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ABSTRACT

Motivation: Shotgun sequence read data derived from xenograft
material contains a mixture of reads arising from the host and reads
arising from the graft. Classifying the read mixture to separate the
two allows for more precise analysis to be performed.
Results: We present a technique, with an associated tool
Xenome, which performs fast, accurate and specific classification
of xenograft-derived sequence read data. We have evaluated it on
RNA-Seq data from human, mouse and human-in-mouse xenograft
datasets.
Availability: Xenome is available for non-commercial use from
http://www.nicta.com.au/bioinformatics
Contact: tom.conway@nicta.com.au

1 INTRODUCTION
Xenograft models are an important tool for many areas of biomedical
research, including oncology, immunology and HIV pathology.
A typical scenario, drawn from oncology research, is that of a
human prostate cancer grown in an immunocompromised mouse
model. Doing so allows researchers to investigate aspects of the
cancer that are not necessarily preserved in cell lines, and it allows
investigations into the interactions between the cancer and the
surrounding stromal tissue. The mouse may be biopsied or harvested
and samples of cancer and/or stroma collected at various time points
during an experiment.

Difficulties arise, when sequencing the genome or transcriptome
of the samples because host (mouse) material (i.e. DNA/RNA) will
inevitably comingle with the graft (human) material. If a sufficiently
careful section is taken, it has been generally assumed that the level
of host contamination is low enough that it may be ignored. This
may be a dangerous assumption, however, since the level of gene
expression is non-uniform. If the overall level of host contamination
in a graft sample is measured to be 10% overall, it may still be the
case for a given gene that the host homologue accounts for most or
all of the expression.

Contamination may be minimized by physical or biochemical
techniques such as conservative sectioning, cell sorting or laser
capture micro-dissection, but these techniques can be a significant
source of technical bias, or in some cases may require infeasibly
large amounts of starting material. Further, in the case of
transcriptomic investigation, classifying host and graft in vitro may
fail to adequately capture the interactions between them.

An alternative strategy is to sequence an acknowledged mixture
of host and graft, then use in silico methods to classify the
individual sequence reads. This is the approach discussed here. We
demonstrate a simple technique, based on an analysis of sequence
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reads using Tophat, and a more precise technique based on a k-mer
decomposition of the host and graft reference sequences, Xenome.
In both cases, the primary goal of the analysis is to classify reads
into four classes: reads attributable to the host, reads attributable
to the graft, reads which could be attributed to both and reads
which are attributable to neither. To the best of our knowledge,
there are no results in the literature examining the classification
of high-throughput sequencing short reads from xenograft models.
The studies we know of are concerned with microarray expression
profiles or alternative methods for estimating the amount of host
material or cell types in the samples. For example, Lin et al. (2010)
investigate the use of species-specific variation in gene length and
a multiplex PCR to ascertain the relative amount of mouse and
human DNA. Wang et al. (2010) use microarray gene profiling
data and in silico techniques to estimate the quantity of various
tissue components. In Samuels et al. (2010), there is an analysis of a
mouse xenograft model using microarray data. They conclude that if
there is more than 90% human DNA then the expression profiles are
not unduly skewed. They also describe an experimental method for
removing homologous genes based on cross-hybridization analysis
of the probes. Ding et al. (2010) use short read sequencing to study
a cancer genome and identify mutations/deletions. They estimate
tumour cellularity using pathological assessment, and state that their
xenograft is 90% tumour cells. They also map NOD/SCID (mouse)
genomic data to human and mouse genomes, reporting 3.17% and
95.85% mapping rates, respectively, and so apply no correction for
the murine cells. We note that in the context of non-uniform RNA-
Seq data ignoring the contribution of the murine expression can lead
to biases.

Tools such as Tophat serve a different purpose than that of
Xenome. The former aligns reads to a reference, and we can use those
alignments for a variety of purposes, including the classification task
we present here. In contrast, Xenome only performs the classification
task itself. This is an important distinction, since an alignment
must assign the read to zero or more positions in the genome; the
classification merely has to decide if the read was more likely to
arise from the genome than not.

For the remainder of the article, we will assume, unless otherwise
stated, that sequence reads arise from RNA-Seq. However, the
techniques we present are applicable to genomic DNA sequences
(including ChIP-Seq and MeDIP-Seq) and also to other mixtures of
DNA species.

