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Abstract

Comprehension of degraded speech requires higher-order expectations informed by prior knowledge. Accurate top-down
expectations of incoming degraded speech cause a subjective semantic ‘pop-out’ or conscious breakthrough experience.
Indeed, the same stimulus can be perceived as meaningless when no expectations are made in advance. We investigated
the event-related potential (ERP) correlates of these top-down expectations, their error signals and the subjective pop-out
experience in healthy participants. We manipulated expectations in a word-pair priming degraded (noise-vocoded) speech
task and investigated the role of top-down expectation with a between-groups attention manipulation. Consistent with the
role of expectations in comprehension, repetition priming significantly enhanced perceptual intelligibility of the noise-
vocoded degraded targets for attentive participants. An early ERP was larger for mismatched (i.e. unexpected) targets than
matched targets, indicative of an initial error signal not reliant on top-down expectations. Subsequently, a P3a-like ERP was
larger to matched targets than mismatched targets only for attending participants—i.e. a pop-out effect—while a later ERP
was larger for mismatched targets and did not significantly interact with attention. Rather than relying on complex post hoc
interactions between prediction error and precision to explain this apredictive pattern, we consider our data to be consis-
tent with prediction error minimization accounts for early stages of processing followed by Global Neuronal Workspace-like
breakthrough and processing in service of task goals.
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Introduction

Prediction error minimization accounts of perception propose
that the brain seeks to minimize the mismatch between incom-
ing sensory information and top-down expectations (Rao and
Ballard 1999; Friston 2010). To successfully comprehend speech,
a prediction error minimization account argues that the listener
must generate a set of expectations at multiple levels of repre-
sentation to attempt to most accurately explain the auditory in-
put (Paczynski and Kuperberg 2012). Consistent with the role of
expectations in speech comprehension, the amplitude of the

N400 event-related potential (ERP) in response to the final word
of a sentence increases with how unexpected that word is,
given the context of the sentence (Kutas et al. 1984; Kutas and
Federmeier 2011). The N400 can, therefore, be characterized as
an index of the amount of mismatch between a semantic pre-
diction and the incoming stimulus—i.e. a semantic prediction
error (Paczynski and Kuperberg 2012; Bornkessel-Schlesewsky
and Schlesewsky 2019). Indeed, prediction error minimization
accounts of global brain function, such as free energy (Friston
2010), propose that all evoked activity in the brain reflects this
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mismatch of prediction and stimulus, i.e. the prediction error
(Rao and Ballard 1999; Clark 2013).

However, not all ERPs can be characterized parsimoniously
within a narrow prediction error framework. For example,
highly predictable events in rapid serial visual presentation
(RSVP) that are associated with a subjective experience of con-
scious ‘breakthrough’ or ‘pop-out’ also elicit large ERPs from
�300 ms post-stimulus (i.e. the P300; Donchin and Coles 1988),
while unpredictable events in the same stream of stimuli will
elicit almost no evoked response (Bowman et al. 2013; Rohaut
et al. 2015)—the opposite of what would be predicted if ERPs
indexed prediction error only. To account for these apparently
apredictive effects, prediction error minimization accounts pro-
pose that attention increases the precision of predictions, and
that prediction error is subsequently weighted by this precision
(Kok et al. 2012). As a result, a range of ERP magnitudes, includ-
ing late apredictive components such as the P300 in RSVP, can
be explained as contributions from independently varying pre-
cision and prediction error (see also Heilbron and Chait 2018).

The Global Neuronal Workspace is an alternative theory of
neural processing that proposes that such apredictive evoked
positivities with onsets �300 ms post-stimulus reflect the igni-
tion of a stimulus representation into a frontoparietal network
for conscious access—whether that stimulus was or was not
expected—while earlier ERPs index preconscious processes, in-
cluding prediction errors (Dehaene et al. 1998; Sergent et al.
2005). Applying this model to speech comprehension, Rohaut
et al. (2015) proposed a two-stage ERP profile, with an initial un-
conscious semantic prediction error in response to each word
(the N400, typically onsetting around 200 ms post-stimulus) and
a late positive complex (LPC; in this case onsetting around
600 ms post-stimulus) reflecting the ignition of meaning into
conscious access. In support of this proposal, the N400 ERP has
been observed in states of relative unawareness such as sleep,
coma and vegetative state (or unresponsive wakefulness syn-
drome) (Kotchoubey et al. 2005; Ibá~nez et al. 2006; Rämä et al.
2010; Beukema et al. 2016) while the LPC has only been reported
in conscious individuals, or in those who were conscious of and
subsequently could report target words (Sergent et al. 2005; van
Gaal et al. 2014; Rohaut et al. 2015).

We sought to test the proposal that early ERPs (<300 ms
post-stimulus) reflect preconscious prediction error processes
and later ERPs (>300 ms post-stimulus) reflect conscious access
by investigating the comprehension of speech that has been de-
graded by noise-vocoding (Shannon et al. 1995). Consistent with
the role of expectations in speech comprehension, a noise-
vocoded speech stimulus that is entirely unintelligible to a na-
ive listener can be rendered intelligible through priming—e.g.
by presenting a non-degraded version of the stimulus (i.e. a
matched prime) immediately prior to the degraded stimulus (i.e.
the target). When successfully primed in such a word-pair lis-
tening task, listeners experience a ‘pop-out’ of the meaning of
the degraded speech—i.e. subjective conscious access (Davis
et al. 2005)—while an unrelated (or, mismatched) prime will not
facilitate comprehension of the subsequent target.

Evidence suggests that successful comprehension of noise-
vocoded speech requires attentional effort (Hervais-Adelman
et al. 2012) and top-down expectations from frontal lobes
(Sohoglu et al. 2012; Wild et al. 2012b). Therefore, we predict that
if successful comprehension of degraded speech requires effort-
ful generation of top-down expectations, distracted participants
will be unable to use a prime word to generate an expectation of
the identity of an upcoming target, and will, therefore, neither
exhibit a differential word identity prediction error signal nor

any subsequent apredictive evoked response to the target.
Conversely, we expect that attentive participants will use the
prime to generate top-down expectations of the identity of the
degraded stimulus, and will therefore more readily comprehend
the target. Consequently, and consistent with a two-stage
Global Neuronal Workspace account (Rohaut et al. 2015), we ex-
pect attentive participants’ ERPs to exhibit an initial prediction
error signal [i.e. larger evoked response to mismatched targets;
cf. Sohoglu et al. (2012)] followed by an apredictive ‘pop-out’ ef-
fect in which the ERP to the correctly expected and compre-
hended targets is larger than that to the unexpected and
predominantly unintelligible targets.

