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Abstract

Genomic selection has become a useful tool for animal and plant breeding. Currently, geno-

mic evaluation is usually carried out using a single-trait model. However, a multi-trait model

has the advantage of using information on the correlated traits, leading to more accurate

genomic prediction. To date, joint genomic prediction for a continuous and a threshold trait

using a multi-trait model is scarce and needs more attention. Based on the previously pro-

posed methods BayesCπ for single continuous trait and BayesTCπ for single threshold trait,

we developed a novel method based on a linear-threshold model, i.e., LT-BayesCπ, for joint

genomic prediction of a continuous trait and a threshold trait. Computing procedures of LT-

BayesCπ using Markov Chain Monte Carlo algorithm were derived. A simulation study was

performed to investigate the advantages of LT-BayesCπ over BayesCπ and BayesTCπ
with regard to the accuracy of genomic prediction on both traits. Factors affecting the perfor-

mance of LT-BayesCπ were addressed. The results showed that, in all scenarios, the accu-

racy of genomic prediction obtained from LT-BayesCπ was significantly increased for the

threshold trait compared to that from single trait prediction using BayesTCπ, while the accu-

racy for the continuous trait was comparable with that from single trait prediction using

BayesCπ. The proposed LT-BayesCπ could be a method of choice for joint genomic predic-

tion of one continuous and one threshold trait.

Introduction

With the developments of single-nucleotide polymorphism (SNP) chips and genotyping by

sequencing, a huge number of genome-wide polymorphisms have been widely used in practi-

cal animal and plant breeding programs. Genomic selection (GS) can use the information of

genome-wide markers to accurately predict the genetic merit of an animal without the need of
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its own phenotypic information[1]. In a typical process of genomic prediction, SNP effects are

estimated using a training population consisting of individuals with both SNP genotypes and

phenotypes, and then these estimated effects are used to build a prediction equation to calcu-

late the genomic estimated breeding values (GEBVs) for breeding candidates, based on their

SNP genotypes. Therefore, an appropriate model is a key to accurately predict GEBVs in GS.

Many Bayesian models have been proposed to estimate GEBVs. In the first paper of geno-

mic selection[1], two Bayesian methods (BayesA and BayesB) were presented to estimate geno-

mic breeding values and have been extensively used in the subsequent studies of genomic

selection[2–5]. However, there are two drawbacks of BayesA and BayesB. One drawback is

that the full-conditional posterior distribution of a locus-specific variance has only one addi-

tional degree of freedom compared to its prior distribution regardless of the number of geno-

types or phenotypes, and the shrinkage of SNP effects depends strongly on the scale parameter

S2
a as pointed out by Gianola et al.[6]. The other one is that for BayesB the possibility π of a

SNP having zero effect should be given as known. To overcome these two drawbacks, Habier

et et al.[7] proposed two new methods, BayesCπ and BayesDπ. For BayesCπ, a single variance

is common to SNPs having non-zero effects instead of locus-specific variances, while for

BayesDπ, the scale parameter, S2
a, for the scaled inverse chi-square prior of the locus-specific

variance is treated as an unknown with a Gamma(1,1) prior. Both BayesCπ and BayesDπ treat

π as an unknown, and need to be inferred from the data.

Wang et al.[8] extended the three Bayesian methods (BayesA, BayesB, and BayesCπ) for a

Gaussian trait to be used for a threshold trait. The extended methods are correspondingly

termed BayesTA, BayesTB and BayesTCπ, respectively. From the results of a simulation study

on a threshold trait, the three BayesT methods performed better than the corresponding Bayes-

ian methods when treating a threshold trait as a Gaussian trait, and BayesTCπ performed the

best among the three new methods, so it was recommended as the method of choice for thresh-

old traits in genomic selection[8]. In addition, a Bayesian multi-locus association mapping for

threshold traits using a threshold model was also proposed by Iwata et al.[9], and their approach

could reduce both false-positive and false-negative rates in detecting QTL to reasonable levels.

Currently, a single trait model is usually applied in practical genomic prediction. Theoreti-

cally, a joint genomic evaluation of genetically correlated traits should lead to more accurate

predictions than single trait genomic prediction as shown in some studies[10–14]. However,

these studies all focused on multiple continuous traits, and studies on a joint genomic predic-

tion of continuous and discrete traits are scarce so far. In practical animal breeding, people

often need to make selection for continuous and categorical traits simultaneously (e.g., birth

weight and calving ease in cattle and growth rate and leg weakness in pig). In conventional

breeding value prediction based on phenotypic and pedigree information, methods for joint

analysis of continuous and threshold traits have been well established[15–18]. In this study, we

proposed a BayesCπ bivariate model for a joint genomic prediction of one normal distributed

trait and one threshold trait, which was termed as LT-BayesCπ. We validated LT-BayesCπ
with simulated data and with a common data set from the 14th QTL-MAS workshop[19]. The

accuracy of genomic prediction obtained from LT-BayesCπ was compared with that from

BayesCπ or BayesTCπ based on single-trait model. Furthermore, factors affecting the perfor-

mance of LT-BayesCπ were investigated as well.