2 METHODS
Under the assumption that a graft sample has only a low level of host
material contamination, the simplest analysis is to use a regular mapping-
based RNA-Seq analysis tool, such as Tophat and assume that either the
observed expression is dominated by the graft, which has the greatest number
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Fig. 1. A Venn diagram showing the different classes that a given k-mer may
belong to. The marginal host (and marginal graft) partitions are for those host
(and graft) k-mers that are Hamming distance 1 from a k-mer in the graft
(and host) reference

of input cells, or that the homology between the host species and graft species
is such that reads arising from host material will tend to map poorly, and the
resultant inferred level of gene expression will be negligible.

In some cases, these assumptions may be true, but in the case of human
cancer xenografts in mice, for example, the second assumption is false for
many transcripts, and a more precise technique is desirable.

Therefore, we have developed two techniques—one based on the existing
RNA-Seq resequencing tool Tophat (Trapnell et al., 2009), and one based on
k-mer decompositions of the host and graft references. For genomic DNA,
another resequencing/alignment tool could just as well be used.

2.1 A Tophat-based method
A more precise analysis may be performed by using Tophat (Trapnell et al.,
2009) to analyse the reads. First, Tophat is used to process the read set
with the graft genome as reference. Secondly, Tophat is used to process the
read set with the host genome as reference. Lastly, the accepted alignments
from the Tophat mappings are post-processed to partition the reads into four
classes: host, graft, both or neither. Tophat provides mapping quality scores
in its output, but they only reflect whether or not the read mapped to multiple
locations. If the quality scores reflected a measure of certainty that the read
maps to the given location, a more sophisticated approach would be to extend
the classification to assign reads that map with high certainty to one genome
and low certainty to the other to the appropriate specific class rather than
both. We do not pursue this further here.

An implementation of this method may be achieved easily with Tophat,
SAMtools (Li et al., 2009) and some simple scripts. As will be apparent in
the results presented in Section 3, although very few reads are misclassified
(i.e. classified as host instead of graft, or vice versa), a significant proportion
of the reads, even in a pure graft or pure host sample, fall into the both class.
If these ambiguous reads were uniformly distributed in their origin across
the genome, this would have only a small impact, but as we will elucidate
in Section 4, the ambiguous reads are non-uniformly distributed. As a result,
a significant number of genes cannot have their expression unambiguously
pinned to the host or the graft, though at least compared with a single analysis,
the set-based analysis makes clear which reads may be clearly associated
with the host or the graft, and does not assume that all gene expression in
the sample is explained by the graft.

2.2 A k-mer-based method
Our method proceeds in two phases: constructing a reference data structure,
then classifying reads with respect to that reference data structure. The
reference structure is built from the sets of k-mers in a pair of reference
sequences, which we will refer to as the host and the graft.

2.2.1 Definitions Since in most sequencing protocols the reads are a
mixture of forward and reverse complements with respect to the reference
sequence, we cannot assume the orientation of k-mers drawn from reads will
match the orientation of k-mers drawn from the reference. We could always
consider both orientations, but that would entail a lot of double handling of
information, so instead we normalize or canonicalize k-mers.

Definition 1. (k-mer canonicalization). Consider a k-mer x. We denote its
reverse complement by x̄.

A canonical k-mer x̂ is defined by a choice function C giving a
deterministic choice between x and x̄:

∀x : x̂=C(x)=C(x̄)

In principle, we can choose any such function: min or max being obvious
candidates, and the results of our method are identical for all choices.
In Section 4, we will present our specific choice which has important
performance ramifications.

This definition can be extended to a set of k-mers S in the obvious way:

Ŝ ={
x̂ :x∈S

}

Definition 2. (Marginal inclusion). Consider a set of canonical k-mers Ŝ.
We say that a k-mer x is has marginal membership of Ŝ if x̂ does not exist in
Ŝ, but has a Hamming distance 1 neighbour y such that ŷ is a member of Ŝ.

To aid our computation of marginal inclusion, we define the function M:

M(x,Ŝ)={ŷ :y∈Ham1(x)}∩ Ŝ

where Ham1(x) is the set of Hamming distance 1 neighbours of x. Note that{
ŷ :y∈Ham1(x)

}={
ŷ :y∈Ham1(x̄)

}

2.2.2 Reference construction For both host and graft reference sequences,
we construct the set of canonical k-mers (Ĥ and Ĝ respectively). From these
we compute a complete set of canonical reference k-mers Ŝ = Ĥ ∪Ĝ. Note
that ∀x∈ Ŝ,x= x̂.