Materials and Methods
Participants

We recruited participants from the University of Birmingham
via advertisement on posters or the online SONA Research
Participation Scheme until we had achieved our desired sample
size of 48 participants with usable data (24 per group; median
age ¼ 20 years, range ¼ 18–33 years). While we did not conduct a
formal a priori power analysis, we chose a sample of 24 per
group as this is approximately double the size of samples in
similar previous studies (e.g. Sohoglu et al. 2012) and allowed us
to fully counterbalance stimuli lists across participants (see
Procedure section below). Our inclusion criteria were right-
handed (from self-report), 18–35 years old, monolingual speak-
ers of British English, with no self-reported epilepsy, dyslexia or
uncorrected hearing impairment. We compensated participants
with course credit or £10/h of their time. The STEM Research
Ethics Board of the University of Birmingham granted ethical
approval for this study and written informed consent was com-
pleted by all participants. To achieve our final sample, we
recruited 77 participants but rejected data from 29 participants
due to an error of randomization in the experimental code.

Stimuli

A male first-language British English speaker recorded 288
monosyllabic English nouns taken from previous priming stud-
ies in our lab (see https://osf.io/m9ud5/ for the full stimuli list;
mean length ¼ 440 ms, range ¼ 264–657ms, sampling rate ¼
44 100 Hz). First, we randomly assigned the stimuli to one of
four equal-sized lists (72 words per group) and manually
swapped words across lists until the lists were matched on
imageability, frequency (BNC), length in phonemes and length
in letters. Frequentist tests (ANOVAs) indicated no evidence
that the four lists differed in word frequency [F(3, 284) ¼ 0.233,
P¼ 0.873], imageability [F(3, 231) ¼ 0.779, P¼ 0.507], length in
phonemes [F(3, 284) ¼ 0.217, P¼ 0.885] or length in letters [F(3,
284) ¼ <0.001, P¼ 1; see Supplementary data], and Bayesian
equivalent tests [conducted with JASP Team (n.d.) and Morey
and Rouder (n.d.)] revealed strong evidence in favour of the null
hypothesis for all variables (all BF10 ¼ <0.05; see
Supplementary data). From these four matched lists, we created
counterbalanced conditions across participants (see Procedure
section).

We manipulated the intelligibility of targets through noise-
vocoding—originally a form of auditory distortion used to simu-
late the experience of hearing by the means of a cochlear im-
plant (Shannon et al. 1995) (for scripts see https://github.com/
conorwild/matlab-audio-scripts/). Noise-vocoding retains the
coarse temporal structure of the speech but reduces spectral
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clarity and fine temporal detail. The amplitude envelope from
(approximately) logarithmically spaced frequency bands is
extracted and applied to bandpass-filtered noise of the same
frequency band. Finally, the bands of envelope-modulated noise
are recombined to create the final noise-vocoded stimulus
(Davis et al. 2005). Using this method, we created six-band
noise-vocoded versions of each stimulus to be used as the tar-
gets, and subsequently normalized each stimulus to its root
mean square (RMS; Wild et al. 2012a,b; see Supplementary data
for auditory examples of word stimuli).

Procedure

We randomly assigned each participant to be in the attentive or
distracted group. All participants simultaneously heard the
same auditory stimuli and viewed the same visual stimuli, with
some small differences in inter-stimulus intervals between
groups to allow for behavioural responses (detailed below).
Those in the attentive group paid attention to, and responded
to, the auditory stimuli, while those in the distracted group paid
attention to, and responded to, the visual stimuli.

In the attentive group, each auditory trial began with the au-
ditory presentation of the prime followed by the target with a
stimulus onset asynchrony of 1 s (see Fig. 1). After 2.2 s, partici-
pants were cued by a tone (500 Hz, 200 ms duration) to rate the
‘noisiness’ of the target on a scale of 1 (low) to 5 (high) via key-
board press. Following each rating, the next trial began after an
inter-trial interval of between 1 and 2 s, selected randomly from
a uniform distribution on every trial.

In the distracted group, participants listened to the same au-
ditory stimuli but did not complete the noisiness judgement

task; instead, they made responses to the visual stimuli (see be-
low). Therefore, the timing of the auditory stimuli in the dis-
tracted group was identical to the attentive group, with the
exception that the time between the onset of each auditory tar-
get and the onset of the next auditory trial did not include a
waiting period for a behavioural response. Rather, the inter-trial
interval was between 1 and 2 s, selected randomly from a uni-
form distribution on every trial.

While listening to the auditory stimuli, both attentive and
distracted groups of participants watched a sequence of rapidly
changing visual stimuli. However, only those in the distracted
group were instructed to complete a task on the basis of the vi-
sual stimuli and to ignore the auditory stimuli. The distraction
task was a 1-back visual monitoring task, in which the sequence
of visual stimuli was comprised of a series of images of ambigu-
ous black shapes presented on a white background. Each ambig-
uous image was shown for 200 ms with an 800 ms fixation
period between each image. For each participant, the order of
images was randomized and the task for those in the distracted
group was to press a key every time a repetition occurred (i.e. a
1-back task; 20% of trials). We subsequently calculated task ac-
curacy to ensure that participants in the distracted group were
distracted from the auditory stimuli by attending to the visual
1-back task. Participants in the attentive group watched the
same visual stimuli, but were instructed to ignore them and to
attend to the auditory stimuli only.

Upon completion of the above task, all participants com-
pleted a surprise recognition memory test—i.e. they were pre-
sented with a subset of previously heard (old) words
interspersed with (new) words that they had not heard previ-
ously and were required to judge each word’s old/new status.

