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Simple Summary: Urine cell-free microRNAs (cfmiRs) are promising biomarkers for the detection
of prostate cancer (PCa) and may replace or complement prostate-specific antigen screening. This
pilot study aims to demonstrate the diagnostic utility of urine cfmiRs for early-stage PCa using a
robust microRNA (miR) panel based on next-generation sequencing. We assessed urine, plasma, and
formalin-fixed paraffin-embedded tumor tissue samples obtained from patients diagnosed with pT2
PCa. Differentially expressed miRs were found in urine, plasma, and tumor samples obtained from
PCa patients. Through bioinformatic analysis, several miRs were found as potential cfmiRs with
utility for the detection of PCa. Our results showed that specific cfmiRs in urine samples from PCa
patients may have potential utility in the detection of early-stage PCa.

Abstract: Prostate cancer (PCa) is the most common cancer in men. Prostate-specific antigen screening
is recommended for the detection of PCa. However, its specificity is limited. Thus, there is a need
to find more reliable biomarkers that allow non-invasive screening for early-stage PCa. This study
aims to explore urine microRNAs (miRs) as diagnostic biomarkers for PCa. We assessed cell-free miR
(cfmiR) profiles of urine and plasma samples from pre- and post-operative PCa patients (n = 11) and
normal healthy donors (16 urine and 24 plasma) using HTG EdgeSeq miRNA Whole Transcriptome
Assay based on next-generation sequencing. Furthermore, tumor-related miRs were detected in
formalin-fixed paraffin-embedded tumor tissues obtained from patients with localized PCa. Specific
cfmiRs signatures were found in urine samples of localized PCa patients using differential expression
analysis. Forty-two cfmiRs that were detected were common to urine, plasma, and tumor samples.
These urine cfmiRs may have potential utility in diagnosing early-stage PCa and complementing or
improving currently available PCa screening assays. Future studies may validate the findings.

Keywords: microRNA; cell-free microRNA; urine; plasma; prostate cancer; diagnosis

1. Introduction

Prostate cancer (PCa) is the most diagnosed cancer, and the second leading cause of
cancer death in men in the United States [1]. Prostate-specific antigen (PSA) is a serine
protease specific to the prostate. PSA screening plays an important role in the early detection
of PCa [2]. However, it may be elevated in conditions other than PCa, including benign
prostate hyperplasia (BPH) and acute prostatitis [3]. PSA screening has a low specificity
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while only achieving an adequate sensitivity [4]. In addition, PCa may be detected even if
PSA levels are below the cutoff point [5]. The detection rate of PCa is reported to be around
20% among the cohort with PSA under the cutoff point, including high-grade cancers [5–7].
For these reasons, there is a need to develop more reliable biomarkers for the early detection
of PCa.

Liquid biopsies have rapidly evolved as minimally invasive methods for the man-
agement of various cancers [8]. The major source of liquid biopsies has been blood [9,10];
however, urine is a promising source that enables non-invasive and cost-effective repetitive
sampling, making it beneficial in longitudinal patient follow-up [11,12]. Urine assessment
in PCa is feasible because the prostate gland releases not only prostate epithelium cells,
but also nucleic acids, proteins, and exosomes into the urine [13]. Recent technological
advancements in improved molecular detection have made it possible to develop novel
urine biomarkers for PCa [14].