Methods

Models

Let y0
1
¼ fy1;ig (i = 1, 2,. . ., n) be the vector of observations for a continuous trait, y0

2
¼ fy2;ig

(i = 1, 2,. . ., n) be the vector of observations for a threshold trait and l0 = {li} (i = 1, 2,. . ., n) be
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the vector of underlying latent variables or liabilities associated with the threshold trait. The

linear-threshold model is

y
1

l

" #

¼
X1 0

0 X2

" #
β1

β2

" #
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Z 0

0 Z

" #
g1

g
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" #

þ
e1

e2

" #

;

where β1(2) is a vector of fixed effects, g1(2) is the vector of SNP effects, e1(2) is the vector of the

random residuals, X1(2) is the incidence matrix for β1(2), and Z is the matrix of genotype indi-

cators with values 0,1 or 2 for genotypes 11, 12 and 22, respectively. Let v0 ¼ y0
1
; l0½ �. It is

assumed that, given β and g, v is distributed as

vjβ; g;Re � Nð
X1β1 þ Zg
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X2β2 þ Zg2
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Then, given β, g and Re, the sampling model can be written as

p vjβ; g;Reð Þ / jRej
� n

2exp �
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.

MCMC implementation of LT-BayesCπ
Prior distributions. In this study, the following prior distributions are assumed for build-

ing a hierarchical model.

For fixed effects β:

βjbmin; bmax � [ðbmin; bmaxÞ

For SNP effects g:

Each SNP has either a zero effect for both traits or non-zero effect for at least one trait with

probabilities π and 1−π, respectively. For the latter case, its prior distribution is bivariate nor-

mal, i.e.,

g1

g
2

" #

jG0 � Nð
0

0

" #

;G0 
 IÞ;

where G0 ¼
s2
g1

sg1;2

sg1;2 s2
g2

" #

.

For G0 and Re

G0 and Re are assumed to follow inverse Wishart distributions:

p G0jvg ;Vg

� �
/ jG0j

� 1
2

vgþ3ð Þexp½�
1

2
tr G� 1

0
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� 1

2
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1

2
trðR� 1

e V � 1

e Þ�;
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where vi and Vi (i = g, e) are the usual hyper-parameters of the scaled inverse Wishart distribu-

tion, which are assumed to be known. In particular, if vi = -3 and Vi = 0, these two distribu-

tions reduce to improper uniform distributions [17].

For the thresholds t:

Suppose the threshold trait consists of k categories, then there are k-1 hypothetical thresh-

olds (t’ = [t1, t2, . . ., tk-1]) in the underling latent scale. These thresholds are assumed to follow

ordered uniform distribution in the interval [tmin, tmax]. However, two of the thresholds must

be fixed, so as to ensure the identifiability of the parameters. Typical choices are t1 = 0 and t2 =

1[17]. Therefore, there are k-3 unknown thresholds. The joint prior density of t is

p tð Þ ¼ k � 3ð Þ!
1

tmax � tmin

� �k� 3

I t 2 Tð Þ;

where T = {(t1 = 0,t2 = 1,t2,. . .,tk−1)|tmin � t1� � � � � tk−1� tmax}, I is an indicator vector. If

t2T, elements of I are 1, otherwise, elements of I are 0. In this study, we set tmax and tmin as μ
±10σ based on the normal distribution of liability.

For the probability of zero effect π:

pðpÞ � [ð0; 1Þ:

Joint posterior distribution. The parameter vector is augmented with the unobserved lia-

bilities l for the threshold trait and with the indicator variables δ for SNP effects (indicating

whether a SNP has an effect on the traits (with probability of 1 -π) or not (with probability of

π)), and is represented as (O,l,δ), where O = (β,g,G0,Re,t,π).

The joint posterior distribution of (O,l,δ) is

pðΩ; l; δjy1; y2;σ
2

e2 ¼ 1; t1 ¼ 0Þ / pðy1; y2jΩ; l; δÞpðΩ; l; δÞ ¼ pðy1; ljΩÞpðy2jΩ; lÞpðΩ;δÞ

Fully conditional posterior distributions. Liabilities. The fully conditional posterior dis-

tribution of liability li is a truncated normal distribution within the range from tj−1 to tj, i.e, li|
ELSE * N(E(li|ELSE), Var(li|ELSE)) and truncated within tj−1 to tj with

E lijELSEð Þ ¼ x0
2;iβ2 þ z 0

2;ig2 þ
se1;2

s2
e1

y1;i � x0
1;iβ1 � z 0

1;ig1

� �

and

Var lijELSEð Þ ¼ s2

e2 1 �
ðse1;2Þ

2

s2
e1s

2
e2

 !