Figure 1. Schematic of event timing for participants in the attentive group who were instructed to attend and respond to the auditory stimuli
while ignoring the visual stimuli. Participants in the distracted group, conversely, were instructed to attend and respond to the visual stimuli
while ignoring the auditory stimuli. Timings for the distracted group were identical to those shown in the figure, with the exception that there
was no auditory response cue or wait period for a key press
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The memory test stimuli were formed of all 144 words from the
mismatched condition of the word-pair priming task (i.e. 72
primes and 72 targets), as well as 72 new memory test items.
We did not include the matched targets in the memory test as
they had been presented twice (as a clear prime and as a de-
graded target) and therefore cannot be compared to the unre-
lated targets or primes which had only been presented once. In
the memory test, each word was presented visually for 300 ms,
with a fixation point present for 2–3 s (selected randomly from a
uniform distribution on each trial) between each word. We ran-
domized the order of words for each participant. Participants
made an old/new discrimination for each word on a 6-point
remember-know scale, made up of the following responses;
‘definitely new, probably new, not sure, probably old, definitely
old and remember’ (Ritchey et al. 2015). We reversed the scale
and inverted the responses for half of the participants to control
for potential effects of response hand and thus remove any mo-
tor preparation differences. Note that electroencephalography
(EEG) data acquired during the memory task are not analysed
here and are beyond the scope of this article. Nevertheless, all
data are available in the online repository for analysis by the
community (https://osf.io/m9ud5/).

During the experiment, each participant heard all four word
lists (see Stimuli section), with each list comprising either the
matched words, mismatched primes, mismatched targets or
the new memory test items. For each of the 12 possible combi-
nations of word lists for mismatched primes and mismatched
targets, we manually ensured that there was no phonological,
semantic or associative overlap between the target and the
prime. In total, there were 24 possible sets of stimuli to achieve
full counterbalancing of lists. Therefore, across all participants,
each word was heard an equal number of times in every possi-
ble condition.

EEG pre-processing

We recorded EEG with a 128-channel Biosemi ActiveTwo system
at a sample rate of 256 Hz, with two additional electrodes re-
cording from the mastoid processes. Offline, we digitally filtered
the EEG signal between 0.5 and 40 Hz, segmented the data into
epochs from 500 ms before the onset of the prime until 1000 ms
after the onset of the target, re-referenced the data to the aver-
age of the mastoids, and baseline corrected to the 200-ms pre-
prime period. Unless otherwise stated, all offline pre-processing
was performed with a combination of the Matlab toolbox
EEGLAB (version 14.0.0b; Delorme and Makeig 2004) and custom
scripts. Note that all scripts are available online at https://osf.io/
m9ud5/

Artefact rejection proceeded in the following steps. First, we
used an automated procedure, based on FASTER (Nolan et al.
2010), to identify and remove bad channels. Specifically, bad
channels were those with absolute z-scores of >2.5 on any of
the following measures: variance of voltage, mean correlations
with other channels and Hurst exponent. Across participants, a
median of seven channels was discarded (range: 2–14). Second,
we used an automated procedure, also based on FASTER (Nolan
et al. 2010), to identify and remove trials with non-stationary
artefacts. Specifically, a trial was bad if its absolute z-score was
>2.5 on any of the following measures: mean range of voltages
across channels, mean variance of voltages across channels
and the deviation of the trial average voltage from the average
voltage across all channels. Third, we conducted independent
component analysis of the remaining data (EEGLAB’s runica al-
gorithm) and used the toolbox ADJUST (Mognon et al. 2011) to

automatically identify and remove components with the
expected spatial and temporal features of blinks, eye-
movements and generic discontinuities. Next, we interpolated
any previously removed channels back into the data. Finally, tri-
als with artefacts that had not been effectively cleaned by the
above procedure were identified with visual inspection and dis-
carded. After these pre-processing steps, a median of 65.5 trials
contributed to the match condition (range: 39–71) and a median
of 66 trials contributed to the mismatch condition (range: 37–
71). Prior to analysis, all data were re-referenced to the average
of all channels.

For our subsequent memory ERP contrasts, we only included
data from the attentive group as recognition memory was not
significantly greater than chance for the distracted group. We
also excluded those participants who contributed fewer than 12
trials to either of the two categories [i.e. targets that were subse-
quently remembered (hits) versus targets that were subse-
quently forgotten (misses)] and those whose recognition
memory was not greater than zero, resulting in a subgroup of 13
participants (hits: median 21, range 13–36; misses: median 26,
range 12–49).

EEG/MRI co-registration

The electrode locations of each participant were recorded rela-
tive to the surface of the head with a Polhemus Fastrak device
using the Brainstorm Digitize application (Brainstorm v. 3.4;
Tadel et al. 2011) running in Matlab (Mathworks). Furthermore,
on a separate day, we acquired a T1-weighted anatomical scan
of the head (nose included) of each participant with a 1 mm res-
olution using a 3T Philips Achieva MRI scanner (32 channel
head coil). This T1-weighted anatomical scan was then co-
registered with the digitized electrode locations using Fieldtrip
(Oostenveld et al. 2011).

Sensor analyses: ERPs

Prior to analysis, we calculated participant-wise average ERPs
for each condition separately using the robust averaging
method of SPM12 (default params) that iteratively down-
weights outlier voltages across trials. As recommended in the
SPM12 documentation, the subsequent average ERPs were then
low-pass filtered at 20 Hz (i.e. a second low-pass filter after the
40 Hz pre-processing filter), and baseline corrected to the 200 ms
prior to the onset of the target.

Time window selection for the ERP analyses proceeded in
two stages, and in a similar way to (Sohoglu et al. 2012). First, we
calculated the global field power (GFP) (Skrandies 1990) of the
grand average of all trials (i.e. both conditions together) to iden-
tify time windows of interest. GFP is the root mean square of
average-referenced voltages and is a principled means of identi-
fying component peak latencies from an orthogonal contrast
(Skrandies 1990). We then identified a time window around
each peak by inspecting the global dissimilarity (Skrandies
1990)—the mean of the root mean square of voltage differences
between consecutive time points, after the data have been
scaled by the GFP. Deflections in the time course of global dis-
similarity therefore suggest boundaries between scalp topogra-
phies. On this basis, we selected the following ERP
topographies: 137–207, 211–246, 250–371, 375–547, 551–648 and
652–707 ms (Fig. 2).