MicroRNAs (miRs) are small non-coding RNAs of about 18–22 nucleotides in length
that epigenetically regulate the mRNA expression of targeted genes [15]. MiR profiles
of PCa tissues differ from those observed in other cancer types and normal tissues. In
contrast with circulating tumor DNAs (ctDNA) which have a limited half-life [8], miRs are
stable in urine and blood [16]. In addition, genomic aberrations in PCa tissues are not of
high frequency, thus limiting the utility of using ctDNA, particularly in early-stage PCa.
Therefore, a panel of urine cell-free miRs (cfmiRs) has potential to serve as a diagnostic,
predictive, and/or prognostic panel of biomarkers for early-stage PCa [17]. Several studies
have shown the diagnostic potential of urine cfmiRs in PCa patients [18–20]. However,
miR assessment in these studies was variable in approaches: patient cohorts with differ-
ent stages, variable sample collection procedures, different miR extraction procedures,
miR assays with variable types of polymerase chain reactions, and different data anal-
yses [21,22]. In some studies, urine was sampled after prostate massage to increase the
amount of secretion from the prostate gland; however, this method is considered invasive
and not reliable [23–25]. In addition, patients with BPH or a negative prostate biopsy
were assigned to control cohorts in most studies, which complicated the interpretation of
results. BPH does not completely exclude the presence of latent PCa, and negative PCa
biopsy may be due to diagnostic inaccuracy [26,27]. Thus, more robust, and universal
molecular assays, as well as better study designs are needed to overcome these issues.
We have previously demonstrated that specific miRs can be detected in blood and urine
samples from melanoma patients using a commercially available next-generation sequenc-
ing (NGS)-based assay; HTG EdgeSeq miRNA Whole Transcriptome Assay (WTA) (HTG
Molecular Diagnostics, Tucson, AZ, USA) [12]. HTG EdgeSeq miRNA WTA is a platform
that allows the quantification of 2083 human miRs using a small amount of biofluids with
high specificity and reproducibility [28,29].

The study was focused on localized PCa to determine if we could detect cfmiR in urine
samples. In this study, we analyzed cfmiR profiles in paired urine and plasma samples
obtained from PCa patients using HTG EdgeSeq miRNA WTA. We first determined cfmiRs
detected in urine samples. To overcome the problem of controls, we compared miR profiles
of samples from patients before and after prostatectomy. We demonstrated the detectability
of cfmiRs in urine and plasma samples from early-stage PCa patients and the potential
utility of urine cfmiRs as diagnostic biomarkers for PCa.

2. Materials and Methods
2.1. Study Design

This is a prospective pilot study that followed protocol guidelines approved by
SJHC/JWCI IRB (SJCI/JWCI-18-0401) and Western IRB (MORD-RTPCR-0995). All partici-
pants provided written informed consent. A total of 11 patients with PCa who underwent
a robot-assisted radical prostatectomy (RALP) with or without lymph node dissection by
T.G.W. between March 2019 and November 2021 at SJHC were enrolled.
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Urine and plasma samples from PCa patients (n = 11) diagnosed with pT2 were
procured at SJHC/SJCI. Paired plasma and urine samples before and after RALP were
collected. PCa patients with paired pre- and post-operative (n = 8) and PCa patients with
pre-operative (n = 3) were used in the analyses. The median duration between sample
collection and surgery was 0 days (0–34 days) before RALP and 50 days (43–244 days)
after RALP. Serum PSA levels of all patients decreased below detection sensitivity at the
time of post-operative collection. In addition, plasma (n = 24) and urine (n = 16) samples
from normal healthy donors (NHD) were collected using the same process as with PCa
patients. Formalin-fixed paraffin-embedded (FFPE) tissues were obtained from the division
of surgical pathology at SJHC from PCa patients diagnosed with pT2 (n = 14) and BPH
(n = 23) patients who underwent RALP and a robot-assisted simple prostatectomy at SJHC,
respectively.

2.2. Urine Collection and Nucleic Acid Isolation

Urine samples were collected using a standard sterile 100 mL urine collection cup
(Medtronic, Minneapolis, MN, USA). Each urine cup contained 0.05 M, pH 8.0 ethylenedi-
aminetetraacetic acid (Bioworld, Little Rock, AR, USA). Urine was aliquoted and stored
at −80 ◦C until assessed. Total RNA was extracted from a 15 mL urine sample using
urine nucleic acid isolation kits followed by an automated nucleic acid isolation system
(JBS Science Inc., Doylestown, PA, USA). Briefly, urine samples were thawed, and lysis
buffer was added. Samples were incubated with beads and washed with ethanol to extract
urine nucleic acids. Urine nucleic acids were quantified according to the manufacturer’s
protocol. The isolated nucleic acids in elution buffer were then aliquoted and cryopreserved
at −80 ◦C until needed for assays.

2.3. Plasma Collection

All blood samples were collected in Streck tubes (Streck, La Vista, NE, USA). All blood
samples were centrifuged at 1600× g for 10 min at 10 °C immediately, aliquoted, barcoded,
and cryopreserved as plasma aliquots at −80 ◦C.