Location parameters. Write the mixed model equations (MME) as Cθ̂ ¼ r, where C is left

hand, r is right hand, and θ̂ is a vector of unknown parameters, θ̂ ¼
β

g

" #

. The fully condi-

tional posterior distribution of θi is

yijELSE � Nð~yi ;C
� 1

ii Þ;

where ~yi ¼ C� 1
i;i ðri � Ci;� iθ� iÞ.
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Dispersion parameters. The fully conditional posterior distributions of the co-variance

matrix of SNP effects and residual effects are

G0jELSE � IW2ððV
� 1

g þ SgÞ
� 1
; vg þ qÞ

RejELSE � IW2ððV
� 1

e þ SeÞ
� 1
; ve þ nÞ

If the prior distributions of G0 and Re are flat (in case of vi = -3 and Vi = 0, i = g, e), these

two distributions reduce to

G0jELSE � IW2ðS
� 1

g ; q � 3Þ

RejELSE � IW2ðS
� 1

e ; n � 3Þ

The fully posterior distributions of other parameters and the procedure of the Gibbs sam-

pler are similar to single trait BayesTCπ which was described by Wang et al.[8].

It should be noted that when the categorical trait is binary, i.e., it has only two categories

with one threshold, it is not possible to fix two thresholds. In this case, a usual parameteriza-

tion is to fix the residual variance of the binary trait (s2
e2

) to be 1 and the threshold to be 0.

With this parameterization, rather than adopting an inverse Wishart prior for Re, one can

assign a conditional inverse Wishart prior (conditional on s2
e2
¼ 1) and the fully conditional

posterior distribution of Re is conditional scaled inverted Wishart given s2
e2
¼ 1 [17]. A general

algorithm for drawing samples from such a distribution was proposed by Korsgaard et al.

(1999) [20] (see also [17]). Following their algorithm, the realized values from the distribution

RejELSE;s2
e2 ¼ 1 can be obtained in the following way:

Let V ¼ S � 1
e ¼

V11 V12

V21 V22

" #

Sample x1 from W1(V11,n−3).

Sample x2 from NðV � 1
11 V12; x� 1

1 V22:1Þ, where V22:1 ¼ V22 � V 2
12V � 1

11 .

Let T11 ¼ x� 1
1 þ x2

2, T12 = −x2, and T22 = 1, then T11, T12 and T22 are the realized values from

the distribution RejELSE; s2
e2 ¼ 1.

Simulation study

Data simulation. To evaluate the proposed method LT-BayesCπ, we carried out a series

of simulations using the multiple-trait genomic simulation software GPOPSIM [21]. For sim-

plicity, we simulated a continuous and a binary threshold trait with different genetic correla-

tion levels between them.

Briefly, the simulation started with a base population consisting of 100 individuals, followed

by 1,000 non-overlapping historical generations with the same population size in each genera-

tion, denoted as generation -999 to generation 0. In each historical generation, 50 males were

randomly mated with 50 females and each mating produced one male and one female offspring.

All markers were monomorphic at the starting status in the base population, then polymorphic

markers were generated in the following generations by mutation with a mutation rate of

1.25 × 10−3, and reached the mutation-drift equilibrium status through genetic drift. After

1,000 historical generations, six generations, numbered from 1 to 6, were further generated. In

Genomic prediction for two continuous-binary correlated traits
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generation 1, the population size was expanded from 100 to 1,000 by increasing the number of

offspring of each female in generation 0 from 2 to 20 (10 males and 10 females). From genera-

tion 1 to 5, 50 males were randomly selected from the 500 males to be sires of the next genera-

tion and all 500 females were used as dams. Each selected male mated randomly with 10 females

and each female produced two offspring (one male and one female). Generations 1 and 2 were

treated as training population across the scenarios studied, and generations 3–6 were validation

(candidate) populations.

We simulated five chromosomes with a total length of 5 Morgan (1 Morgan per chromo-

some). On each chromosome, 2,000 markers were evenly distributed and every two adjacent

loci were assumed to harbor a potential QTL. The final true QTL were randomly sampled

from these potential QTL. Based on the distance between two adjacent loci, Haldane’s map-

ping function was used to calculate the probability of recombination between adjacent loci.

