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In this study, we describe the correction of single-point muta-
tions in mammalian cells by repair-polypurine reverse Hoogs-
teen hairpins (repair-PPRHs). These molecules consist of (1) a
PPRH hairpin core that binds to a polypyrimidine target
sequence in the double-stranded DNA (dsDNA), producing a
triplex structure, and (2) an extension sequence homologous
to the DNA sequence to be repaired but containing the wild-
type nucleotide instead of the mutation and acting as a donor
DNA to correct the mutation. We repaired different point mu-
tations in the adenosyl phosphoribosyl transferase (aprt) gene
contained in different aprt-deficient Chinese hamster ovary
(CHO) cell lines. Because we had previously corrected muta-
tions in the dihydrofolate reductase (dhfr) gene, in this study,
we demonstrate the generality of action of the repair-PPRHs.
Repaired cells were analyzed by DNA sequencing, mRNA
expression, and enzymatic activity to confirm the correction
of the mutation. Moreover, whole-genome sequencing analyses
did not detect any off-target effect in the repaired genome. We
also performed gel-shift assays to show the binding of the
repair-PPRH to the target sequence and the formation of a
displacement-loop (D-loop) structure that can trigger a homol-
ogous recombination event. Overall, we demonstrate that
repair-PPRHs achieve the permanent correction of point muta-
tions in the dsDNA at the endogenous level in mammalian cells
without off-target activity.

INTRODUCTION

Monogenic disorders present a global prevalence at birth of 10 out of
1,000 cases, thus affecting millions of people worldwide." These dis-
eases are the result of single-point mutations in the DNA sequence
of a specific gene that lead to the production of nonfunctional ver-
sions of the protein. In recent years, different gene-editing tools
have been developed to correct mutations in the double-stranded
DNA (dsDNA). On the one hand, several molecular tools such as
zinc-finger nucleases (ZFNs),”” transcription activator-like nucleases
(TALENSs),” '” and CRISPR/Cas9 RNA-guided nucleases'' '* have
been used to conduct gene correction therapies. These editing tech-
nologies rely on the usage of nucleases to generate locus-specific
dsDNA breaks near the mutation and a donor DNA sequence that
acts as a template for the correction. However, new CRISPR/Cas9 ap-

proaches such as base editing and prime editing that do not rely on
dsDNA breaks to produce the correction have been also developed.
Briefly, base editing is based on the deamination of the purine or py-
rimidine base to eventually convert one base pair to another in the
dsDNA.'*"'® Prime editing technology can directly write new genetic
information into a specific DNA site by a Cas9 endonuclease fused to
a reverse transcriptase programmed with a guide RNA that both spec-
ifies the target and encodes the desired editing."” In this case, it is
necessary to generate a nick in one of the strands (protospacer-adja-
cent motif strand). Nevertheless, one of the main concerns upon
using these nuclease-dependent technologies is the appearance of
off-target effects in the genome of the host after the treatment.***'
On the other hand, modified or non-modified single-stranded oligo-
deoxynucleotides (ssODNs) have also been developed to produce the
correction of single-point mutations in the dsDNA. In some cases, the
ssODN containing the corrected sequence binds to its target dsDNA
in a sequence-specific manner, leading to a recombination event that
incorporates the corrected nucleotide.”> ** In other cases, modified
molecules such as peptide nucleic acids (PNAs) and their derivatives
(e.g., YPNAs) are presently used to bind to the dsDNA, creating a
triplex helical structure that stimulates the recombination between
a nearby sequence and a provided donor DNA that contains the cor-

. 3
rected nucleotide.?®*°

Polypurine reverse Hoogsteen hairpins (PPRHs) are single-stranded
and non-modified oligodeoxynucleotides composed of two antipar-
allel polypurine mirror repeat domains linked by a five-thymidine
loop. The intramolecular linkage consists of reverse-Hoogsteen bonds
between the purines, allowing the formation of the hairpin structure.
PPRHs bind in a sequence-specific manner to polypyrimidine
stretches in the dsDNA via Watson-Crick bonds while maintaining
the hairpin conformation, thus producing a triplex structure and dis-
placing the fourth strand of the dsDNA.”"** During the last decade,

Received 26 October 2019; accepted 16 December 2019;
https://doi.org/10.1016/j.0mtn.2019.12.015.

Correspondence: Carlos J. Ciudad, PhD, Department of Biochemistry and Phys-
iology, School of Pharmacy and Food Sciences, University of Barcelona, Avenida
Juan XXIII #27, 08028 Barcelona, Spain.