To minimize the number of comparisons in post-target time
windows, we only investigated the main effects of target type
(i.e. matched versus mismatched, averaged across attention
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group) and attention (i.e. attention versus distraction, averaged
across target type) when an interaction contrast produced no
significant clusters (i.e. the difference between matched targets
and mismatched targets between attention groups). Where a
significant interaction cluster was observed, we tested for sim-
ple effects with paired samples t-tests of data averaged within
the electrodes that contributed to the interaction cluster.
Furthermore, within each significant interaction and main ef-
fect cluster, we investigated subsequent memory effects (hits
versus misses) with paired samples t-tests of data averaged
within the electrodes that contribute to each cluster.

ERPs (or difference ERPs between two within-subject condi-
tions) within each time window of interest were compared with
the cluster mass method of the open-source Matlab toolbox
FieldTrip (version 20160619, Oostenveld et al. 2011). First, for
each participant � condition, we averaged the voltages at each
electrode within the time window of interest. Next, a two-tailed
t-test (dependent samples for interaction and main effect of tar-
get type; independent samples for main effect of attention) be-
tween conditions was conducted at each electrode. Spatially
adjacent t-values with P-values passing the threshold (alpha ¼
0.05) were then clustered based on their spatial proximity.
Clusters were required to involve at least four neighbouring
electrodes, with an electrode’s neighbourhood defined as all
electrodes within �4 cm on a template head (median number of
neighbours: 11; range: 2–16). A second non-parametric step cor-
rects for multiple comparisons by conducting 1000 Monte Carlo
randomizations of the above method (shuffling condition
labels) to estimate the probability of the observed cluster under
the null hypothesis (Maris and Oostenveld 2007). We applied a
cluster alpha threshold of 0.025 as we were testing for both posi-
tive and negative effects.

Sensor analyses: Bayesian tests

When the above sensor analyses failed to find support for an in-
teraction between target type and attention (i.e. the difference
of differences) but did find evidence of a main effect, we used
Bayesian equivalent t-tests to test the sensor data for evidence
in support of the null hypothesis. Specifically, at each electrode,
we calculated a Jeffrey–Zellner–Siow Bayes factor (JZS-BF),
implemented with an open-access script (https://github.com/
anne-urai/Tools/tree/master/stats/BayesFactors). A JZS-BF be-
tween 1 and 3 is considered to be weak/anecdotal evidence in
support of the hypothesis being tested; from 3 to 10 is

substantial evidence; and 10 to 100 is strong evidence (Jeffreys
1961). Note that, as the Bayes Factor is the ratio of evidence for
two hypotheses, the same category descriptions hold for the in-
verse (i.e. 1/3, 1/10, 1/100). While this approach does not take
into account spatial clustering, as in the sensor analyses above,
it does allow us to qualitatively inspect the spatial distribution
of evidence in support of the null hypothesis across the head.

Source estimation

We performed source estimation using EEG data and individual
electrode locations from 48 participants. The analyses were
completed using subject-specific T1-weighted anatomical mag-
netic resonance imaging (MRI) scans for 39 participants and
template T1-weighted MRI images (provided by the Matlab tool-
box FieldTrip) for the remaining nine participants due to issues
with T1 data collection and image quality.

From the subject-specific T1-weighted anatomical scans, in-
dividual boundary element head models (four layers) were con-
structed using the ‘dipoli’ method of the Matlab toolbox
FieldTrip (Oostenveld et al. 2011). Individual electrode locations
were aligned to the surface of the scalp layer extracted from the
segmented T1-weighted anatomical scans using fiducial points
and head shape as reference points. The alignment of electro-
des and scalp surface was further visually inspected to detect
potential deviations and, where necessary, small manual cor-
rections were applied.

As we required single-trial data to estimate the sources of
the ERP effects, we used the pre-processed sensor-level data
prior to the robust averaging step described above. We defined
trials as time windows from �500 to 1900 ms relative to the
prime, and baseline corrected the EEG data using the time win-
dow (�200 to 0 ms) relative to target presentation (i.e. the same
time window as for the sensor analyses). Before the direct sta-
tistical comparison, we balanced the number of trials between
conditions by randomly removing trials from the condition (dis-
carded trials: median ¼ 2, range ¼ 0–13) with more data until
both datasets had the same number of trials (median ¼ 130,
range ¼ 74–136).

Our source estimation followed the analysis approach de-
scribed in Popov et al. (2018). Therefore, the data was first fil-
tered between 1 and 40 Hz, using a first filter as implemented in
the ft_preprocessing function of Fieldtrip (using default parame-
ters). Additionally, to mitigate the confounding influence of cor-
related activity in the auditory cortices (i.e. from binaural

Figure 2. GFP and Global Dissimilarity of the average of all trials (i.e. an orthogonal contrast) in the post-target window, with the time windows
of interest highlighted. Peaks of GFP separated by peaks of Global Dissimilarity are indicative of distinct evoked components
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stimulation) on linearly constrained minimum variance (LCMV)
beamformer source analysis, we calculated the surface
Laplacian of the data and leadfields as in Murzin et al. (2013).
Thus, the scalp current density of the data was calculated and
the covariance matrix was estimated using a time window from
�500 to 1900 ms. A common spatial filter (including trials of
both conditions) was computed using an LCMV beamformer (in-
putting the surface Laplacian transformed leadfield) (Van
Drongelen et al. 1996; Van Veen et al. 1997; Robinson and Vrba
1999). Specific beamformer parameters were chosen based on
the approach used by Popov et al. (2018) including a fixed dipole
orientation, a weighted normalization (to reduce the centre of
head bias), as well as a regularization parameter of 5% to in-
crease the signal-to-noise ratio. This common spatial filter was
then used for source estimation. The dipole moments of both
conditions were extracted in the post-stimulus time windows
that showed significant clusters at the sensor level (time win-
dow 1: 137–207 ms; time window 2: 211–246 ms; time window 3:
250–371 ms; time window 4: 551–648 ms), and their absolute val-
ues were averaged over time points to obtain one average value
per grid point (virtual electrode) and time window of interest.
For clear visualization of the foci of our source estimates, we
calculated t-tests at each virtual electrode and thresholded the
subsequent t-images at P < 0.05 [see Supplementary data and
Sokoliuk et al. (2019), for further validation of the method].