Two genetically correlated traits (denoted as Trait A and Trait B) were simulated. Trait A

was a continuous trait with a normal distribution, and Trait B was a binary threshold trait with

normally distributed underlying liabilities. The sampled true QTL were divided into three

groups, Group1, Group2 and Group3. QTL in Group1 had pleiotropic effects on both traits,

and QTL in Group2 and Group3 had effects on trait A only or trait B only, respectively. The

allele substitution effects of each QTL in Group1 were sampled from a bivariate normal distri-

bution with varied genetic correlation (rAB) between the two traits and those in Group2 or

Group3 were drawn from univariate normal distributions, see details in[14]. For any rAB
between traits A and B, we set the ratio of QTL in Group1, Group2 and Group3 as 0.8:0.1:0.1,

except for the case of rAB = 0, where the ratio of QTL in Group1, Group2 and Group3 was set

as 0.0:0.5:0.5. The allele substitution effects were re-scaled to ensure that the total additive

genetic variances of trait A and B were equal to 2.0 and 1.0, respectively. The environmental

correlation was assumed to be 0.0, and the environmental effects on the two traits were sam-

pled independently from univariate normal distributions.

True breeding values (TBV), which were generated by summing effects of all QTL, were

added to environmental effects to produce phenotypic values of trait A and liability values of

trait B. Genotypes and TBV were simulated for all individuals from generations 1 to 6, but phe-

notypic or liability values were only assigned to the 2,000 individuals in generations 1 and 2

(training population). For trait B, a threshold value was assigned according to the assumed

incidence, and the observed phenotype of an individual with liability value lower than the

threshold value was 0, otherwise it was 1.

We firstly simulated a standard scenario in which the following parameters were assigned:

heritabilities of the two traits: h2
A ¼ 0:3 and h2

B ¼ 0:1, number of QTL = 60, genetic correlation

between traits A and B: rAB = 0.50, and the incidence (individuals with observation 1) for trait

B = 0.30. To investigate the impacts of various factors on genomic prediction, alternative sce-

narios were generated by using one of the following parameters to replace the corresponding

parameter in the standard scenario. These alternative parameters were: genetic correlation rAB
(0.00, 0.20, and 0.80), number of QTL (20, 200, and 500), heritability of the continuous trait A

(h2
A = 0.5 and 0.8), heritability of the binary threshold trait B (h2

A = 0.3 and 0.5), and incidences

of trait B (0.05, 0.1, and 0.5). For each scenario, 20 replicated datasets were simulated.

Data from the 14th QTL-MAS workshop. The common data set of the 14th QTL-MAS

workshop[19] was also used to evaluate the proposed method LT-BayesCπ. This data set con-

tains 3,226 individuals in five generations (F0-F4). All individuals have genotypes, and only

2,326 individuals in generations F0-F3 have phenotypic records on two traits: a quantitative

trait Q and a binary threshold trait B. Individuals with phenotypic records (F0-F3) were

treated as training population and those without phenotypic records (F4) as validation

Genomic prediction for two continuous-binary correlated traits
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(candidate) population. Five autosomal chromosomes were simulated, each 100Mbp long, and

contained 10,031 biallelic SNP without any missing data and genotype errors. The quantitative

trait Q was controlled by 37 QTL (30 additive QTL, 4 epistatic QTL and 3 imprinted QTL).

Out of the 30 additive QTL, 22 also influenced the binary threshold trait B which was not con-

trolled by any other QTL. The narrow-sense heritability (h2) for trait Q was 0.52 for males and

0.39 for females, whereas h2 for trait B was 0.48 for both males and females. The correlation

between breeding values for the two traits was 0.59 for males and 0.68 for females.

Estimation of SNP effects

Three Bayesian methods were implemented to estimate SNP effects based on the training pop-

ulation. The proposed new method LT-BayesCπ was used for the joint analysis of both traits,

while BayesCπ was used for the continuous trait and BayesTCπ for the threshold trait. For

each model, the Markov chains were run for 50, 000 cycles of Gibbs sampling, and the first 30,

000 cycles were discarded as burn-in. All remaining samples of SNP effects after burn-in were

averaged to obtain the estimates of SNP effects.

In the analysis of both simulated data sets by LT-BayesCπ, we assumed the values of the

hyper-parameters vg, Vg, ve and Ve of the prior distributions of G0 and Re to be -3, 0, -3, and 0,

respectively, such that they reduced to flat priors. In addition, in both simulated data sets, the

threshold trait was binary. So, as mentioned above, we fixed the threshold to be 0 and the

residual variance of the binary trait to be 1 in the analysis. We drew samples of the fully condi-

tional posterior distribution of Re using the algorithm mentioned above.