E-mail: cciudad@ub.edu

Molecular Therapy: Nucleic Acids Vol. 19 March 2020 © 2020 The Authors. 683
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

aaaaaa


https://doi.org/10.1016/j.omtn.2019.12.015
mailto:cciudad@ub.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.omtn.2019.12.015&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/

 Reverse-Hoogsteen bonds ~

Repair-PPRH
eTeRsTY CRI R .;)51
X X ST
< [ soccorr roccosAct
<
&
[}
-
| Watson-Crick bonds

B

Long-distance repair-PPRH

| Watson-Crick bonds

* Reverse-Hoogsteen bonds

Figure 1. Gene Correction Strategy Using Repair-PPRHs
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(A) Structure of a repair-PPRH, consisting of a hairpin core linked to a repair domain. The core is formed by two polypurine domains linked by five thymidines, which are bound
intramolecularly by reverse-Hoogsteen bonds that bind to its polypyrimidine target sequence in the dsDNA via Watson-Crick bonds. The repair domain is a sequence
homologous to the DNA sequence to be repaired but containing the corrected nucleotide instead of the mutation. Mutation in the dsDNA is represented in red, whereas the
correct nucleotide contained in the repair-PPRH is shown in green. (B) Scheme of a long-distance repair-PPRH containing a hairpin core that binds to a polypyrimidine target
sequence away from the location of the mutation. This hairpin core is linked to a repair domain containing the wild-type nucleotide (green) by five additional thymidines (5T).
Mutation in the DNA is represented in red. (C) General procedure for the targeted correction using repair-PPRHSs of the adenosyl phosphoribosyl transferase (aprt) gene in a
collection of aprt-deficient CHO cell lines. The approach involved transfection and selection (+AAT) of the repaired cells followed by sequencing analyses and determination of

mRNA levels and enzymatic activity.

PPRHs have been used to silence genes involved in resistance to
chemotherapeutic drugs,” cancer progression,”>***” and immuno-
therapy approaches.’® *° Recently, we performed a pharmacoge-
nomic study showing the specificity of the PPRH toward its target
sequence and the absence of off-target effects when using a negative
DNA hairpin. We also demonstrated that PPRHs do not cause hep-

atotoxicity or nephrotoxicity in vitro.*!

Repair-PPRHs are hairpins that bear an extension sequence at one
end of the molecule (usually the 5" end) that is homologous to the
DNA sequence to be corrected but contains the wild-type nucleotide
instead of the mutated one. A previous study performed in our labo-
ratory demonstrated that repair-PPRHs were able to correct a single-
point mutation in a plasmid containing a mutated version of the
dihydrofolate reductase (dhfr) minigene. The correction was also
achieved when the plasmid was stably transfected into a dhfr-deficient
Chinese hamster ovary (CHO) cell line.** Furthermore, we also cor-
rected different types of point mutations (substitutions, insertions,
and deletions) at the endogenous locus of the dhfr gene using
repair-PPRHs in various dhfr mutant CHO cell lines.*

In this work, we show the generality of action of repair-PPRHs by
correcting single-point mutations at the endogenous locus of the
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aprt gene in mammalian cells (Figure 1), and we assess the absence
of off-target effects of this gene-editing technology. Moreover, we
gain insight into the molecular mechanism involving homologous
recombination that could be responsible for the gene correction
event.

RESULTS

Targeted Correction of Point Mutations at the Endogenous
Locus of the aprt Gene

Our goal was to correct three aprt-deficient CHO cell lines presenting
different point mutations in the aprt locus, leading to premature stop
codons. For that reason, we designed different repair-PPRHs as
described in the Materials and Methods and shown in Table S2.
Each repair-PPRH contained a hairpin core that binds to a specific
polypyrimidine sequence near the mutation to direct the repair
domain.

The first cell line to be corrected was the $23 mutant, in which the
substitution of a guanine for a thymidine in exon 1 led to a TAA
stop codon (ochre) in situ. The repair-PPRH (HpS23Elrep) con-
tained three pyrimidine interruptions in the hairpin core, and the
repair domain contained a 51-nt sequence as an extension of the
hairpin core. Upon transfection and selection, the analyzed colonies
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Figure 2. DNA Sequencing Results
(A—C) DNA sequences from mutants S23 (A), S62 (B),

GGCTATG GCGTAATCTGAGT

6 GCTATG GC GGAATCCT GAGT

and S1 (C) and their repaired counterparts obtained after
transfection with the corresponding repair-PPRH and
subsequent selection. The underlined nucleotides
represent the mutated/repaired codon, and the arrows

indicate the specific nucleotide subjected to correction.
\\ Each experiment was conducted a minimum of three
) / ‘ times, and a minimum of three different colonies were
\ [\ analyzed.
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and RD-S1E2rep in the S23, S62, and S1
mutant cell lines, respectively. As an additional
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negative control, we transfected a full repair-
PPRH containing a scrambled polypurine
hairpin attached to the specific repair domain
of the S23 mutant (HpS23Elrep-Sc) into S23
cells, and we did not obtain any surviving cell
colony.

S62 mutant cells

c ' v

S62 repaired cells

All of the previous repair-PPRHs contained
repair domains attached directly to the hairpin
core, which was close to the mutation site. We
wanted to explore whether we could repair a

GAT CGACTAGAT CGCAGGC

GATCGACTACATCGCAGGC

mutation using a hairpin core that was binding
farther away from the mutation site and
connected to the repair domain through an
additional pentathymidine loop. Therefore,
we designed a long-distance repair-PPRH
(LD-HpS1E2rep) oligonucleotide in which the
target sequence of the repair domain was

bore the corrected nucleotide, rescuing the wild-type triplet (GAA)
encoding for a glutamic acid (Figure 2A).

