 hours; D, the group in which dexmedetomidine 
was attached for 12 hours; E, the group in which dexmedetomi-
dine was attached for 24 hours.
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ment of dexmedetomidine; however, Bax expression decreased 
24 hours after dexmedetomidine attachment (Fig. 6, lower left). 
Bcl-2 expression increased with the attachment time of dexme-
detomidine (Fig. 6, lower middle). The ratio of Bax to Bcl-2 did 
not change until 12 hours after the attachment of dexmedeto-
midine; however, the ratio of Bax to Bcl-2 decreased 24 hours 
after dexmedetomidine attachment (Fig. 6, lower right). 

Effect of Dexmedetomidine on BDNF and TrkB Expression 
in the HippocampusHippocampus
BDNF expression did not vary with the attachment time of 
dexmedetomidine (Fig. 7, lower left). TrkB expression likewise 
did not vary with the attachment time of dexmedetomidine 

(Fig. 7, lower right).

DISCUSSION

In addition to the antiapoptotic effect of dexmedetomidine as-
sociated with various brain insults [11,12], Han et al. [18] dem-
onstrated that dexmedetomidine did not induce apoptosis or 
degeneration when injected in the brachial plexus of normal 
rats. We determined the attachment time-dependent plasma 
concentrations of dexmedetomidine and evaluated the attach-
ment time-dependent effects of this oral mucosa patch on cell 
proliferation and apoptosis in the hippocampus. In the present 
study, plasma dexmedetomidine concentrations increased ac-

Fig. 4. The effect of dexmedetomidine on the number of termi-
nal deoxynucleotidyl transferase-mediated dUTP nick end la-
beling (TUNEL)-positive cells in the hippocampal dentate gy-
rus. Upper panel: photomicrographs of TUNEL-positive cells. 
The scale bar represents 50 µm (W) and 150 µm (A–E). Lower 
panel: the number of TUNEL-positive cells in each group. W, 
whole brain; A, control group; B, the group in which dexme-
detomidine was attached for 2 hours; C, the group in which 
dexmedetomidine was attached for 6 hours; D, the group in 
which dexmedetomidine was attached for 12 hours; E, the 
group in which dexmedetomidine was attached for 24 hours. 
*P<0.05 compared to the control group.
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Fig. 5. Effect of dexmedetomidine on the number of caspase-
3-positive cells in the hippocampal dentate gyrus. Upper panel: 
photomicrographs of caspase-3-positive cells. The scale bar rep-
resents 50 µm (W) and 150 µm (A–E). Lower panel: the number 
of caspase-3-positive cells in each group. W, whole brain; A, 
control group; B, the group in which dexmedetomidine was at-
tached for 2 hours; C, the group in which dexmedetomidine 
was attached for 6 hours; D, the group in which dexmedetomi-
dine was attached for 12 hours; E, the group in which dexme-
detomidine was attached for 24 hours. *P<0.05 compared to 
the control group.
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cording to the attachment time of the oral mucosa patch. Plas-
ma dexmedetomidine concentrations reached their maximum 

level at 12 hours after the oral mucosa patch was attached, and 
then decreased. The results of our study indicate that the oral 