The sets of canonical k-mers tend to be large: with k =25, there are
2.4 billion in the human genome, 2.1 billion in the mouse genome, and
4.5 billion in the union—only 12 million are shared.

A naive representation (2 bits per base, packed), would use 50 bits per
25-mer, or about 26 GB. As discussed in our previous work (Conway and
Bromage, 2011), information theory gives a lower bound for the memory
usage. For a domain of 4k possible k-mers, the minimum number of bits
required to represent a set of n k-mers is

log2

(
4k

n

)

In the case of the union Ŝ above, this is about 10 GB, or less than half
what is required for the naive representation. As also discussed in our
previous work, succinct data structures have been developed to give concrete
representations that approach this theoretical lower bound. The one we use,
due to (Okanohara and Sadakane, 2006), works very well, requiring about
13 GB.

For each reference k-mer, we determine whether it occurs in the host, the
graft, both, or if it occurs in one and has a marginal occurrence in the other.
These classes are denoted h, g, b or m, respectively (Fig. 1). More formally,
we compute the function K for each x̂∈ Ŝ:

K(x̂)=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b if x̂∈ Ĝ∧ x̂∈ Ĥ
g if x̂∈ Ĝ∧ x̂ /∈ Ĥ ∧(Ĥ ∩M(x̂,Ŝ)=∅)
h if x̂ /∈ Ĝ∧ x̂∈ Ĥ ∧(Ĝ∩M(x̂,Ŝ)=∅)

m if
(

x̂∈ Ĝ∧ x̂ /∈ Ĥ ∧(Ĥ ∩M(x̂,Ŝ) 	=∅)
)

∨
(

x̂ /∈ Ĝ∧ x̂∈ Ĥ ∧(Ĝ∩M(x̂,Ŝ) 	=∅)
)

K may be extended to project not just k-mers to classes, but also a set of
k-mers Q̂ to a set of classes in the obvious way:

K(Q̂)={K(x̂) : x̂∈ Q̂}
These classes are pre-computed and stored as a sequence of 2-bit values

corresponding to the k-mers in the succinctly store reference set.
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The class m denotes that the k-mer exists in Ĥ and has marginal
membership of Ĝ or vice versa. That is, they are marginally distinctive,
in the sense that a single polymorphism or sequencing error may cause a
k-mer in that class to change from being marginally host to being marginally
graft. Since the marginal set is symmetric (every marginal host k-mer has a
corresponding marginal graft k-mer and vice versa), and represents k-mers
that are not very discriminating, we combine both marginal sets into a single
marginal set with the class m.

2.2.3 Classification Classification proceeds by taking each read r and
constructing the set of canonical k-mers that may be derived from the read
Q̂r . We then map the set of k-mers to a set of classes by the function K
described above. k-mers that do not occur in the reference, Ŝ, are ignored.
The k-mer classes that occur for a given read determine the classification of
the read as a whole according to the following function:

C(Q̂r)=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

graft if g∈K(Q̂r)∧h /∈K(Q̂r)
host if g /∈K(Q̂r)∧h∈K(Q̂r)
ambiguous if g∈K(Q̂r)∧h∈K(Q̂r)
both if K(Q̂r)∩{g,h}=∅∧K(Q̂r) 	=∅
neither if K(Q̂r)=∅

The read classes graft and host denote cases where there is at least one
k-mer which unambiguously comes from that k-mer class, and there are
no contradictory k-mers (i.e. unambiguously from the opposing reference).
The ambiguous class corresponds to the case where there are k-mers which
appear to be contradictory—unambiguously host, and unambiguously graft.
The both class represents cases where there are only k-mers which are either
unambiguously common to both the host and graft or k-mers which may
belong to either if they contain a single polymorphism or sequencing error.
The last class, neither, represents those cases where there were no matching
k-mers.

2.2.4 Implementation concerns In Section 2.2, we introduced an abstract
canonicalization function C. The most commonly used concrete function is
min (or max), which selects the lexicographically/numerically smaller of the
k-mers x and x̄:

Cmin(x)=min(x,x̄)

We use the following definition, assuming some reasonable hash
function f :

Chash(x)=
⎧⎨
⎩

x if f(x)< f(x̄)
min(x,x̄) if f(x)= f(x̄)
x̄ if f(x)> f(x̄)

Assuming f is a reasonable hash function, this definition effectively makes
a random, but deterministic choice between x and x̄.