Results
Speech intelligibility

Attentive participants rated the mismatched targets as noisier
(median ¼ 4, range 1–5) than the matched targets (median ¼ 3,
range 1–4), despite the stimuli being physically distorted to the
same level. This difference was significant in a Wilcoxon
Signed-Rank Test (W¼ 232, P < 0.001).

Recognition memory: discrimination (d0)

To quantify participants’ ability to discriminate between old
and new items in the memory test, we calculated their discrimi-
nation score (d0). d0 was calculated as the z-transformed propor-
tion of hits (i.e. ‘old’ responses to old items) minus the z-
transformed proportion of false alarms (i.e. ‘old’ responses to
new items; Haatveit et al. 2010). The proportion of hits and false
alarms was transformed using the inverse of the standard nor-
mal cumulative distribution. All ‘probably old’, ‘definitely old’
and ‘remember’ responses to old items were considered a hit,
while the same responses to new items were considered false
alarms.

A two-way mixed ANOVA with factors of word type (clear
prime; degraded target; both only heard once by each partici-
pant) and attention (attentive; distracted) revealed significant
main effects of word type [F(1, 46) ¼ 30.243, P ¼ � 0.001, partial
n2 ¼ 0.397] and attention [F(1, 46) ¼ 8.714, P ¼ 0.005, partial n2 ¼
0.159], and a non-significant interaction [F(1, 46) ¼ 0.528, P ¼
0.471, partial n2 ¼ 0.011]. A Bayesian equivalent mixed ANOVA
revealed considerable evidence for a model containing main
effects of both word type and attention (BF¼ 69 083 relative to a
null model), which itself was 2.687 times more likely given the
data than a model containing both main effects and an interac-
tion term. These results reflect the participants’ more accurate
memory for clear primes than degraded targets and the higher
memory accuracy in the attentive group than the distracted
group (see Supplementary data for all inferential statistics).

One-sample T-tests determined that d0 for both clear primes
and degraded targets were significantly different from zero (i.e.
above chance) for attentive participants [clear: mean d0¼ 0.457,
SD ¼ 0.309, t(23) ¼ 7.245, P � 0.001; degraded: mean d0 ¼ 0.194,
SD ¼ 0.218, t(23) ¼ 4.368, P � 0.001], while memory for either
item type was not significantly different from zero for distracted
participants [clear: mean ¼ 0.132, SD ¼ 0.515, t(23) ¼ 1.251, P ¼
0.223; degraded: mean ¼ �0.070, SD ¼ 0.393, t(23) ¼ �0.869, P ¼
0.394], suggesting that the distraction task effectively sup-
pressed processing of the auditory stimuli. Bayesian equivalent
T-tests indicated considerable evidence for better than chance
memory for attentive participants (clear: BF10¼ 71 004; de-
graded: BF10¼ 131), and anecdotal evidence for chance-level
memory performance for distracted participants (clear:
BF10¼ 0.430; degraded: BF10¼ 0.302).

Recognition memory: Recollection and Familiarity

To estimate the level of processing that the clear and degraded
words received, we calculated separate measures of
Recollection (i.e. explicit contextualized memory of the event)
and Familiarity (i.e. memory without context) from the recogni-
tion memory judgements for each participant (Atkinson and
Juola 1974; Yonelinas et al. 1997). Specifically, Recollection
scores were calculated by: (Rold – Rnew)/(1 – Rnew), with Rold
reflecting the proportion of old items given a Remember re-
sponse by the participant, and Rnew reflecting the proportion of
new items given a Remember response. Familiarity was calcu-
lated by: [Fold/(1 � Rold)] � [Fnew/(1 � Fnew)], with Fold reflect-
ing the proportion of old items given a ‘definitely old’ or
‘probably old’ response by the participant, and Fnew reflecting
the same responses to new items (Ritchey et al. 2015).

Two two-way mixed ANOVAs with factors of word type
(clear prime; degraded target; both only heard once by each par-
ticipant) and attention (attentive; distracted) revealed signifi-
cant main effects of word type on both Recollection and
Familiarity estimates [F(1, 46) ¼ 13.287, P � 0.001, partial n2 ¼
0.224, and F(1, 46) ¼ 14.533, P � 0.001, partial n2 ¼ 0.240, respec-
tively], reflecting higher scores for clear primes than for de-
graded targets. No other main effect or interaction was
significant (all Ps > 0.127). Bayesian equivalent ANOVAs simi-
larly concluded that there was strong evidence for models con-
taining a main effect of word type for both Recollection
(BF10¼ 43.703, BFinclusion ¼ 60.743) and Familiarity
(BF10¼ 64.090, BFinclusion ¼ 42.913).

One-sample t-tests identified significantly different from
zero measures of Recollection for clear primes [t(23) ¼ 6.127, P �
0.001, BF10¼ 6538.041] and degraded targets [t(23) ¼ 2.499, P ¼
0.020, BF10¼ 2.720] in the attentive group, while Familiarity was
not different from zero [clear: t(23) ¼ �0.009, P ¼ 0.993,
BF10¼ 0.215; degraded: t(23) ¼ �1.899, P ¼ 0.070, BF10¼ 0.998]. In
the distracted group, neither Recollection nor Familiarity were
significantly different from zero for either word type
[Recollection clear: t(23) ¼ 0.245, P ¼ 0.809, BF10¼ 0.221;
Recollection degraded: t(23) ¼ �1.003, P ¼ 0.326, BF10¼ 0.337;
Familiarity clear: t(23) ¼ �1.452, P ¼ 0.160, BF10¼ 0.542;
Familiarity degraded: t(23) ¼ �2.042, P ¼ 0.053, BF10¼ 1.247].