Accuracy of genomic prediction

GEBVs for individuals in the candidate population were calculated as the sum of all marker

effects according to their marker genotypes. For each trait, accuracy was measured as the cor-

relation between TBV and GEBV (rTBV,GEBV), and the regression of TBV on GEBV (bTBV,GEBV)

was also calculated for assessing the bias of genomic prediction. However, for the binary trait,

the scale of GEBV was not the same as TBV due to the restriction of s2
e2 ¼ 1. Thus, bTBV,GEBV

must be rescaled back to the original scale by using bTBV ;GEBV=
ffiffiffiffiffive2
p

, where ve2 is the true resid-

ual variance of the liabilities in the simulation. In addition, a t-test was carried out to investi-

gate the differences in accuracy obtained from LT-BayesCπ and the single-trait methods

BayesCπ or BayesTCπ.

Results

Analysis of simulated data

Estimates of SNP effects in the standard scenario. Fig 1 shows the simulated QTL effects

and the estimated SNP effects by LT-BayesCπ, BayesCπ and BayesTCπ from a randomly

selected replicate in the standard scenario. For the continuous trait (Trait A), the simulated

absolute SNP effects ranged from 0–0.75, and the estimated absolute SNP effects ranged from

0–0.55 from BayesCπ and 0–0.70 from LT-BayesCπ, respetively. For the binary threshold trait

(Trait B), the simulated absolute SNP effects ranged from 0–0.77, and the estimated absolute

SNP effects ranged from 0–0.14 from BayesTCπ and 0–0.21 from LT-BayesCπ, respectively.

Most of the segments containing QTL with large effects were mapped by all methods.

Accuracies of GEBVs in the standard scenario. Table 1 shows accuracies of GEBVs in

terms of correlations between GEBVs and simulated true breeding values in generations 3–6

(candidate population) in the standard scenario. For all methods, accuracies of genomic pre-

diction declined with generations as expected; the only exception is that the accuracy for trait

Genomic prediction for two continuous-binary correlated traits
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Fig 1. Simulated QTL effects and estimated SNP effects for the continuous trait (trait A) and the binary threshold trait (trait B) from a

randomly selected replicate in the standard scenario. Panels Q_traitA and Q_traitB show the absolute values of the simulated true QTL

effects. Panels Cpi_traitA, LTCpi_traitA, TCpi_traitB, and LTCpi_traitB show the absolute values of estimated SNP effects by BayesCπ for trait A,

LT-BayesCπ for trait A, BayesTCπ for trait B, and LT-BayesCπ for trait B, respectively.

https://doi.org/10.1371/journal.pone.0175448.g001
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B obtained from LT-BayesCπ in generation 5 is slight lower than that in generation 6, probably

due to sampling error. For trait B, LT-BayesCπ performed much better than BayesTCπ consis-

tently in all generations, and was about 11 percent higher in each generation (P<0.001). How-

ever, for trait A, no improvement was obtained from LT-BayesCπ compared with BayesCπ in

all generations (P>0.10).

Impact of genetic correlation. Table 2 shows the accuracies of genomic prediction in

generation 3 under different genetic correlations (0, 0.20, 0.50 and 0.80), while keeping the

other parameters the same as in the standard scenario. For trait A, the accuracies of GEBV

from LT-BayesCπ were nearly equal to those from BayesCπ regardless of the genetic correla-

tion. It suggested that LT-BayesCπ performs comparably with BayesCπ for continuous traits.

We also observed that differences in accuracies between LT-BayesCπ and BayesCπ were

slightly decreased with increasing the genetic correlation between two traits. For trait B, in the

case of no genetic correlation between the two traits, the accuracy of genomic prediction from

LT-BayesCπ was slightly lower than that from BayesTCπ. However, the accuracies of genomic

prediction obtained from LT-BayesCπ were dramatically increased with the increase of the

genetic correlation. The improvement in the accuracy of LT-BayesCπ over BayesTCπ was con-

sistently increased with the increase of the genetic correlation.

Besides the genomic breeding values, we also estimated the genetic and residual correla-

tions between the continuous and the binary traits and the proportions of true QTL (π). As

shown in Table 3, the estimates of π obtained by LT-BayesCπ were very close to the assigned

Table 1. Accuracies of GEBVs (mean±s.e. from 20 replicates) obtained from three methods in generations 3–6 in the standard scenario.

Method Trait Generation 3 Generation 4 Generation 5 Generation 6

BayesCπ A 0.771±0.010 0.740±0.012 0.717±0.013 0.714±0.012

LT-BayesCπ A 0.761±0.010 0.728±0.011 0.703±0.013 0.699±0.012

BayesTCπ B 0.465±0.023 0.420±0.022 0.397±0.025 0.395±0.024

LT-BayesCπ B 0.581±0.020 0.533±0.022 0.510±0.022 0.522±0.023

https://doi.org/10.1371/journal.pone.0175448.t001

Table 2. Accuracies of GEBVs for the two traits in generation 3 in four scenarios of different genetic correlations.