We use this definition, rather than the more common lexicographic one,
because lexicographic canonicalization leads to the set of canonical k-mers
being non-uniformly distributed across the set of all possible k-mers.

There are two ways in which a more uniform distribution of k-mers
improves performance of Xenome. The first is that the succinct bitmap
representation that we use (due to Okanohara and Sadakane, 2006) performs
better on a uniform distribution of bits (that is, a uniform distribution of
k-mers). The second is that it improves the performance of our intermediate
hash table, from which the succinct bitmap data structure is built.

The way the hash table is used is that as the input sequences are read,
they are decomposed into k-mers which are stored in the hash table, which
is of a fixed (controlled by a command line parameter) size. When the hash
table fills (that is, unresolvable collisions arise), it is sorted and written out
to disk. When all source k-mers have been read, the sorted runs are merged
and the main succinct bitmap is constructed.

The specific representation used is a succinct cuckoo hash table, broadly
similar to (Arbitman et al., 2010). The succinct representation relies on the
fact that the location of the slot where a key x (in this case, a k-mer) is stored
contains some of the information present in the key.

Consider an idealized hash table with load factor 1 (i.e. the number of
values stored in the table equals the number of slots in the hash table), with
no collisions. If the width of the hash table is 2J , then J bits of the key are
implied by the slot chosen. For keys of N bits, therefore, the entries of the
hash table need store only N −J bits. The simplest way this may be realized
would be to just use J bits of the key as the slot number, and store the
remainder in that slot, but of course, this is likely to have an unacceptable
number of collisions.

Instead, we use an invertible hash function [based on a single-stage Feistel
network, see Luby and Rackoff (1988)] to turn a key x into a slot number s
and a stored component v in such a way that given s and v we can recover
x (assuming a hash function f ):

Ff (x)=
〈(

x mod 2J )⊕f (
x

2J
),

x

2J

〉

F−1
f (〈s,v〉)=s⊕f (v)+v2J

The size of the key data stored in the hash table is, then, 2J (N −J ) bits.

If 2J �2N , this is within
(
1+o(1)

)
log2

(2N

2J

)
bits, and hence succinct.

[Of course, idealized hash tables are not possible if the set of keys is
not known in advance. Hence we use cuckoo hashing (Pagh and Rodler,
2004), in which collisions are resolved (as far as possible) using multiple
hash functions.]

To make the sorting of keys more efficient, our hash function preserves
the N −J most significant bits of the keys, which are then stored in the hash
table (along with a few bits to determine which hash function was used). This
means that we can perform an initial bucketing without inverting the hash
functions; the buckets can then be processed independently, using multiple
threads if required.

Now consider a set of random k-mers. For hash-based canonicalization,
given a good hash function, there is an equal probability of observing any
base in the most significant position in x̂. For lexicographic canonicalization,
there is a probability of 4

10 that it is a, 3
10 that it is c, 2

10 that it is g, and only
1
10 that it is t. For a set of N random k-mers, the expected entropy at the
most significant base is 2.0 bits and 1.85 bits, respectively.

This matters, because hash functions are frequently vulnerable to poor
behaviour in the presence of highly correlated sets of keys. In real,
biologically derived sets of k-mers, the set of k-mers is non-random, so
there is likely to be less entropy to begin with, and therefore loss of entropy
due to canonicalization is exacerbated. This is especially problematic in the
case of the above family of invertible hash functions, since it is precisely
the most-significant bits of the key which are passed to the underlying hash
function f .

The upshot of this is that Cmin leads to highly correlated k-mers, which
in turn lead to a high probability of unresolvable collisions even when the
hash table is nearly empty, resulting in a large number of short runs. Since
the set of canonical k-mers that result from Chash are less correlated, the hash
table is unlikely to encounter unresolvable collisions until it is almost full
(80–85% in practice).

2.3 Xenome—usage and workflow
To use the xenome tool, first it must be invoked to construct the reference
data structures. A typical invocation will give the FASTA filenames for the
host and graft genomes, a filename prefix for the index files, and optionally,
the amount of working RAM to use (in Giga Bytes), and the number of
threads to use:

$ xenome index -M 24 -T 8 -P idx \
-H mouse.fa -G human.fa

This will run for some time—on the human/mouse references, around
4–6 h on an 8-core server. This need only be done once for a given pair of
references, and a given k-mer size. The k-mer size defaults to 25, which
seems to work well.