2.4. Preparation of FFPE Tissue Samples

FFPE tissues of PCa and BPH were cut into 5 µm sections using rotary microtome HM
325 (Thermo Fisher Scientific, Waltham, MA, USA) and the regions of PCa and BPH were
micro-dissected with sterile scalpels and dissecting needles, as previously reported [12].
The micro-dissected regions were verified by pathologists according to the hematoxylin
and eosin-stained slides (Supplementary Figure S1).

2.5. HTG EdgeSeq miRNA WTA for Urine, Plasma, and Tissue Samples

Nucleic acids extracted from urine samples from NHDs and PCa patients were pro-
cessed with HTG biofluid lysis buffer without incubation, following the HTG user manual.
Plasma samples were thawed and incubated with HTG plasma lysis buffer for 3 h at 50 °C
at 450 rpm on the Mixer HC (USA Scientific, Ocala, FL, USA). Micro-dissected FFPE tissue
samples were incubated with HTG bulk lysis buffer, proteinase K, and denaturalization oil
for 3 h at 50 °C at 450 rpm on the Mixer HC. Then, all lysed samples were processed on the
automated HTG EdgeSeq instrument for probe-capture of 2083 validated human miRs for
20 h. After probe-capture was completed, NGS library preparation, bead clean-up, NGS
library quality controls, and NGS library normalization and pooling were performed as
previously described [12].

The NGS was performed with Illumina NextSeq 550 or MiSeq platforms following
HTG EdgeSeq miRNA WTA instructions. Sequences were assessed with a read length of
1 × 50 base pairs. FASTQ files were generated from raw sequencing data using Illumina
BaseSpace bcl2fastq software version 2.2.0 and Illumina Local Run Manager Software
version 2.0.0. FASTQ files were analyzed with HTG EdgeSeq Parser software version
v5.3.0.7184 to generate raw counts for 2083 miRs per sample [12,30–32]. All the samples in-
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cluded in this study passed quality control checks. Each HTG miRNA WTA assay includes
negative (CTRL_ANT1, CTRL_ANT2, CTRL_ANT3, CTRL_ANT4, and CTRL_ANT5) and
positive (CTRL_miR_positive) miR controls, and 13 mRNA housekeeping genes (ACTB,
B2M, GAPDH, YWHAZ, PPIA, RNU47, RNU75, RNY3, SNORA66, RPL19, RPS20, RPL27,
and RSP12). All the controls were included in addition to the 2083 total miR panel. In
all runs, Human Brain Total RNA (Ambion, Inc., Austin, TX, USA) was used as a process
control for NGS library preparation but was not sequenced.

2.6. Bioinformatic and Biostatistical Analysis

Data analyses were processed and visualized using R version 4.1.0 [33] and packages
from the Bioconductor project [34]. Raw gene counts were normalized and transformed
using the variance stabilizing transform (VST) method from DESeq2 [35] for downstream
visualizations and unsupervised clustering analysis. Differential expression analysis was
carried out on raw counts within the DESeq2 framework. DESeq2 analyses and statis-
tical comparisons were performed between (1) NHDs vs. pre-operative urine samples;
(2) pre- vs. post-operative urine samples; (3) NHDs vs. pre-operative plasma samples;
(4) pre- vs. post-operative plasma samples; and (5) BPH vs. PCa tissue samples. p-values
(<0.05 significant) were calculated using the Wald test adjusted for multiple hypotheses
using the Benjamini-Hochberg method [36].

Differential expression was calculated using DESeq2 and only differentially expressed
(DE) miRs with a false-discovery rate < 0.05 and absolute log2 fold change (log2FC) > 1 were
included. T-test analysis and the one-way ANOVA were performed with R version 4.1.0. A
two-sided p-value < 0.05 was considered statistically significant. All figures were unified
using CorelDraw graphics suite 8X (Corel Corporation, Ottawa, ON, Canada) and/or
Adobe Illustrator CC (Adobe Inc., Los Angeles, CA, USA).

3. Results
3.1. Patient Characteristics

Among 11 PCa patients analyzed, only eight patients had paired pre- and post-
operative samples and the remaining three patients had only pre-operative urine and
plasma samples. The clinicopathological characteristics are summarized in Table 1. All
patients were histologically diagnosed with pT2 PCa. No lymph node or distal metastases
were detected pathologically or clinically. Normal plasma samples were analyzed from
24 male NHDs and normal urine samples were analyzed from 16 male NHDs with ages
ranging from 21–65 years old. PCa and BPH patients with FFPE tissue samples analyzed
were independent from patients assessed for urine and plasma samples.