Genetic correlation Method Accuracy

Trait A Trait B

0.00

BayesCπ/TCπ 0.817±0.008 0.545±0.024

LT-BayesCπ 0.800±0.010 0.492±0.026

Increment -0.017 -0.053

0.20

BayesCπ/TCπ 0.780±0.010 0.479±0.019

LT-BayesCπ 0.770±0.010 0.525±0.017

Increment -0.010 0.046

0.50

BayesCπ/TCπ 0.771±0.010 0.465±0.023

LT-BayesCπ 0.761±0.010 0.581±0.020

Increment -0.010 0.116***

0.80

BayesCπ/TCπ 0.762±0.008 0.473±0.019

LT-BayesCπ 0.756±0.008 0.674±0.016

Increment -0.006 0.201***

*** P-value < 0.001

** P-value < 0.01

*P-value < 0.05

https://doi.org/10.1371/journal.pone.0175448.t002
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0.006 (60 QTL) in all scenarios with different genetic correlations. Meanwhile, the estimates of

genetic and residual correlations were almost unbiased in all cases, except in the case of genetic

correlation of 0.80, where the estimate of genetic correlation was biased downwards.

The regression coefficients of the simulated TBV on GEBV are presented in Table 4. For

trait A, the regression coefficients from BayesCπ were all slightly lower than 1, while those

from LT-BayesCπ were slightly greater than 1. For trait B, because the scale of GEBV is not the

same as TBV due to the restriction of s2
e2 ¼ 1, the regression coefficients must be rescaled back

to original scale. After rescaling, both LT-BayesCπ and BayesTCπ generated nearly unbiased

genomic prediction, i.e., the regression coefficients were closer to 1.0 in all situations except

for LT-BayesCπ in the scenario of genetic correlation = 0.

Impact of number of QTL. As shown in Fig 2, BayesCπ, BayesTCπ and LT-BayesCπ all

were sensitive to the number of QTL affecting traits of interest, and the accuracies of genomic

prediction from them decreased rapidly with the increase of the number of QTL. When the

number of QTL increased from 20 to 500, the accuracies of GEBVs were decreased by 0.141,

0.131, 0.156 and 0.169 for BayesCπ, BayesTCπ, LT-BayesCπ (Trait A) and LT-BayesCπ (Trait

B), respectively. In the same scenario, LT-BayesCπ was equivalent to single trait method

BayesCπ for the continuous trait A and performed better than BayesTCπ for the threshold

trait B. For trait B, the accuracies from LT-BayesCπ were 0.113, 0.116, 0.095, 0.075 higher

(P<0.001) than those from BayesTCπ in cases with 20, 60, 200 and 500 QTL, respectively.

Impact of heritability. Fig 3 shows the accuracies of GEBVs from the three methods in

generation 3 under different heritabilities of one trait, while keeping the other parameters the

same as in the standard scenario. By increasing the heritability of trait A from 0.3 to 0.8 and

keeping the heritability of trait B unchanged, the accuracies of GEBVs for trait A from BayesCπ

Table 3. The estimated genetic correlations (brg ), residual correlations ðbre Þ, and proportions of true

QTL (bπ ) from LT-BayesCπ in four scenarios of different genetic correlations.

Genetic correlation brg bre bπ

0.00 0.026±0.030 -0.011±0.007 0.0051±0.0004

0.20 0.178±0.036 -0.006±0.007 0.0068±0.0003

0.50 0.471±0.036 0.005±0.008 0.0061±0.005

0.80 0.674±0.024 0.020±0.006 0.0060±0.0003

The assigned re and π are 0 and 0.006, respectively.

https://doi.org/10.1371/journal.pone.0175448.t003

Table 4. Regression coefficients of TBVs on GEBVs in generation 3 in four scenarios with different genetic correlations.

Genetic correlation Method Regression coefficient

Trait A Trait B*

0.00 BayesCπ/TCπ 0.996±0.018 0.962±0.062

LT-BayesCπ 1.169±0.023 0.787±0.046

0.20 BayesCπ/TCπ 0.988±0.011 1.176±0.168

LT-BayesCπ 1.153±0.014 0.874±0.047

0.50 BayesCπ/TCπ 0.982±0.017 1.093±0.156

LT-BayesCπ 1.134±0.022 0.864±0.035

0.80 BayesCπ/TCπ 0.976±0.016 1.124±0.152

LT-BayesCπ 1.140±0.023 0.918±0.038

* Rescaled regression coefficients of TBVs on GEBVs

https://doi.org/10.1371/journal.pone.0175448.t004
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and LT-BayesCπ consistently increased as expected. In addition, for trait B, the accuracies

from LT-BayesCπ also increased from 0.581 to 0.632 (the accuracy from BayesTCπ was 0.465).