With the reference data structures built, read data may be segregated. To
make the output files easier to identify, command line flags can be used to

i174



Copyedited by: ES MANUSCRIPT CATEGORY:

[11:35 29/5/2012 Bioinformatics-bts236.tex] Page: i175 i172–i178

Xenome

name the host and graft files. If paired data is being classified, the ––pairs
flag should be given—pairs are classified by computing K(Q̂) over all the
k-mers in the pair.

$ xenome classify -T 8 -P idx --pairs \
--graft-name human --host-name mouse \
--output-filename-prefix XYZ
-i XYZ_1.fastq -i XYZ_2.fastq

This yields the following set of files:

XYZ_ambiguous_1.fastq XYZ_ambiguous_2.fastq
XYZ_both_1.fastq XYZ_both_2.fastq
XYZ_human_1.fastq XYZ_human_2.fastq
XYZ_mouse_1.fastq XYZ_mouse_2.fastq
XYZ_neither_1.fastq XYZ_neither_2.fastq

If the total size of the index files is larger than RAM,xenomewill perform
poorly, but the flag -M can be supplied with the maximum desired working
set size, and the classification will be done in multiple passes each using less
memory.

On a single server with 8 AMD Opteron cores running at 2 GHz and with
32 GB of RAM Xenome processes ∼15 000 read pairs per second.

Having classified the reads, typical usage would be to then run Tophat
and Cufflinks to perform intron-aware gapped alignments and compute gene
expression. Instead of running Tophat on all of the reads, having separated
the reads according to their origin, we can run it with the human genome just
against the human fraction of the reads, and against the mouse genome on
the mouse fraction of the reads. It may well be desirable to combine the both
and ambiguous fractions with the human fraction to run against the human
genome, and also with the mouse fraction to run against the mouse genome.
If this is done, attention should be paid to homologous genes, since it is
possible that the human and mouse homologues may be represented by the
same reads. In some cases, the correct attribution of the gene expression may
be apparent from the nature of the experiment. For example, a sample from
a human prostate cancer grown in mouse may show ambiguous expression
in MYH genes which would be reasonably attributed to the stromal mouse
tissue.

3 RESULTS
Our analysis examines two questions: whether or not it is technically
feasible to separate host and graft reads in silico; and whether or not
the fast technique we have proposed (Xenome) yields a worthwhile
improvement over the mapping (Tophat) based technique.

In the first experiment, we take a sample of human cDNA
sequence data (SRR342886), and a sample of mouse cDNA
sequence data (SRR037689) and analyse them both with Tophat
and Xenome, and compare the results. This allows us to evaluate
the degree to which sequences are misclassified (assigned to
human rather than mouse or vice versa), and the specificity of the
classification—the proportion of sequences which are not classified
as both. The use of pure human or mouse cDNA gives an experiment
where the correct assignment of reads is known.

The second experiment runs the same analysis on sequence data
from a human prostate cancer xenograft growing in a mouse host
[BM18, see McCulloch et al. (2005)]. In this case, however, we not
only classify the reads, but use the Tophat mappings to compute
approximate levels of gene expression [measured in fragments per
thousand bases of transcript per million mapped reads, or FPKM
Trapnell et al. (2010)] and use human species-specific quantitative
RT-PCR (qRT-PCR) on selected genes to validate the results. In
this instance, we have no gold standard by which we can judge the

Fig. 2. Summary of the results with Human cDNA. Each of the classes
of reads is divided into those reads assigned to the class only by Xenome
(Xenome), only by the Tophat analysis (Tophat) or by both Xenome and the
Tophat analysis (Concordant)

results, but the qRT-PCR will give some degree of validation, and
known aspects of the biology of the cancer can give some qualitative
corroboration.

Tophat uses a global analysis, combining the results of all the
read mappings to locate exons, junctions and so on. In contrast,
Xenome performs pre-computation on the two reference genomes,
then classifies each read independently. Therefore, for each of the
three sets of reads, we ran Tophat with the human reference genome
and again with the mouse reference genome, then, as described in
Section 2.1, the mappings were post-processed to determine which
reads belonged to each of the four classes. Each of the four partitions
of the sets of reads was then partitioned with Xenome to allow us
to easily determine which reads were classified as the same by both
procedures, and which were classified differently.