Table 1. Clinicopathological characteristics of prostate cancer (PCa) and benign prostate hyperplasia
(BPH) patients.

Variables

PCa with
Pre- & Post-op

Samples
(n = 8)

PCa with
Pre-op Samples

(n = 11)

PCa with
FFPE Samples

(n = 14)

BPH with
FFPE Samples

(n = 23)

Age, median (range) 68 (56–76) 69 (56–76) 69.5 (58–75) 68 (51–85)
Serum PSA levels (ng/mL),

median (range) 8.75 (4.30–11.20) 8.60 (4.30–11.98) 7.5 (4.5–90.6) -

Pathological T stage, n (%)
pT2 8 (100) 11 (100) 14 (100) -

Grade group, n (%)
1 1 (12.5) 1 (9.1) 1 (7.1) -
2 3 (37.5) 4 (36.4) 0 (0) -
3 3 (37.5) 4 (36.4) 6 (42.9) -
4 0 (0) 1 (9.1) 5 (35.7) -
5 1 (12.5) 1 (9.1) 2 (14.3) -
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Table 1. Cont.

Variables

PCa with
Pre- & Post-op

Samples
(n = 8)

PCa with
Pre-op Samples

(n = 11)

PCa with
FFPE Samples

(n = 14)

BPH with
FFPE Samples

(n = 23)

Lymphovascular invasion, n (%)
Present 0 (0) 0 (0) 3 (21.4) -
Absent 8 (100) 11 (100) 11 (78.6) -

Focality, n (%)
Unifocal 2 (25.0) 4 (36.4) 0 (0) -

Multifocal 6 (75.0) 7 (63.6) 14 (100) -
Surgical margins status, n (%)

Negative 6 (75.0) 7 (63.6) 11 (78.6) -
Positive 2 (25.0) 4 (36.4) 3 (21.4) -

Biochemical recurrence, n (%)
Present 0 (0) 0 (0) 3 (21.4) -
Absent 8 (100) 11 (100) 11 (78.6) -

PCa, prostate cancer; BPH, benign prostate hyperplasia; FFPE, formalin-fixed paraffin-embedded; PSA, prostate
specific antigen.

3.2. CfmiRs Detected in Urine Samples of PCa Patients

To determine if miRs can be detected in pT2 PCa patients, we assessed urine, plasma,
and FFPE tissue samples using HTG EdgeSeq miRNA WTA. All samples were successfully
analyzed and passed the quality control checks. First, we assessed miRs profiles in urine
samples (pre- and post-operative PCa patients vs. NHDs). The principal component
analysis (PCA) revealed that both pre- and post-operative PCa patients have different
cfmiR patterns compared to NHDs (Figure 1A). Volcano plots were utilized to visualize DE
miRs among different cohorts. A total of 449 miRs were found to be differentially expressed
in urine samples of pre-operative PCa patients compared to those of NHDs. Of those, 301
and 148 miRs were up- and down-regulated, respectively (Figure 1B). Eighty-nine cfmiRs
were differentially expressed significantly (49 up- and 40 down-regulated, Figure 1C) in
urine samples of pre- vs. post-operative PCa patients. We identified 25 cfmiRs that were
down-regulated in post-operative samples among DE cfmiRs compared to pre-operative
PCa and NHDs (Table 2).

Table 2. Urine cfmiRs down-regulated in post-operative samples that were also differentially ex-
pressed between pre-operative PCa and NHD samples.

miR log2FC p-Value Adjusted p-Value

miR-1262 2.40 0.0006 0.0033
miR-141-3p 1.79 0.0002 0.0013
miR-146a-5p 3.16 0.0005 0.0027
miR-193b-3p 1.38 0.0290 0.0721
miR-200a-3p 2.23 0.0015 0.0066
miR-200a-5p 1.62 0.0024 0.0097
miR-200b-5p 2.18 0.0004 0.0022
miR-200c-3p 2.94 6.65 × 10−6 6.22 × 10−5

miR-205-3p 1.60 0.0100 0.0308
miR-22-3p 2.01 0.0040 0.0147

miR-29a-3p 3.85 4.56 × 10−7 5.36 × 10−6

miR-29b-2-5p 1.92 0.0023 0.0094
miR-29b-3p 4.06 1.01 × 10−7 1.33 × 10−6

miR-29c-3p 3.55 5.36 × 10−7 6.17 × 10−6

miR-29c-5p 2.13 0.0021 0.0089
miR-30d-5p 1.53 0.0032 0.0124
miR-31-5p 1.33 0.0048 0.0169

miR-363-3p 1.81 0.0039 0.0145
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Table 2. Cont.