Event-related potentials

Interaction effects
We observed an interaction between target type and attention
in the 250–371 ms time window post-target only (cluster P ¼
0.011) with estimated generators in right middle temporal gyrus
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and right fusiform gyrus (Fig. 3). Follow-up simple effects tests
indicated greater positivity within this cluster for matched tar-
gets relative to mismatched targets during auditory attention
only [t(23) ¼ 2.755, P ¼ 0.011, two-tailed, BF10¼ 4.376; Fig. 3D].
While the mean voltages in this time window exhibited the op-
posite pattern in the distracted group—i.e. greater positivity to
mismatched targets—this difference did not pass our signifi-
cance threshold [t(23) ¼ �1.869, P ¼ 0.074, two-tailed; Fig. 3D]
and a Bayesian equivalent analysis found only anecdotal
evidence in favour of the null hypothesis in this contrast (BF10
¼ 0.955). A subsequent memory contrast within this cluster in-
dicated greater positivity for mismatched targets that were sub-
sequently remembered (hits) relative to mismatched targets
that were subsequently forgotten (misses) in the attentive
group, although this effect was only weakly significant in a t-
test [t(12) ¼ 2.185, P ¼ 0.049, two-tailed; Fig. 3E] and a Bayesian
equivalent indicated that the evidence was only anecdotal
(BF10¼ 1.628). No clusters were formed in any other time win-
dow for the interaction contrast. We therefore examined the
main effects below.

Main effects
We observed a dipolar main effect of attention in the 137–207
ms time window, with greater frontal positivity (cluster P ¼
0.009) and greater posterior negativity (cluster P ¼ 0.010) for at-
tentive participants relative to distracted participants (Fig. 4).
Our source analyses estimated this effect to be generated

primarily within right superior frontal lobe, overlapping with
right premotor cortex. A subsequent memory contrast within
each cluster indicated significantly larger ERPs for subsequent
hits relative to subsequent misses in the attentive group, with
the Bayes factor in the frontal cluster indicating substantial evi-
dence for a subsequent memory effect [positive frontal cluster:
t(12) ¼ 2.657, P ¼ 0.021, BF10¼ 3.195; negative posterior cluster:
t(12) ¼ �2.320, P ¼ 0.039, BF10¼ 1.963].

We also observed a dipolar main effect of target type in the
211–246 ms time window with a larger left frontocentral positiv-
ity to mismatched targets than to matched targets (cluster P ¼
0.023) and a larger right temporal negativity to mismatched tar-
gets than to matched targets (cluster P ¼ 0.013; Fig. 5A–C).
Source analyses estimated this effect to be primarily generated
within left supramarginal gyrus and right insula. Both
Frequentist and Bayesian t-tests indicated no compelling evi-
dence of subsequent memory effects in the attentive group in
either cluster [positive cluster: t(12) ¼ �1.764, P ¼ 0.103,
BF10¼ 0.939; negative cluster: t(12) ¼ 1.964, P ¼ 0.073,
BF10¼ 1.210].

In the same time window (211–246 ms), we also observed a
main effect of attention, with greater frontal positivity (cluster P
¼ 0.002) and greater posterior negativity (cluster P ¼ 0.004) in
the attentive group relative to the distracted group, with esti-
mated generator in right visual cortex (Fig. 5D–F). As with the ef-
fect of target in this time window, both Frequentist and
Bayesian t-tests agreed that there is no evidence of subsequent

Figure 3. Interaction between target type and attention from 250 to 371 ms. (A) Scalp distribution of the significant difference in the effect of tar-
get across attention conditions. Electrodes contributing to the cluster are marked. M-MM, match minus mismatch. (B) Single-subject mean dif-
ference voltages (difference between match and mismatch) within the significant cluster. (C) Estimated sources of the attentive effect of target
in right middle temporal gyrus and right fusiform gyrus (relative to the distracted effect of target). (D) Analysis of the simple effects showing
qualitatively different topography across attention groups, and a significant effect of target type in the attentive group only. (E) Subsequent
memory effect within the interaction cluster
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Figure 4. Main effect of attention from 137 to 207 ms. (A) Scalp distribution of the significant effect. Electrodes contributing to the clusters are
marked. (B) Single-subject mean voltages within each significant cluster. (C) Estimated sources of the main effect within right superior frontal
lobe. (D) Subsequent memory effects within each cluster in the attentive group

Figure 5. Main effects of target type and attention from 211 to 246 ms. (A) Scalp distribution of the significant effect of target type. Electrodes con-
tributing to the clusters are marked. (B) Single-subject mean voltages within each significant cluster. (C) Estimated sources of the main effect
within left supramarginal gyrus and right insula. (D) Scalp distribution of the significant effect of attention. Electrodes contributing to the clus-
ters are marked. (E) Single-subject mean voltages within each significant cluster. (F) Estimated sources of the main effect within right visual
cortex
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memory effects in either cluster [positive cluster: t(12) ¼ 1.557,
P ¼ 0.145, BF10¼ 0.734; negative cluster: t(12) ¼ �1.443, P ¼ 0.175,
BF10¼ 0.647].

In the 551–648 ms time window, we observed an effect of tar-
get type, with a larger centroparietal negativity to mismatched
targets than matched targets (cluster P ¼ 0.019) estimated to be
generated in the right posterior superior temporal gyrus (Fig. 6).
The subsequent memory contrast in this cluster failed to reach
our significance threshold, and the Bayesian equivalent simi-
larly concluded only anecdotal evidence in favour of the hy-
pothesis [t(12) ¼ 2.158, P¼ 0.052, BF10¼ 1.568].

The main effect of target in the 137–207 and 652–707 ms time
windows did not pass our significance threshold (P ¼ 0.048 and
0.042, respectively; alpha ¼ 0.025). The main effect of attention
in the 375–547 ms, and 652–707 ms time windows also did not
pass our significance threshold (P ¼ 0.047 and 0.082, respec-
tively; alpha ¼ 0.025). No clusters were formed in any other con-
trast or time window.

Discussion

Consistent with our hypothesis and previous research, repeti-
tion priming enhanced the perceptual intelligibility of the de-
graded targets (Davis et al. 2005; Hervais-Adelman et al. 2012;
Wild et al. 2012b; Sohoglu et al. 2014). This result is, indepen-
dently, evidence for the importance of prior knowledge (or ex-
pectation) for generating a conscious experience of
comprehending degraded speech—i.e. a ‘pop-out’. Furthermore,
consistent with a proposed two-stage ERP profile of auditory
processing (Rohaut et al. 2015), we observe two dissociable ERP
effects.