Figures 2, 3 and 4 summarize the results. For the three samples,
the proportion of reads receiving the same classification were 82,
87 and 84%, respectively. As can be seen from the human and
mouse only figures, both techniques are accurate, in as much as they
misclassify only a small proportion of the reads (the worst case being
the Tophat-based analysis of the human cDNA which misclassified
1.2% of the reads—all the other analyses misclassified 0.2–0.3%).
The main difference between the Tophat-based and Xenome analyses
is that the latter yields better specificity—the fraction of reads
classed as both is significantly smaller in the Xenome analysis.
To check for false positives for the human cDNA dataset, we
also used BLAT (Kent, 2002) to map the 1.1 million reads which
Xenome classed as human but which were not mapped to either
genome by Tophat. Most of them were successfully mapped with
high quality to the human reference by BLAT (about 90%). BLAT
also mapped about 18% of them, with very variable quality, to the
mouse reference. This supports our confidence in the accuracy of
the Xenome algorithm. From this we can conclude that the in silico
classification of sequences is feasible and accurate.
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Fig. 3. Summary of the results with Murine cDNA

Fig. 4. Summary of the results with BM18 xenograft cDNA

The second experiment, using RNA-Seq data from a prostate
cancer xenograft into a mouse demonstrates that the classification
works on a real mixture. As described above, we performed the same
process to partition the reads into classes, then we used the refGene
genome coordinates as calculated by Tophat to assign reads to genes,
from which we computed an expression level using the fragments
per kilobase of transcript per million mapped reads formula (Trapnell
et al., 2010):

FPKM= f ×109

zN
where f is the number of fragments (reads, for single ended data
or pairs for paired data), z is the combined length of the exons

Fig. 5. Validation of the in silico classification of xenograft RNA-Seq data
with qRT-PCR. The horizontal axis shows log10 FPKM for the Xenome-
derived gene expression for the 18 test genes. The vertical axis shows the
Ct value for each gene relative to the Ct of actin. There were two RNA-Seq
samples processed (biological replicates), and four replicates of the qRT-
PCR. For each gene, an ellipse is shown centered on the mean log10 FPKM
in the x-axis, and on the mean relative Ct in the y-axis. The horizontal and
vertical radii show the variance in the samples

of the gene and N is the total number of mapped fragments.
Although this quantification is peripheral to the technique we are
presenting, we have computed expression levels for the purposes of
comparing with some qRT-PCR data for the same biological data.
The qRT-PCR data were available for 18 genes:ABCG2,ALDH1A1,
CD177, DLL1, DLL3, GLI1, GLI2, HES1, JAG1, JAG2, LGR5,
NANOG, NOTCH1, NOTCH2, NOTCH3, PTCH1, PTCH2 and
SMO. Figure 5 shows the log10FPKM versus the difference of
the Ct for each target gene and the Ct for actin (which was used
as a housekeeping gene). With the exception of NANOG, the
two methods correlate reasonably well (the Pearson’s correlation
coefficient is 0.80). We have investigated the NANOG data, and
cannot explain the low FPKM . Whether this is a sequencing issue
or a biological variation in the mice is unknown, but the low level of
expression does not appear to be related to the behaviour of Xenome
or Tophat.

4 DISCUSSION
We have presented a simple read classification method based on
Tophat, and our refined classification approach, Xenome. Xenome
can be used to efficiently and effectively partition the read set for
subsequent processing by tools such as Tophat.

What is not apparent from the results above is the relative
behaviour at the level of a single gene. It should be expected that the
distribution of ambiguously mapped reads (classed as both) should
be non-uniform, since some genes in the two genomes are more
highly conserved than others.
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Fig. 6. An in silico analysis showing the degree of ambiguity in HG19
refGene, according to the k-mer based analysis used by Xenome. In this
analysis, k =25

The first result we present in Figure 6 on this point is an in
silico analysis showing the proportion of each human gene (ignoring
introns) covered by k-mers that are not classed as human. It is clear
that the vast majority of genes contain few or no k-mers that are not
classed as human.

The fraction of k-mers which are ambiguous gives a worst-case
view of how Xenome might be expected to perform. In order for a
read to be classified as both, all of its k-mers must be of the both
class, or there must be at least one k-mer from each of the two
genomes (which happens less than 2% of the time in the samples
we have tried). Conversely, a single host or graft k-mer is sufficient
to classify the read into the respective class. Therefore for a read to
be classified as both, the reference must contain a sufficiently long
run of consecutive k-mers of class both and/or SNPs and sequencing
errors must eliminate all the distinctively host or graft k-mers.