The next mutant, S62, contained a substitution of a guanine for a
thymidine in exon 5 that led to a TGA stop codon (opal) in place.
The repair-PPRH (HpS62E5rep) contained two pyrimidine interrup-
tions in the hairpin core, and the length of the repair domain was 57
nt. We confirmed the restoration of the wild-type codon (glycine) in
the analyzed colonies (Figure 2B).

Finally, the S1 mutant bore a substitution of a cytosine for a guanine
in exon 2, producing a TAG premature stop codon (amber). The
repair-PPRH (HpS1E2rep) contained one pyrimidine interruption
in the hairpin core and a 57-nt repair domain, restoring the wild-
type codon (tyrosine) (Figure 2C).

To test the requirement of the hairpin core to correct the mutation,
the repair domains of the different repair-PPRHs were transfected
alone in their respective mutant cell lines. No surviving colonies
were observed after transfecting the RD-S23Elrep, RD-S62E5rep,

located 24 nt upstream of the polypyrimidine
target sequence of the hairpin core. This
long-distance repair-PPRH containing a 52-nt
repair domain was also able to correct the mutation, restoring the
wild-type nucleotide.

cells

APRT mRNA Levels Are Increased in the Repaired Cells

We assessed the restoration of APRT mRNA levels in the repaired cells
in comparison with the mutant cell lines and the wild-type D422 cell
line. In S23 repaired clones, APRT mRNA levels were increased be-
tween 1.25- and 2-fold when compared with those of the S23 mutant
cell line (Figure 3A). Regarding S62 repaired clones, APRT mRNA
levels were similar to those of the mutant, since the mutation is located
in the last exon of the gene (exon 5) and, therefore, non-sense-medi-
ated decay does not take place (Figure 3B). The increase in APRT
mRNA levels was also observed in the case of S1 repaired colonies (Fig-
ure 3C). There were no significant differences between APRT mRNA
levels from clones repaired by the HpS1E2rep repair-PPRH and by the
LD-HpS1E2rep long-distance repair-PPRH (Figure 3C).

APRT Enzymatic Activity Is Restored in Repaired Cells
We determined the enzymatic activity of APRT protein in the
mutant cell lines and the repaired clones. S23 and S62 mutants
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Figure 3. APRT mRNA and Enzymatic Analyses
(A-C) APRT mRNA levels of mutants S23 (A), S62 (B), and
S1 (C) and their repaired counterparts obtained after
transfection with the corresponding repair-PPRHs and
subsequent selection are shown. In (C), also represented
are the aprt MRNA levels in three clones repaired using the
long-distance repair-PPRH  (LD-HpS1E2rep). APRT
mRNA levels were determined by gRT-PCR and normal-
ized with TBP mRNA. Data are plotted relative to the wild-
type cell line D422. (D-F) APRT enzymatic activity was
determined for mutants S23 (D), S62 (E), and S1 (F) and
their repaired counterparts obtained after transfection
with the corresponding repair-PPRHs and subsequent
selection. In (F), also shown are the APRT enzymatic ac-
tivity levels of three clones repaired with the long-distance
repair-PPRH (LD-HpS1E2rep). The D422 wild-type cell
b line was included in the determination as the positive

control. Data are represented as mU of APRT enzyme
e divided by the mg of total protein extract. Error bars
represent the standard error of the mean of three experi-
ments. Statistical analysis was performed comparing the
mean value of each clone with the mean value of
the mutant sample. *p < 0.05, **p < 0.01, **p < 0.001,
****p < 0.0001.
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did not show any APRT activity, whereas the activity levels in their
respective repaired clones were similar to those of the parental cell
line D422 (Figures 3D and 3E). The S1 mutant presented a very low
activity in contrast with the repaired clones that showed a very
similar activity to the D422 cell line (Figure 3F). There were no dif-
ferences in APRT activity levels between the clones repaired by the
HpS1E2rep repair-PPRH and by the LD-HpS1E2rep repair-PPRH
(Figure 3F).

Gene Correction Frequency Increases in S Phase

The determination of the gene correction frequency was per-
formed using the HpS23Elrep repair-PPRH in the S23 mutant
cell line. The frequency of correction was 0.1% in the asynchro-
nous condition. However, when cells were transfected in S phase
the frequency was 0.25%, corresponding to a 2.5-fold increase
compared with cells transfected in the asynchronous state
(Figure 4).