miR log2FC p-Value Adjusted p-Value

miR-3687 2.93 0.0001 0.0008
miR-4417 2.17 0.0025 0.0101

miR-4709-3p 2.12 0.0059 0.0199
miR-584-5p 1.77 0.0133 0.0379

miR-622 1.76 0.0033 0.0126
miR-663b 2.60 0.0003 0.0015
miR-934 1.92 0.0140 0.0398

cfmiR, cell-free microRNA; PCa, prostate cancer; NHDs, normal healthy donors; miR, microRNA; log2FC, log2
fold change. p-values were calculated using the Wald test adjusted for multiple hypotheses using the Benjamini-
Hochberg method.

Figure 1. Differentially expressed (DE) cell-free microRNAs (cfmiRs) in urine from PCa patients.
(A) The principal component analysis (PCA) of microRNAs (miRs) detected in urine samples. The
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scatter plot of PCA axis 1 (PC1) and axis 2 (PC2) shows the pattern of cfmiR detected in urine samples
of normal healthy donors (NHDs), post-, and pre-operative PCa patients. Individual data points
are colored accordingly, NHD (pink), post- (green) and pre-operative (blue) PCa patients. (B,C)
Volcano plots of DE miRs in urine samples of pre-operative PCa patients vs. NHDs (B) and pre- vs.
post-operative PCa patients (C) are shown, discriminated based on p-value and log2 fold change
(log2FC) at an α level of 0.05 and absolute log2FC cutoff of 1. Colored dots correspond to each miR
whose expression differences were significant based on both p-value and log2FC values (red dots),
only p-value (blue dots), only log2FC (green dots), or not significant (grey dots). Down-regulated
cfmiRs are on the left side and up-regulated cfmiRs are on the right side (total variables = 2083). NS,
not significant.

3.3. CfmiRs Detected in Plasma Samples of PCa Patients

To assess cfmiR profiles present in plasma, similar analyses for urine samples were
performed. PCA demonstrated that the cfmiR pattern detected in plasma samples is
similar to that of urine samples (pre-, post-operative PCa patients and NHDs; Figure 2A).
The visualization of up- and down-regulated DE cfmiRs was studied by volcano plots.
We detected 290 DE cfmiRs between pre-operative PCa patients and NHDs and two
cfmiRs between pre- and post-operative PCa patients (Figure 2B,C). Four cfmiRs that were
differentially expressed between pre-operative PCa patients and NHD samples were also
down-regulated in post-operative PCa patients (Table 3).

3.4. Identification of miRs as Diagnostic Markers for PCa

To verify if miR expression profiles detected in plasma and urine samples were present
in tumor tissues, we compared the different sources. Tumor-related miRs were identified by
comparing tissue miR profiles of PCa and BPH patients. The volcano plot shows DE miRs
in PCa tissue samples, of 106 were up-regulated and 189 were down-regulated (Figure 3).
Next, we assessed the commonly expressed DE miRs among different sample cohorts
(urine, plasma, and tissue) to determine key miRs candidates that may have diagnostic
potential. A comparison of tumor-related miRs and DE cfmiRs in urine and plasma between
pre-operative PCa patients and NHDs was performed (Figure 4). The results demonstrated
that 17.0% (92 of 542) of urine cfmiRs were also found commonly in PCa tissues. Among
plasma cfmiRs, 20.2% (108 of 535) were commonly detected in PCa tissue samples. A total
of 42 miRs were common in all three comparisons as shown in the Venn diagram (Figure 4)
and listed in Table 4.