Fig. 6. The effect of dexmedetomidine on the expression of Bax and Bcl-2 in the hippocampus. Upper panel: expression bands of Bax 
and Bcl-2. Lower panel: relative expression levels of Bax and Bcl-2. A, control group; B, the group in which dexmedetomidine was at-
tached for 2 hours; C, the group in which dexmedetomidine was attached for 6 hours; D, the group in which dexmedetomidine was 
attached for 12 hours; E, the group in which dexmedetomidine was attached for 24 hours. *P<0.05 compared to the control group. 
#P<0.05 compared to the 2-hour dexmedetomidine group.
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Fig. 7. The effect of dexmedetomidine on the expressions of BDNF and TrkB in the hippocampus. Upper panel: expression bands of 
BDNF and TrkB. Lower panel: relative expression levels of BDNF and TrkB. A, control group; B, the group in which dexmedetomi-
dine was attached for 2 hours; C, the group in which dexmedetomidine was attached for 6 hours; D, the group in which dexmedeto-
midine was attached for 12 hours; E, the group in which dexmedetomidine was attached for 24 hours. BDNF, brain-derived neuro-
trophic factor; TrkB, tyrosine kinase B.
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mucosa patch continuously delivered dexmedetomidine into 
the blood at a constant rate. 
  Cell proliferation in the hippocampal dentate gyrus is known 
to be correlated with learning capability and memory function 
[14,19]. Ki-67 is used as a marker for cell proliferation analysis 
in the hippocampus [13,20]. Increments in the number of Ki-
67-positive cells represent increased cell proliferation, which is 
associated with the improvement of memory function [13,14]. 
In the present study, the number of Ki-67-positive cells was not 
changed by attaching the oral mucosa patch, regardless of the 
attachment time. The present results reveal that dexmedetomi-
dine exerted no significant effect on cell proliferation in the 
hippocampal dentate gyrus.
  Chromatin condensation, cell shrinkage, internucleosomal 
DNA fragmentation, and apoptotic bodies are the morphologi-
cal characteristics of apoptosis [21]. TUNEL staining detects 
DNA fragmentation, representing apoptotic cell death. Caspases 
are a family composed of 14 cysteine proteases, and they are es-
sential players in the initiation (caspase-2, caspase-8, caspase-9, 
and caspase-10) and execution (caspase-3, caspase-6, and cas-
pase-7) of the apoptosis process [22]. Upregulation of caspase-3 
expression indicates the activation of apoptosis following brain 
insults [23,24]. Increased numbers of TUNEL-positive and cas-
pase-3-positive cells in the hippocampus indicate increased 
apoptotic neuronal cell death in the hippocampus [17,24]. De-
creased numbers of TUNEL-positive and caspase-3-positive 
cells in the hippocampus represent an antiapoptotic effect [17]. 
In the present study, the numbers of TUNEL-positive cells and 
caspase-3-positive cells in the hippocampal dentate gyrus de-
creased as the attachment time of the oral mucosa patch in-
creased. The present results suggest that dexmedetomidine ex-
erted an antiapoptotic effect depending on the attachment time 
of the oral mucosa patch under normal conditions.
  The Bcl-2 family comprises antiapoptotic proteins, including 
Bcl-2, and proapoptotic proteins, such as Bax. By preventing 
the release of cytochrome c from the mitochondria, Bcl-2 exerts 
an inhibitory effect on apoptosis. Bcl-2 forms heterodimers 
with the main pro-apoptotic member Bax, at which point it can 
no longer carry out its protective function [25]. Thus, the ratio 
of Bax to Bcl-2 is used to determine whether cells undergo 
apoptosis or not [26]. In the present study, the expression of 
Bax and Bcl-2 in the hippocampus increased according to the 
attachment time of the oral mucosa patch; however, the ratio of 
Bax to Bcl-2 decreased 24 hours after attaching the oral mucosa 
patch. The present results demonstrate that dexmedetomidine 

exerted a suppressing effect on apoptosis 24 hours after attach-
ing the oral mucosa patch in normal rats. 
  BDNF controls neural growth and survival, and BDNF is 
implicated in learning ability and memory process via its recep-
tor, TrkB [27,28]. BDNF enhances hippocampal long-term po-
tentiation, and is a prime candidate for the cellular mechanism 
of learning, through the action of TrkB [28]. The upregulation 
of BDNF and TrkB expression is associated with increased cell 
proliferation in the hippocampus [29]. Stressful situations have 
been found to suppress BDNF and TrkB expression in the hip-
pocampus [30]. In the present study, the expression levels of 
BDNF and TrkB was not changed by attaching the oral mucosa 
patch, regardless of the attachment time. The present results in-
dicate that dexmedetomidine exerted no significant effect on 
learning ability or memory-related processes.
  In this experiment, we found that a dexmedetomidine oral 
mucosa patch continuously delivered dexmedetomidine into 
the blood. An antiapoptotic effect of dexmedetomidine ap-
peared 6 hours after attaching an oral mucosa patch and 
reached its maximum level 24 hours after attachment. The pres-
ent study suggests that a dexmedetomidine oral mucosa patch 
can be used as a convenient tool for sedation and that it may be 
of therapeutic value due to its antiapoptotic effects under nor-
mal conditions.
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