686 Molecular Therapy: Nucleic Acids Vol. 19 March 2020

0-
D422 S1 C1 C2 C3 C4 C5 Cé6

Long-distance
repair-PPRH

Whole-Genome Sequencing Analyses

Reveal No Off-Target Effects

The sequenced reads that aligned at position
960,367 in contig NW_003613583 confirmed
that the sample S23 mutant had a T in that
genomic position and that in S23 repaired cells
the T was replaced with a G. To check whether
there was any major difference in the S23 re-
paired cells in comparison with original mutant
cells, we looked at (1) the number of total vari-
ants and (2) if there was any evidence of the
insertion of the construct in other genomic loca-
tions. Regarding the total number of variants,
we compared the number of variants (single-nucleotide variants, in-
sertions, and deletions) in the genomic positions with enough
coverage in both samples and we did not find any major discrepancy.
Therefore, we did not see any clear evidence of a major increase in the
number of variants in the S23 repaired sample (Table 1). To investi-
gate the possible integration of HpS23Elrep in multiple genomic re-
gions, reads with similarity to the construct were scrutinized. Under
the assumption that if multiple insertions occur, the genomic frag-
ments with this new insertion would have been sequenced but not
mapped, because the sequence would not be found in the reference
genome, we searched within all of the original reads (before mapping)
for those with similarity with the construct using BLAST, as explained
in “Whole-Genome Sequencing Analyses” in the Materials and
Methods. Table 2 shows the reads with similarity to the construct
in both samples. All the found reads were mapped in the target region
in contig NW_003613583 (Table 2). No unmapped reads or mapped
reads anywhere else with similarity were found.
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Figure 4. Gene Correction Frequency

Gene correction frequency values were calculated as the ratio between the number
of surviving colonies and the total number of cells initially plated. Also shown is a
representative image of the number of S23 repaired colonies obtained after the
treatment with HpS23E1rep repair-PPRH in cells transfected either in asynchro-
nous conditions or in S phase. After selection, surviving cell colonies were fixed with
formaldehyde and stained with crystal violet. Error bars represent the standard error
of the mean of three experiments. *p < 0.05.

Repair-PPRHs Bind to Their Target Sequence

To test the binding of repair-PPRHs to their polypyrimidine target
sequence in the aprt locus, we performed gel-shift assays using a
160-bp radioactive probe containing the mutation present in S23
cells and its adjacent sequences (dsDNA-S23). The binding of the
HpS23El-core to its polypyrimidine target sequence produced two
shifted bands corresponding to two different molecular species (Fig-
ure 5A, lane 2). The shifted band with the highest mobility corre-
sponded to a triplex structure in which the HpS23El-core was
binding only to the polypyrimidine target sequence located in one
of the two DNA strands of the probe (Figure 5A, red panel). The
shifted bands with the lowest mobility corresponded to the binding
of the HpS23E1-core to its polypyrimidine target sequence together
with the rest of the dsDNA probe that was still bound by intramo-
lecular Watson-Crick bonds (Figure 5A, green panel). However, we
did not observe any shifted band when incubating the probe only
with the RD-S23Elrep repair domain (Figure 5A, lane 3). The incu-
bation of the full HpS23Elrep repair-PPRH produced three shifted
bands (Figure 5A, lane 4). The two highest mobility-shifted bands
corresponded to the same molecular species shown in lane 2. The
lowest mobility-shifted band corresponded to the binding of the
HpS23Elrep repair-PPRH to its polypyrimidine sequence together
with the repair domain bound to its complementary strand (Fig-

ure 5A, blue panel). As negative controls, we used a hairpin core,
a repair domain, or a scrambled full repair-PPRH (Figure 5A, lanes
5-7). We only observed one shifted band with the incubation of the
scramble hairpin core with the probe that corresponded to an un-
specific and/or partial binding of the hairpin to the sequence, but
with different mobility than that of the specific hairpin core (Fig-
ure 5A, lane 5).

To confirm the nature of the lowest mobility-shifted band that ap-
peared when incubating the full repair-PPRH with the probe (Fig-
ure 5A, lane 4), we performed a competition assay (Figure 5B). The
amount of radiolabeled probe incubated with the HpS23Elrep
repair-PPRH was competed with 20-fold of the HpS23Elrep-core
hairpin core (Figure 5B, lane 3), which resulted in the decrease of
the band that corresponded to the structure depicted in the blue
panel, thus demonstrating that the full repair-PPRH is needed to pro-
duce this structure.

Binding of the PPRH to Its Target Sequence Produces a
Displacement Loop

To study the molecular mechanism responsible for the repair
event, we performed gel-shift assays incubating the HpS23El-
core of the repair-PPRH with the radioactive probe dsDNA-S23.
To check whether this binding led to the formation of a displace-
ment-loop (D-loop) structure, we designed three invading oligo-
nucleotides of different lengths (O-16, O-40, and O-60) that
were complementary to the displaced strand of the probe (Fig-
ure 6A). The hypothesis was that the binding of the HpS23E1-
core to its polypyrimidine target sequence would form a D-loop
structure, allowing the binding of the invading oligonucleotides
to the displaced strand and thus producing different migration
patterns in the gel shifts depending on the length of the oligonu-
cleotide. As shown in Figure 6B, lane 2, when incubating the probe
with the HpS23El-core, two shifted bands that reproduced the
same pattern as in Figure 5A, lane 2, were obtained. The incuba-
tion of each invading oligonucleotide, either O-16, O-40, or
0-60, with the probe alone in the absence of the hairpin produced
two shifted bands (Figure 6B, lanes 3, 5, and 7). The shifted band
with the highest mobility corresponded to the binding of the
invading oligonucleotide to its complementary strand present in
the probe, whereas the one with the lowest mobility represented
the sandwich structure between the invading oligonucleotide and
the probe. Finally, when the probe was first incubated with the
HpS23El-core and then the different invading oligonucleotides
were added, prominent shifted bands appeared (color arrows)
with different mobilities depending on the length of the invading
oligonucleotide (Figure 6B, lanes 4, 6, and 8). Therefore, the bind-
ing of the hairpin core to the probe provoked the formation of a
D-loop structure of a determined length (Figure 6B, color panels).
The invading oligonucleotides can be bound to the probe either
completely (red panel, O-16) or partially (green and blue panels,
0O-40 and O-60, respectively) depending on their length. This
would form structures in which the ends of the longest invading
oligonucleotides would be overhanging the complex.
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Table 1. Number of Variants per Sample