The second result we report on this point, presented in Figure 7
is the relative proportion of reads which are classified as both on a
per-gene basis. What is evident in this figure is that although there
are many genes for which the proportion of both reads is tightly
correlated between Tophat and Xenome, there are a large number
of genes for which the Tophat-based analysis has significantly more
both reads. There are 15 591 genes for which there were at least 20
mapped reads in the BM18 xenograft sample. Of these, there were
65 for which Xenome assigned both or ambiguous to at least half the
reads mapping to the gene; there were 498 for which the Tophat-
based analysis assigned both to at least half the reads mapped to
the gene. For the most highly conserved genes, there is not much
that can be done with this data directly—further signal processing
or other data would be required to determine the relative expression
in the host and graft.

While we have developed Xenome with RNA-Seq on human/
mouse xenografts in mind, we anticipate it will be an effective tool
for other similar mixtures. For example, capturing the differential
methylation around genes between host and graft using MeDIP-Seq
may shed light on the interraction between the two.

Fig. 7. A plot showing the distribution of human genes with respect to the
proportion of xenograft reads which are classed as both by the Tophat-based
analysis and the Xenome analysis. The reads considered are only those
mapped by Tophat since Xenome does not yield mappings, so cannot be
used to assign reads to genes. Only genes for which at least 20 reads mapped
were considered. The horizontal axis corresponds to the number of reads
classified as both or ambiguous by Xenome as a proportion of all the reads
that might possibly be human (i.e. both, ambiguous or human). The vertical
axis corresponds to the number of reads classified as both by the Tophat-
based analysis, once again, as a proportion of all the reads that might possibly
be human

The need for our technique is substantially motivated by the fact
that for a xenograft to be viable there must be very strong homology
between the host and graft organisms. This leads to a situation where
there is a high probability that a read may map to either genome, and
it is this problem that Xenome specifically addresses. A side benefit is
that the classification is done independently for each read, and results
in groups of reads in each class; each group may then be processed
independently with further tools [such as Tophat, Cufflinks (Roberts
et al., 2011) or others]. Given that many kinds of analysis require
global processing of the input data, being able to process a coherent
subset of the data can lead to a time/space gain. This benefit extends
beyond the sphere of xenografts. For example, there are situations
where a parasite or pathogen cannot be cultured independently (for
example Chlamydia, and some fungi), so samples will generally
contain a mixture of host and pathogen. In some examples, although
the pathogen can be cultured independently, there are phenotypic
differences between organisms growing in culture and those growing
in a host. In both cases, there are benefits to being able to classify the
two groups of reads, even though straight mapping based approaches
will be less sensitive to cross-talk than xenograft data.

Precise alignment and alignment-free methods represent different
points along a spectrum of possible classification techniques.
Fundamentally, both rely on establishing homology between a
read and the host and/or graft references. By substituting different
algorithms for establishing homology (e.g. various alignment
algorithms, k-mer spectrum methods, etc.), different sensitivity and
specificity might be achieved.

Although our current technique is built on simple set-based
classification, there is clearly scope to develop statistical models
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which allow for a more subtle classification procedure. These could,
for example, be based on the frequency of k-mers of different classes,
giving rise to the computation of the likelihood that a read originated
from either the host or graft genomes. Indeed, if such likelihoods
were used from read alignments (Tophat unfortunately does not
produce such scores), a unified model allowing either our current
k-mer based model or alignments could be used.

A further extension could take into consideration the established
homology between genes in the host and graft organisms. Where
reads are ambiguous, non-ambiguous reads associated with the
same gene homologues could be used to help disambiguate the
classification. EM-based methods such as those described in
Newkirk et al. (2011); Chung et al. (2011); Hormozdiari et al. (2010)
would be a good basis for such an extension. We note however, that
this would require significant conceptual changes to Xenome since
it requires relatively more precise alignments.

It is instructive to consider a specific example of a gene where the
Tophat based and Xenome analyses are very different. For the gene
MYH3, in the human cDNA dataset, there are 29 reads classed as
human by the Tophat-based analysis and 2 713 classed as human by
Xenome. All the reads that are thus assigned by Xenome but not by
the Tophat-based analysis were classed as both by the latter. This is
because there is a high level of conservation in this gene between the
two species, and the reads therefore aligned to both. Were Tophat to
yield meaningful alignment quality scores, a statistical approach of
the kind hinted at above may perform similarly to the k-mer based
approach.
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