First, and contrary to some arguments of attentional en-
hancement of prediction errors (Auksztulewicz and Friston
2015), we observe an early predictive signal (211–246 ms)—i.e.
larger for unpredicted words than for predicted words—that
does not significantly interact with attention. Indeed, the
results of our Bayesian analysis of this effect indicate consider-
able evidence for the absence of interaction with attention (see

Fig. 7A). Specifically, 96% of electrodes provided greater evi-
dence for the null hypothesis of no interaction between target
type and attention in this time window (i.e. BF< 1), 48% of
which provided substantial evidence for the null (i.e. BF < 1=3).
Within a two-stage model of auditory processing, this effect
may be analogous to the mismatch negativity, which has a sim-
ilar time course and can be elicited by rare stimuli without at-
tention or conscious awareness (Heilbron and Chait 2018).
However, we had not expected to find evidence for differential
processing of matched and mismatched targets during inatten-
tion—a result that is seemingly inconsistent with prior evidence
that successful comprehension of degraded speech requires
top-down expectations (e.g. Wild et al. 2012b). Indeed, inatten-
tive participants should have been unable to form top-down
expectations that would subsequently elicit a prediction error.
One parsimonious interpretation is that the distraction task did
not sufficiently direct attention away from the speech stimuli,
thus allowing those participants the opportunity to also gener-
ate expectations while completing the visual distraction task.
However, a Bayesian analysis indicated that our data provide
substantial evidence that distracted participants’ memory for
the mismatched prime words did not differ from zero. As all
prime words were heard as clear speech, we would expect that
memory would be above chance here if the participants were
not sufficiently distracted. Therefore, we conclude that the early
differential processing of targets during inattention is not the
result of insufficient inattention.

An alternative interpretation is that the signal reflects the
error of a non-conscious expectation that can be generated
without top-down influence. For example, previous studies of
word-pair priming of noise-vocoded speech have used the writ-
ten form of the word as the prime stimulus, whereas our prime
stimuli were clear (non-degraded) versions of the same speech
stimulus. Therefore, it is possible that a low-level prediction
that an auditory stimulus will have the same envelope as the
just-heard auditory stimulus, e.g. could be generated inatten-
tively. Indeed, prediction error minimization accounts posit
that expectations are generated at multiple levels of the

Figure 6. Main effect of target type from 551 to 648 ms. (A) Scalp distribution of the significant effect. Electrodes contributing to the cluster are
marked. (B) Single-subject mean voltages within the significant cluster. (C) Estimated sources of the main effect within right posterior superior
temporal gyrus
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processing hierarchy. Consequently, while a conscious top-
down expectation may not be generated by an inattentive par-
ticipant, an expectation from a lower level of the hierarchy may
nevertheless be instantiated and compared with the sensory in-
put—e.g. an expectation that the auditory environment will re-
main stable, as is one interpretation of the mismatch negativity
during inattention (Sussman and Winkler 2001). Indeed, our
source analyses estimate generators of this effect primarily
within right temporal lobe and left supramarginal gyrus (see
Fig. 5C), while a similar previous study involving visual primes
(rather than auditory primes as in this study) reported an effect
with a similar time course to be generated within the more ca-
nonically semantic regions of left middle and inferior frontal
gyri (Sohoglu et al. 2012). We therefore suggest that this effect is
a non-semantic error signal, while similar studies that involve
visual primes and auditory targets may be more likely to pro-
mote semantic expectations. Indeed, the estimated right tem-
poral lobe generator of our error effect is also linked to domain-
general processing of complex auditory stimuli, rather than to
specific linguistic and semantic processing (McGettigan and
Scott 2012).

As hypothesized, we also observe a later component that is
largest for degraded words that ‘pop-out’ into awareness.
Specifically, from �250 to 350 ms post-stimulus the ERPs are
larger for matched targets than mismatched targets in the at-
tentive group only. Indeed, in that same time window, the ERPs
in the distracted group exhibited a similar distribution to the
preceding error signal (Fig. 3D). The apredictive nature of this
ERP component is seemingly at odds with prediction error
accounts of evoked potentials. However, the concept of preci-
sion is often used to explain such patterns (Kok et al. 2012).
Specifically, the error signal is considered to be weighted by the
system’s confidence in that signal—its precision. Attention is
one mechanism that is thought to increase precision (Hohwy

2012). Therefore, one could argue that while a fulfilled predic-
tion about an upcoming word elicits little prediction error, an
individual’s attention to the word increases precision which
multiplicatively leads to a larger precision-weighted prediction
error signal (i.e. an evoked potential) than an unpredicted but
unattended stimulus. Indeed, the effect of attention to boost
the magnitude of evoked potentials is evident in the two main
effects of attention we observe prior to this effect (137–207 and
211–246 ms; see Figs 4 and 5). However, it is clear that any ob-
served form of interaction (i.e. predictive or apredictive) can be
explained by appealing to the multiplication of two hidden and
independently varying signals (namely, error and precision),
thus creating issues in rigorously studying the role of precision
weighting in perception (cf. Heilbron and Chait 2018).
Nevertheless, under a precision-weighted prediction error inter-
pretation, some argue that all evoked potentials should interact
with attention (e.g. Heilbron and Chait 2018), which is demon-
strably not the case for our earlier main effect of target (211–246
ms; see Fig. 7) unless one appeals to complex post hoc interac-
tions of precision and error. Nevertheless, a pivotal challenge
for the influence of precision weighting on prediction error sig-
nals would come from evidence of entirely independent influ-
ences of prediction and attention on evoked potential
amplitudes.

Under a Global Neuronal Workspace interpretation, this later
component could be considered to reflect the breakthrough of a
stimulus representation into conscious experience (Alsufyani
et al. 2019). While we did observe weak evidence of recollection
of mismatched targets (P ¼ 0.020; BF10¼ 2.720), indicating that
mismatched targets were not entirely unintelligible perhaps
due to a degree of perceptual learning across the experiment
(Hervais-Adelman et al. 2008), attentive participants’ ratings of
intelligibility (noisiness) were entirely consistent with the pop-
out of meaning following matched primes (Davis et al. 2005).