$23 Mutant S23 Repaired All Variants Filtered Variants Filtered SNV Filtered Del Filtered Insert
0/0 0/1 66,758 46,002 36,147 4,681 5,174

0/1 0/0 67,563 46,414 36,637 4,684 5,093

0/0 1/1 8,579 644 105 307 232

11 0/0 8,414 729 92 345 292

0/1 1/1 23,814 6,322 4,490 890 942

11 0/1 22,472 5,675 4,046 769 860

0/1 0/1 1,074,296 971,609 798,079 92,812 80,718

11 11 1,036,972 549,872 441,444 35,296 73,132

Total 2,308,868 1,627,267 1,321,040 139,784 166,443

The genotype conventions were followed: “0/0” refers to homozygous reference position (no variant), “0/1” heterozygous, and “1/1” homozygous alternative. “Filtered” refers to the
minimum coverage of 10 in both samples and a minimum of three for the alternative alleles, which reduces the number of variants by 30% but ensures that both samples have a good
coverage. We can observe that the new variants in sample $23 repaired (0/0 0/1 or 0/0 1/1) and the new variants in sample $23 mutant (0/1 0/0 or 1/1 0/0) are very similar. Thus, we
cannot see a big increase or decrease in the overall number of variants between these two samples. SNV, single nucleotide variant; Del, deletions; Insert, insertions.

DISCUSSION

In this study, we demonstrate the generality of action of the repair-
PPRHs technology that we previously used to correct six different
point mutations (single substitutions, insertions, deletions, and a
double substitution) in a different gene that codes for the DHFR.
In that study, we used different polypurine hairpin cores against
polypyrimidine target sequences ranging from 10 to 23 nt for the
successful correction of the dhfr gene.*’ In the present work, we car-
ried out gene correction experiments in aprt-deficient cell lines that
contained different single-point substitutions in the endogenous lo-
cus of the aprt gene, serving as a model of a disease mutation in
CHO cells, because its deficiency in humans is an inherited condi-
tion that affects the kidneys and urinary tract.**** In this study, we
designed polypurine hairpins containing between 19 and 22 nt to
assure the specificity toward its polypyrimidine target sequence
and reduce the possible off-target effects. In all of the cases we
demonstrated the correction of the mutation not only at the
genomic level, but also at the mRNA and enzymatic activity levels,
showing that the translated protein was functional. One limitation
of the repair-PPRHs is the requirement of a polypyrimidine tract
near the mutation to be corrected. Although the frequency of these
polypyrimidine stretches around the human genome is more abun-
dant than that predicted by simple random models,* it can be diffi-
cult to find an appropriate sequence adjacent to the location of the
point mutation. We dealt with this situation by designing a long-
distance repair-PPRH in which the target for the repair domain
was located 24 nt upstream of the hairpin core. In this case, the
repair domain was linked to the hairpin core by an additional pen-
tathymidine loop. The long-distance repair-PPRH was able to cor-
rect its targeted mutation, indicating that adjacency between the
repair domain and the hairpin core was not necessary to achieve
the correction. This is in accordance with our previous data showing
that a long-distance repair-PPRH containing a hairpin core binding
662 nt away from the mutation was able to produce the
correction.*
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The highest level of gene repair was achieved when cells were trans-
fected just after release from S phase synchronization. We had already
observed an increase in repair efficiency after synchronization when we
corrected a point mutation in the dhfr gene using repair-PPRHs.** This
is also consistent with the work of Brachman and Kmiec"’ that showed
increased repair frequencies when using modified ssODNs by length-
ening the S phase and stalling the replication fork, thus inducing the
homologous recombination pathway. Other reports also determined
gene correction frequencies among different cell cycle stages, confirm-
ing that the S phase stage was the most prone to achieve the correction
of the mutation.”>*’ We did not obtain any surviving cell colony when
cells were transfected only with the repair domain of the repair-PPRH
or when this domain was attached to the scrambled polypurine hairpin
that did not show any binding to the target dsDNA, establishing the
requirement of the specific hairpin core to induce the triplex structure
and stimulate the gene repair event. This fact corroborates our previous
observation that repair domains bearing hairpin cores bound by intra-
molecular Watson-Crick bonds (unable to bind to the target dsDNA)
instead of Hoogsteen bonds did not produce the correction.**