On the other hand, by increasing the heritability of trait B from 0.1 to 0.5 and keeping the

heritability of trait A unchanged, the accuracies of GEBVs for trait B from BayesTCπ and

LT-BayesCπ consistently increased as expected. In addition, for trait A, the accuracies from

LT-BayesCπ also increased from 0.761 to 0.777 (the accuracy from BayesCπ was 0.771). These

results indicate that increasing heritability of one trait is helpful to improve the accuracy of

Fig 2. Accuracies of GEBVs from three methods in generation 3 when the number of simulated true QTL changed from 20 to 500.

https://doi.org/10.1371/journal.pone.0175448.g002
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genomic prediction of the genetic correlated traits when jointly analyzing them. It should be

noted that, for trait A, when the heritability of the continuous trait A was 0.3 and the heritabil-

ity of the threshold trait B was 0.5, the accuracies from LT-BayesCπ was slightly higher than

BayesCπ, while in all other cases, they were slightly lower.

Impact of incidence of the threshold trait. The accuracies of GEBVs for different inci-

dences of the threshold trait B are presented in Fig 4 (the other parameters were the same as in

Fig 3. Accuracies of GEBVs from three methods in generation 3 with different heritabilities. A: heritability of the continuous trait A

changing from 0.3 to 0.8, while keeping the heritability of the binary threshold trait constant (0.1); B: heritability of the binary threshold trait B

changing from 0.1 to 0.5, while keeping the heritability of the continuous trait constant (0.3).

https://doi.org/10.1371/journal.pone.0175448.g003
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the standard scenario). With increased incidence from 5% to 50%, the accuracies of GEBVs

for trait B from both BayesTCπ and LT-BayesCπ increased consistently as expected. However,

the superiority of LT-BayesCπ over BayesTCπ decreased as the incidence increased. The accu-

racies of genomic prediction for trait A from LT-BayesCπ were not influenced by the inci-

dence of trait B.

Fig 4. Accuracies of GEBVs from three methods in generation 3 when the incidence of the binary threshold trait increased from

0.05 to 0.5.

https://doi.org/10.1371/journal.pone.0175448.g004
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Analysis of the common dataset of the 14th QTL-MAS workshop

For each trait and each Bayesian method, the accuracy and bias of GEBVs in the candidate

population are shown in Table 5. For the quantitative trait Q, again the accuracy of genomic

prediction from LT-BayesCπ was comparable with that from BayesCπ as they did in our simu-

lation study. For the threshold trait B, LT-BayesCπ generated higher accuracy and less bias of

GEBV than BayesTCπ, which was consistent with the results from the analysis of the simulated

data as well.

Discussion

In traditional genetic evaluation, a multiple-trait model was proved to be able to increase the

accuracy of the estimated breeding values by making use of information from genetically corre-

lated traits[22], and has been widely implemented in practical breeding value estimation. Since

the concept of genomic selection was proposed in 2001[1], many models, such as GBLUP,

BayesA, BayesB, BayesCπ, have been developed for genomic prediction, and most studies

focused on genomic prediction for a single continuous trait. A few extensions of BayesA, BayesB

and BayesCπ were proposed for a single threshold trait recently [8,23,24]. Recently, some inves-

tigations took the correlation structure between traits into account for joint genomic prediction

of multiple continuous traits, showing increased accuracy of genomic prediction[10–14]. How-

ever, researches on joint genomic prediction of continuous traits and threshold/binary traits are

still scarce. In this study, we developed a novel method, LT-BayesCπ, to deal with the joint geno-

mic prediction of one continuous and one threshold trait that are genetically correlated. The

results from our simulation study and the common dataset of the 14th QTL-MAS workshop

indicated that, in all scenarios considered, when analyzing a continuous and a binary trait

jointly using LT-BayesCπ and, both the accuracy and the unbiasedness of GEBV for the binary

trait could be remarkably improved in comparison with that from single trait analysis using

BayesTCπ, while for the continuous trait the accuracy and the unbiasedness were comparable

with that from single trait analysis using BayesCπ.

Genetic correlation between traits is essential for getting benefit from multiple trait analysis.

Genetic correlation between two traits arises from pleiotropic effects of common QTL affect-

ing both traits and/or from linkage disequilibrium between QTL affecting different traits. In

our simulation study, the genetic correlation between traits resulted mainly from pleiotropic

effects of common QTL. The results from the analysis of the simulated data indicated that, the

larger the genetic correlation was, the more benefit would be obtained from a joint analysis

(Table 2). However, in the case of a zero genetic correlation, the accuracies of joint genomic

prediction were lower than that from separate single trait analysis for both traits. This phe-

nomenon was also reported by Jia and Jannink[11] who observed that two continuous trait

model performed worse than single trait model if no genetic correlation existed between the

two continuous traits. The reason may be that, in such situation, sampling from multiple trait

Table 5. Accuracies and bias of GEBVs from three methods for the common dataset from the 14th QTL-MAS workshop.