Figure 7. Scalp distribution of Bayes Factors (from Bayesian equivalent t-tests) in tests of the interaction between target type and attention in
time windows (A) 211 to 246 ms and (B) 551 to 648 ms. All electrodes with Bayes Factors >3 or <1=3 are marked on the scalp. Histogram shows
the distribution of Bayes Factors across the head
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Furthermore, this component was larger for subsequently re-
membered items than for subsequently forgotten items, albeit
weakly (P ¼ 0.049; BF10¼ 1.628). The link to subsequent success-
ful recognition provides further evidence to link this ERP com-
ponent with a conscious experience on the part of the listener.
However, this effect is earlier than we predicted based on a typi-
cal two-stage profile and its scalp distribution is more reminis-
cent of a P3a than the P3b or other late positive components
typically linked to global-workspace breakthrough effects.
Nevertheless, P3a-like components have been observed in
breakthrough contexts (Bowman et al. 2013) and Global
Neuronal Workspace theory broadly posits that scalp positivi-
ties, as observed here, reflect the ignition of a representation
into conscious access (Dehaene and Christen 2011). Source esti-
mates of other late positivities within this framework typically
involve generators distributed across the cortex, consistent
with a brain-wide ignition into conscious access (e.g.
Bekinschtein et al. 2009). However, while the source estimate of
our observed pop-out effect includes some weak evidence of
generators distributed across lobes and hemispheres (see
Fig. 3C), the focus is estimated to be in the right middle tempo-
ral gyrus and right fusiform gyrus. Interestingly, the late positiv-
ity described by Rohaut et al. (2015), and linked to the stage of
conscious access of meaning within the two-stage profile, was
also estimated to be generated within right fusiform gyrus, as
well as left dorsolateral frontal cortex. Furthermore, there is evi-
dence for greater activity within the right fusiform gyrus when
the meaning of speech is task-relevant (von Kriegstein et al.
2003). We conclude therefore that our ERP positivity reflects
conscious access of the meaning of speech. While we cannot
rule out the potential role of task-related post-perceptual proc-
essing rather than conscious access itself (Aru et al. 2012), we ar-
gue that the majority of evidence for components linked to such
processes occur later in time than the pop-out effect observed
here (i.e. after �350ms; e.g. Pitts et al. 2014; Schelonka et al.
2017).

In a later time window, from �550 to 650 ms, we also ob-
served more extreme ERPs for mismatched targets than for
matched targets that did not interact with attention (see Figs 6
and 7). At first glance, it is unclear why post-breakthrough proc-
essing should differ according to the relative match of expecta-
tions. The scalp distribution of this effect is markedly similar to
that reported in an overlapping time window of 450 to 700 ms
post-target by Sohoglu et al. (2012; see Fig. 4B in that paper) who
also found that magnetoencephalography (MEG) sensor data in
the same time window significantly predicted trial-by-trial rat-
ings of speech clarity, such that reduced neural responses to
matched targets were accompanied by increased experiences of
speech clarity. Our source estimates indicated a primarily right
posterior superior temporal generator for this effect, while
Sohoglu et al. (2012), with more sensitive MEG source analyses,
report right temporal generators alongside bilateral inferior
frontal and middle occipital gyri. Sohoglu et al. (2012), therefore,
conclude that this effect reflects the neural processes that gen-
erate the experience of speech clarity. On that basis, we would
expect this effect to interact with attention in this study.
However, we find no evidence for this interaction. Nevertheless,
while Bayes equivalent t-tests at each electrode in this time
window indicated substantial evidence for no interaction in the
majority of electrodes, two electrodes did exhibit substantial ev-
idence for an interaction (i.e. BF10> 3; Fig. 7B). As our cluster
forming threshold required four neighbouring electrodes, it is
possible that this effect does indeed interact with attention, but
to an extent that is not evident with our specific analysis

choices. If that were the case then, these later effects may in-
deed reflect processes associated with the conscious experience
of meaning, or may reflect consequent processes such as those
in service of task demands—i.e. providing a judgement of the
noisiness of the stimulus (Aru et al. 2012). Indeed, one might ex-
pect that, if evoked potentials reflect breakthrough into aware-
ness, as we have argued, subsequent post-breakthrough
potentials would reflect cognitive operations upon that percept,
such as response selection or meta-cognition. This would fa-
vour a three-stage account of evoked potentials—(i) an early
prediction error processing stage, (ii) a subsequent break-
through into awareness and (iii) a consequent stage of cognitive
operations in support of task goals. These stages are reminis-
cent of characterizations of neural correlates of consciousness
into the prerequisites and consequences of conscious percep-
tion, as well as the perceptual experience itself (Aru et al. 2012).
However, given our lack of strong evidence either for or against
an interaction with attention, the functional significance of our
551–648 ms effect remains a target for future investigation.

One potential formulation of the way in which we might ex-
pect prior knowledge and attention to interact is for greater pre-
cision to lead to accelerated processing, and therefore earlier
ERP latencies. Variable latencies across conditions may thus
create spurious amplitude differences due to temporal smear-
ing. Following the suggestion of an anonymous reviewer, we
tested the interactive effects of expectation and attention on
the latencies of each of our identified components. Crucially,
our analyses provided evidence in favour of the hypothesis that
component latencies did not interact between expectation and
attention (all BFinclusion between 0.252 and 0.523; see
Supplementary data), thus indicating that our observed ampli-
tude differences are unlikely to be driven by differential effects
of precision/expectation latency. Nevertheless, more advanced
multivariate analyses across multiple levels of speech degrada-
tion may further delineate the ERP correlates of precision-
weighted prediction error from those of putative breakthrough
effects (see Blank and Davis 2016).

Conclusions

Our results indicate a link between the conscious experience of
semantic pop-out in comprehension of degraded speech and a
positive-going ERP in the range of 300 ms post-stimulus—con-
sistent with a Global Neuronal Workspace framework. Prior to
this positivity, ERPs appear to reflect the error of non-semantic
predictions, consistent with prediction error minimization
accounts. To consider our observed late positivity within the
same prediction error account requires a post hoc appeal to
freely varying precision weighting that is not straightforwardly
verified. We therefore suggest that our data are consistent with
early negative-going ERPs as reflections of prediction error
while later positive-going ERPs reflect conscious access and pro-
cesses in support of task demands (e.g. Dehaene and Christen
2011; Rohaut et al. 2015).

Supplementary data

Supplementary data is available at NCONSC Journal online.
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