Nowadays, most popular gene-editing technologies (CRISPR/Cas9,
ZFN, and TALEN systems) rely on the activity of nucleases that create
extrinsic breaks in the dsDNA to achieve the correction of the muta-
tion. One of the main concerns with these gene-editing tools is the
presence of off-target effects in the repaired genome such as small in-
sertions, deletions, or substitutions,” >* usually produced by unspe-
cific cuts of the nuclease. Haapaniemi et al.”> showed that CRISPR/
cas9 genome editing induced a p53-mediated DNA damage response
and cell cycle arrest in human retinal pigment epithelial cells. On-
target mutagenesis such as large deletions in the target site®® and un-
expected chromosomal truncations” have also been reported. In this
regard, repair-PPRHs did not produce any off-target effects in the
genome of the repaired cells. No random insertions or deletions
caused by the repair-PPRH were detected, and the repair-PPRH itself
was not inserted in any region of the repaired genome. Moreover, the
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Table 2. Genomic Integration of the Repair-PPRH

$23 Mutant

Read ID Identity % Align Length Exp. Val. In Region CIGAR mapQ
J00148:62:HMFTCBBXX:7:1205:28544:42583 98 50 4.99e—16 yes 151M 60
J00148:62:HMFTCBBXX:7:1228:19431:11143 98 50 4.9%e—16 yes 151M 60
K00310:156:HMFGLBBXX:8:1222:4980:29677 98 50 5.47e—16 yes 1S150M 30
K00310:156:HMFGLBBXX:8:2107:11464:21500 98 50 5.47e—16 yes 151M 30
K00310:158:HMFF5BBXX:6:1115:14154:37800 98 50 5.47e—16 yes 151M 60
K00310:158:HMFF5BBXX:6:1208:21846:33475 98 50 5.47e—16 yes 151M 60
K00310:158:HMFF5BBXX:6:1215:8471:30450 98 50 5.47e—16 yes 151M 60
K00310:156:HMFGLBBXX:8:1120:27011:20762 98 49 1.88e—15 yes 151M 60
J00148:62:HMFTCBBXX:7:2208:23876:43779 96 49 2.32e—14 yes 15147M3S 60
K00310:156:HMFGLBBXX:8:2218:24728:11425 95 42 1.90e—10 yes 151M 60
K00310:158:HMFF5BBXX:6:2204:26210:16770 98 50 5.47e—16 yes 74M77S 0
K00310:158:HMFF5BBXX:6:1115:20811:45010 96 47 3.29e—13 yes 31S115M5S 0
J00148:60:-HLL3CBBXX:7:2222:31598:29624 86 44 5.15e—06 yes 101M50S 0
S23 Repaired

Read ID Identity % Align Length Exp. Val. In Region CIGAR mapQ
K00310:157:HMFGJBBXX:3:1104:7476:24085 100 51 1.08e—17 yes 151M 60
K00310:157:HMFGJBBXX:3:1227:21734:7468 100 51 1.08e—17 yes 151M 60
K00310:159:HMFFVBBXX:4:2125:23957:2527 100 51 1.10e—17 yes 151M 60
K00310:157:HMFGJBBXX:3:2228:25915:42812 100 51 1.08e—17 yes 41M110S 0
K00310:159:HMFFVBBXX:3:1101:10338:27567 100 51 1.10e—17 yes 43M108S 0
J00148:61:HMFGCBBXX:3:1218:21521:21869 100 20 5.08e—06 yes 55596M 0
K00310:159:HMFFVBBXX:3:1117:27661:25474 100 27 2.41e—04 yes 151M 60

Reads are similar to the construct HpS23E1rep found with BLAST before being mapped into the genome. “Identity %,” “Align Length” (alignment length), and “Exp. Val.” (exper-

imental value) refer to the values obtained in the BLAST search. Accordingly, at the most, only the 51 bases that are identical to the complementary genome region were found in the
reads. In the S23 repaired we can observe that the alignment length is 51 and the identity is 100% because it contains the replaced G. The columns “In Region,” “CIGAR,” and “mapQ”
refer to the statistics of the reads when mapped into the genome using GEM3. In region means that the read has been mapped in the region near position 960,367 in contig
NW_003613583. CIGAR refers to the alignment code, and mapQ refers to the mapping quality score. Most of the reads have a quality score of 60, but some have lower quality

due to bad score qualities in the bases of the read. In any case, all reads were mapped uniquely to the expected genomic region. Therefore, we could not find any evidence of integration

of the construct in the genome.

presence of a preexisting effector T cell response directed toward Cas9
proteins in human beings has been described since Staphylococcus
aureus and Staphylococcus pyogenes cause infections in the human
population at high frequencies.”®’
modified, economical, and non-immunogenic DNA molecules that
do not activate the innate inflammatory response.”’ Additionally, it
has already been described that natural oligonucleotides,”"** oligonu-
cleotides including phosphorothioate bonds,”> morpholinos,”* and
locked nucleic acids®® are not genotoxic.