Table 3. Plasma cfmiRs down-regulated in post-operative plasma samples that were also differentially
expressed between pre-operative and NHDs plasma samples.

miR log2FC p-Value Adjusted p-Value

miR-1283 1.29 0.0067 0.0354
miR-3692-5p 1.21 0.0072 0.0368
miR-515-5p 1.59 0.0061 0.0329
miR-5187-3p 1.50 0.0070 NA

cfmiR, cell-free microRNA; NHDs, normal healthy donors; miR, microRNA; log2FC, log2 fold change; NA, not
available. p-values were calculated using the Wald test adjusted for multiple hypotheses using the Benjamini-
Hochberg method.
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Figure 2. Specific cfmiRs detected in plasma samples from PCa patients. (A) The cfmiRs were
detected in plasma samples of PCa patients. The scatter plot of PCA axis 1 (PC1) and axis 2 (PC2)
shows the pattern of cfmiR detected in plasma samples of NHDs, post-, and pre-operative PCa
patients. Individual data points are colored accordingly, NHD (pink), post- (green) and pre-operative
(blue) PCa patients. (B,C) Volcano plots of DE microRNAs in plasma samples of pre-operative PCa
patients vs. NHDs (B) and pre- vs. post-operative PCa patients (C) are shown, discriminated based
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on p-value and log2FC at an α level of 0.05 and absolute log2FC cutoff of 1. Colored dots correspond
to each cfmiR whose expression differences were significant based on both p-value and log2FC
values (red dots), only p-value (blue dots), only log2FC (green dots), or not significant (grey dots).
Down-regulated cfmiRs are on the left side and up-regulated cfmiRs are on the right side (total
variables = 2083).

Figure 3. Specific microRNAs (miRs) detected in PCa and BPH tissues. The volcano plot of DE
miRs in tissue samples of BPH vs. PCa is based on p-value and log2FC at an α level of 0.05 and
absolute log2FC cutoff of 1. Colored dots correspond to each miR whose expression differences were
significant based on both p-value and log2FC values (red dots), only p-value (blue dots), only log2FC
(green dots), or not significant (grey dots). Down-regulated miRs are on the left side and up-regulated
genes are on the right side (total variables = 2083).

Figure 4. Overlapping DE miRs detected among plasma, urine, and FFPE tissue samples. The Venn
diagram shows the significant DE miRs that overlap in all types of samples analyzed.
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Table 4. The common DE miRs in urine, plasma, and tissue samples of PCa patients.

let-7d-5p miR-224-5p miR-362-5p miR-4751 miR-6802-5p
let-7e-5p miR-22-5p miR-3648 miR-487b-3p miR-6803-5p

miR-1468-5p miR-23a-3p miR-377-3p miR-494-3p
miR-146b-5p miR-23b-3p miR-3937 miR-500a-5p

miR-147b miR-24-3p miR-3943 miR-505-5p
miR-181a-5p miR-27a-3p miR-4271 miR-551b-3p
miR-181d-5p miR-27b-3p miR-4279 miR-561-3p
miR-186-5p miR-29b-3p miR-4417 miR-6738-5p
miR-221-5p miR-30a-5p miR-455-3p miR-675-3p
miR-222-3p miR-335-5p miR-4638-5p miR-6789-5p

DE, differentially expressed; miR, microRNA; PCa, prostate cancer.

4. Discussion

Liquid biopsy, as a less invasive and practicably repeatable diagnostic tool, is an
emerging resource for precision oncology to replace or be combined with conventional
tissue-based biopsy [8]. Liquid biopsy provides molecular characterization on circulating
tumor cells (CTC), ctDNA, extracellular vesicles, cell-free RNA and miR in different bioflu-
ids [9]. MiR profiles have been associated with specific tumor characteristics reflecting each
stage of tumor evolution [37]. Compared to ctDNAs and CTCs, miRs have the advantage
of abundance and detectability in clinical specimens [38], and may represent better blood
biomarkers for diagnosing early-stage cancers. CfmiRs detected in the blood are highly
stable and do not rapidly degrade after blood has been drawn as ctDNA does [14]. To date,
there are more than 2000 characterized human miRs in the miRbase, v22 [39]. The utility
of cfmiRs as biomarkers has gained recent attention due to major technical improvements
in the field and the need for non-invasive and cost-effective assays that allow repetitive
surveillance and assessment. Although several studies have demonstrated that single
miRs or miR signatures have potential utility to serve as diagnostic biomarkers in various
types of cancer, there has been no consistent or validated agreement in cfmiRs profiles as
diagnostic biomarkers [40]. Thus, there is a need to find novel and robust assays which
enable comprehensive profiling of cfmiRs. The HTG EdgeSeq miRNA WTA provides the
opportunity to detect 2083 human miRs based on NGS technologies, which is more accurate
and sensitive than polymerase chain reaction assays [12]. NGS assays of bulk mRNA/miR
sequencing have inherent bioinformatic complexities in defining specific miRs.