Trait Methods Accuracy Regression coefficient

Q BayesCπ 0.677 0.955

LT-BayesCπ 0.681 0.933

B BayesTCπ 0.829 1.228*

LT-BayesCπ 0.867 1.055*

* Rescaled regression coefficients, i.e., bTBV ;GEBV=
ffiffiffiffiffiffi
ve2
p

, where ve2 = 18.16 is the true residual variance for the threshold trait B in the simulation.

https://doi.org/10.1371/journal.pone.0175448.t005
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model leads to nonzero estimates of correlation, and then to erroneous information sharing

across traits.

In the simulation study, no benefit was obtained from the joint analysis for the continuous

trait in most scenarios considered. One reason is that the threshold trait with low heritability

of 0.1 cannot provide enough information to help improving the accuracy of the continuous

trait. Similar results were also obtained in other researches on continuous traits[15,16]. Jia and

Jannink[11] simulated two continuous traits with heritability of 0.1 and 0.5, respectively, and

the results showed that no increase in the accuracy for the trait with heritability of 0.5, while

significant improvement was obtained for the trait with heritability of 0.1. In the present study,

in the analysis of the scenario of h2
A ¼ 0:3 and h2

B ¼ 0:5 and of the common data set of the

14th QTL-MAS workshop, where both traits had a heritability of around 0.5, improvement

in accuracy were obtained for both the continuous and the threshold trait from the joint analy-

sis using LT-BayesCπ in comparison with single trait analysis, indicating that the proposed

method has the potential to improve the accuracy of genomic prediction for a continuous

trait, in addition to improving the accuracy for the threshold trait with a high heritability.

It has been generally accepted that the number of QTL controlling traits of interest affects

the accuracy of genomic prediction by Bayesian methods [8,11,25,26]. This was also confirmed

by our results. The prediction accuracies of all methods declined with an increase in the num-

ber of QTL. When the number of QTL increases, the effect of a QTL on average should be-

come smaller, given a fixed total genetic variance, which will also decrease the accuracy of

estimating SNP effects in a given training population.

When the heritability of the continuous trait increased, the accuracies of LT-BayesCπ in-

creased not only for the continuous trait as expected, but also for the threshold trait. Mean-

while, when the heritability of the threshold trait increased, the accuracies of LT-BayesCπ
increased not only for thethreshold trait as expected, but also for the continuous trait (Fig 3).

These results imply that low-heritability traits can borrow information from correlated high-

heritability traits, and consequently, achieve higher prediction accuracy as also observed by Jia

and Jannink[11] and Guo et al.[12]. This is also in accordance with the findings in traditional

genetic evaluation that the benefit of using a multiple-trait model will be more profound for

traits with lower heritability.

The accuracy for the threshold trait increased as the incidence of the threshold trait approached

to 0.5. The reason is that traits with a small incidence need larger training populations to estimate

variance components and thus to achieve sufficient accuracies of GEBVs [8,27]. On the other

hand, the accuracy of genomic prediction for the continuous trait was not affected by the change

of the incidence of the threshold trait (Fig 4). This might be due to that the variance-covariance

matrix did not change in LT-BayesCπ, resulting in negligible influence for the continuous trait.

In the analysis of the simulated data, we set the values of the hyper-parameters vg, Vg, ve and

Ve of the prior distributions of G0 and Re to be -3, 0, -3, and 0, respectively, such that the priors

reduced to flat priors. This may have an impact on the biased estimates. An alternative way to

define them is to draw them from a flat distribution or other particular distributions. We will

evaluate this to see their influence on the estimates of parameters in the near future.

Conclusions

Our work indicates that the linear-threshold model based method LT-BayesCπ is useful for

predicting GEBVs of a continuous and a threshold trait jointly. In particular, a joint analysis

using LT-BayesCπ significantly improved the accuracy for the threshold trait compared with

single trait analysis. The larger the genetic correlation between the two traits is, the more bene-

fit would be obtained. Increasing the heritability of the continuous or/and the threshold traits
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is helpful to improve the genomic accuracy for both traits, particularly for the threshold trait.

The incidence of the threshold trait affected the prediction accuracy only for the threshold

trait. LT-BayesCπ could be a method of choice for a joint analysis of a continuous and a thresh-

old trait.

Supporting information

S1 Appendix. The simulation data (one replication for one case) and compiled programs.
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