° In contrast, PPRHs are non-

One of the aims of this work was to get an insight into the molecular
mechanism behind the repair event. On the one hand, we demon-
strated the specific binding of the hairpin core of the repair-PPRH
to the polypyrimidine target sequence in the dsDNA, thus producing
the triplex structure. On the other hand, we explored the formation
of a D-loop upon the incubation of the hairpin core of the repair-
PPRH to the target sequence that could eventually stimulate the
repair event. We designed different invading oligonucleotides vary-

ing in length and complementary to the displaced strand of the
dsDNA upon formation of the triplex by the action of the hairpin
core. We showed that after the binding of the hairpin core to the
target sequence there was indeed a displacement of the complemen-
tary strand, which allowed the different invading oligonucleotides to
bind, generating structures with retarded mobility that indicated the
formation of a D-loop. In this regard, it is known that the potential of
molecules such as triplex-forming oligonucleotides to stimulate
recombination with donor DNAs depends on the homology-
directed repair (HDR)°*®” and the nucleotide excision repair
(NER) pathways.”” ® Concerning the HDR pathway, RAD51 is
one of the main proteins involved in this process by promoting the
homologous pairing of a single-stranded DNA to a duplex DNA in
a structure similar to a D-loop,”® 7* as the one shown in the present
work. Therefore, this structure can stimulate the HDR pathway to
finally achieve the correction of the mutation using the repair
domain attached to the hairpin core of the repair-PPRH. Our previ-
ous data showed that the transfection of a repair-PPRH along with a
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Gel-shift assays using a 160-bp 32P_radiolabeled dsDNA probe (dsDNA-S23) containing the mutation present in the S23 mutant and its flanking regions. The unlabeled
oligodeoxynucleotides present in each binding reaction are indicated. (A) Lane 1, dsDNA-S23 probe alone; lane 2, dsDNA-S23 plus HpS23E1-core (100 nM); lane 3, dsDNA-
S23 plus RD-S23E1rep (100 nM); lane 4, dsDNA-S23 plus HpS23E1rep repair-PPRH (100 nM); lane 5, dsDNA-S23 plus Hp-core-Sc (100 nM); lane 6, dsDNA-S23 plus RD-
Sc (100 nM); lane 7, dsDNA-S23 plus Hp-rep-Sc (100 nM). Color arrows indicated the different molecular species that are generated upon incubation with the different
oligodeoxynucleotides. The color of the arrows matches those of the panels corresponding to the proposed structures shown on the right panel. (B) Competition assay.
Lane 1, dsDNA-S23 probe alone; lane 2, dsDNA-S23 probe plus HpS23E1rep repair-PPRH (100 nM); lane 3, dsDNA-S23 probe plus HpS23E1rep (100 nM) competed with
HpS23E1-core (2 uM). 20x indicates that the oligonucleotide was added in a concentration 20 times greater than x.

Rad51 expression vector increased gene correction frequency by
10-fold,** thus confirming that the HDR pathway is involved in
the repair process triggered by the repair-PPRH. Regarding the
NER pathway, it has been reported that noncanonical DNA struc-
tures such as triple helices can be identified by the XPA/RPA DNA
damage recognition complex that recruits NER machinery to these
distorted sites, leading to DNA repair activity that generates recom-
bination intermediates.”> However, the entire mechanism by which
these triplex structures stimulate recombination remains unclear.

In summary, this work demonstrates the generality of repair-PPRHs
to specifically correct point mutations in their endogenous locus in
mammalian cells without detecting off-target modification in the
genome. We also determined the formation of a D-loop structure
upon the binding of the PPRH to its target sequence that is involved
in the HDR pathway, giving information about the mechanism by
which the repair event may occur. Collectively, this study provides
further knowledge for the usage of this technology. We envision
repair-PPRHs as an alternative gene-editing tool to correct single-
point mutations responsible for monogenic diseases in human cells.
These molecules can be associated with advanced delivery systems
such as new liposomes and gold/polymeric nanoparticles that could
improve their delivery, thus allowing the implementation of this tech-
nology for in vivo approaches.

MATERIALS AND METHODS

Cell Culture

Several aprt-deficient CHO cell lines were used for gene correction.
All cell lines contained a single nucleotide substitution within the
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coding sequence that produced a premature stop codon (nonsense
mutation), thus generating a truncated protein. The mutant cell
lines were isolated using different mutagens from the parental cell
line D422,”* which is a CHO cell line hemizygous for the aprt
gene.”> The different cell lines and their corresponding mutations
are described in Table S1. Cells were grown in Ham’s F12 medium
containing 10% fetal bovine serum (both from Gibco, Madrid,
Spain) at 37°C in a 5% CO,-controlled humidified atmosphere.
Trypsinization of the cells was performed using 0.05% trypsin
(Sigma-Aldrich, Madrid, Spain).

Oligodeoxynucleotides

To design the different PPRHs we used the Triplex-Forming Oligonu-
cleotide Target Sequence Search software (http://utwl0685.utweb.
utexas.edu/tfo/, Austin, TX, USA), which searches for stretches of
polypurines within the DNA sequence of interest. Repair-PPRHs
were designed by attaching an extension sequence (repair domain)
to the hairpin core that ultimately binds to the polypyrimidine target
sequence (Figure 1A).