Urine represents a valuable source for exploring biomarkers related to PCa because
it contains cell-free nucleic acids and cells released from the prostate gland [13,14]. Urine
tests have the advantage over blood tests in aspects of non-invasiveness, convenience,
and compliance. In this study, HTG EdgeSeq miRNA WTA afforded robust and sensitive
detection of cfmiRs in urine, equivalent to those in plasma. Using this novel assay, we
demonstrated the detectability of miRs not only in urine but also in plasma and FFPE
samples. Several reports have examined the diagnostic value of urine cfmiRs for PCa.
However, they have problems with adopting inappropriate control cohorts or having
inaccuracy that might detect miRs unrelated to PCa tumors. To overcome these matters,
we compared the miR profiles between pre- and post-operative samples. However, DE
miRs before and after surgery may include cfmiRs related to the normal prostate gland. To
solve the previous problems, we identified the tumor-related miR profiles by comparing
miRs between PCa and BPH FFPE tissues and then extracted only cfmiRs detected in PCa
tumors. This analysis was possible because HTG EdgeSeq miRNA WTA could identify
comprehensive miR profiles accurately with a small amount of fluid samples. The urine
assay may have an advantage for early detection, particularly of localized PCa, whereas in
systemic disease spreading, blood assessment may be more beneficial. This will have to be
investigated in the future.

In this study, we demonstrated that we could detect cfmiRs from urine samples of early-
stage localized PCa using an NGS-based assay, HTG EdgeSeq miRNA WTA. Furthermore,
by analyzing and comparing commonly DE miRs from different cohorts, we determined
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key potential miR candidates related to PCa. Our study demonstrated 42 urine cfmiRs
that have potential as diagnostic biomarkers for PCa. Among these 42 cfmiRs, several
miRs have already been reported to be associated with PCa. These studies are preliminary
and functional analyses examining whether miRs have promoting or suppressing effects
on tumor required further investigation. The miRs cover a wide range of pathways and
mechanisms including those related to tumor progression and early development [41–45].
In previous studies, miR-24-3p, miR-27a-3p, miR-146b-5p, and miR-23a-3p were reported as
oncomiRs with the potential to influence tumor cell migration, invasion, and proliferation in
PCa cell lines [46–50]. MiR-30a-5p, miR-455-3p, miR-23b-3p, miR-494-3p, and miR-27b-3p
were reported as suppressors of specific genes in PCa [42,49,51–53]. MiRs are involved in
multiple processes of development and progression in cancer, and their expression changes
dynamically [17,54]. The remaining miRs have not been explored in PCa to date and may be
promising candidates as biomarkers. For further verification of specific miRs, it is necessary
to analyze larger cohorts of patients to determine consistency and to include samples from
PCa patients at different stages.

This study has several limitations. The main limitation is that the sample size of PCa
patients is small and only pT2 PCa patients were included. Thus, further analyses including
larger cohorts of different stages of PCa are needed to validate the findings. The other issue
that needs to be addressed is the diurnal release of miR into the urine. In this prospective
pilot study, we could not establish a uniform timing of sample collections due to patient
scheduling. It remains to be determined if the collection time of urine influences the
detection levels of cfmiR. This must be further explored in future studies with prospective
study designs involving time-course analysis. Fluid diet intake and non-cancer medical
conditions could influence urinary frequency. Patients with high and low urination may
influence the levels of cfmiRs.

5. Conclusions

In this pilot study, we presented a comprehensive cfmiR profiling in urine, plasma, and
FFPE tissue samples from PCa patients using HTG EdgeSeq miRNA WTA. We identified 42
urine cfmiRs as potential diagnostic biomarkers for PCa. Further investigations are needed
to validate the utility of these cfmiRs for diagnosing PCa.
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