We also designed a long-distance repair-PPRH (LD-HpS1E2rep) in
which the hairpin core was located 24 nt away from the repair
domain. In this case, an additional pentathymidine loop between
the hairpin core and the repair domain was included to provide flex-
ibility to the repair domain (Figure 1B). All oligodeoxynucleotides
were synthesized by Sigma-Aldrich (Haverhill, UK), dissolved at
10 pg/uL (stock solution) in a sterile RNase-free Tris-EDTA bulffer
(1 mM EDTA and 10 mM Tris, pH 8.0; both from Sigma-Aldrich,
Madrid, Spain), and stored at —20°C until use.
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the figure.

As negative controls, different oligodeoxynucleotides that contained
only the repair domain for each mutant, without the hairpin core,
were used. In addition, a scrambled polypurine hairpin core
attached to the repair domain of the $S23 mutant was transfected
into S23 mutant cells as an additional negative control. Sequences
and abbreviations of all oligodeoxynucleotides are described in
Table S2.

Transfection

Different numbers of cells ranging from 50,000 to 300,000 were plated
the day before transfection. Transfections were carried out using the
original calcium phosphate method.” Briefly, 10 ug of the repair-
PPRH was mixed with 100 pL of a 2.5 M CaCl, solution and sterile
Milli-Q H,O in a final volume of 500 pL. This solution was added
dropwise to an equal volume of a sterile 2x HEPES-buffered saline
(HBS; 280 mM NaCl, 50 mM HEPES, and 1.5 mM NaH,PO,, pH
adjusted to 7.1) while bubbling with a 1-mL sterile glass pipette.
The calcium phosphate-DNA precipitate was allowed to form for
30 min at room temperature without agitation. Then, 1-mL mixtures
were added dropwise to 100-mm plates containing the recipient cells
in 10 mL of culture medium. After 5 h of incubation at 37°C, culture
medium was replaced with fresh medium and cells were incubated for
an additional 48 h before selection (Figure 1C).

Selection of the Repaired Cells
APRT selection was applied to transfected cells using RPMI 1640 se-
lective medium (Gibco, Madrid, Spain) lacking glycine and hypoxan-

thine (—GH medium), supplemented with 50 uM adenine, 5 M
aminopterin, and 10 pM thymidine (+AAT medium) (Sigma-Al-
drich, Madrid, Spain) containing 7% dialyzed fetal bovine serum
(Gibco, Madrid, Spain). Each experiment was performed a minimum
of three times, and a minimum of three colonies from each replicate
were analyzed (Figure 1C).

DNA Sequencing

Total genomic DNA was extracted using the Wizard genomic DNA
purification kit (Promega, Madrid, Spain), following the manufac-
turer’s instructions. PCR was carried out to amplify the specific
genomic region containing the mutated site. OneTaq DNA polymer-
ase (New England Biolabs, Ipswich, MA, USA) was used following the
standard PCR cycling conditions recommended by the manufacturer.
The primer sequences for each amplification were as follows: 5'-TT
ACCCTTGTTCCCGGACTG-3' and 5'-TGATCTCACCTAAACAG
CAC-3' for the $23 cell line, 5-CAGGAACCATGTGCGCTG
CCTGTGAGC-3' and 5-GGTAAGGCTGAGCCACTGTTCAAC
CG-3' for the S62 cell line, and 5'-CTTGTTCCCAGGGA
TATCTCG-3' and 5-GGTTGAAGAAAGAAGGGATAGG-3' for
the S1 cell line. The PCR-amplified products were sequenced by Mac-
rogen (Amsterdam, the Netherlands).

mRNA Analyses

Total RNA was extracted using TRI Reagent (Life Technologies,
Barcelona, Spain) following the instructions provided by the manu-
facturer. RNA concentration was determined by measuring its
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absorbance at 260 nm using a Nanodrop ND-1000 spectrophotom-
eter (Thermo Fisher Scientific, Barcelona, Spain). cDNA was synthe-
sized in a 20-pL reaction mixture containing 1 pg of total RNA,
125 ng of random hexamers (Roche, Barcelona, Spain), 0.5 mM of
each deoxyribonucleotide triphosphate (dANTP; Bioline, London,
UK), 2 uL of buffer (10x), 20 U of RNase inhibitor, and 200 U of Mo-
loney murine leukemia virus reverse transcriptase (last three from Lu-
cigen, Middleton, W1, USA). The reaction was incubated at 42°C for 1
h. 3 pL of the cDNA mixture was used for quantitative real-time PCR
amplification.

A StepOnePlus real-time PCR system (Applied Biosystems, Barce-
lona, Spain) was used to perform the experiments. PCR cycling con-
ditions were 10 min denaturation at 95°C, followed by 40 cycles of
15 s at 95°C and 1 min at 60°C. An APRT mRNA TagMan probe
(assay ID: Cg04465038_gl) was used to determine the mRNA
expression of the aprt gene. The relative mRNA amount of the
target gene was calculated using the AACt method, where Cr is
the threshold cycle that corresponds to the cycle where the amount
of amplified mRNA reaches the threshold of fluorescence. A TATA
box-binding protein (TBP) mRNA TaqMan probe (assay ID:
Cg04504571_m1) was used as an endogenous control. All TagMan
probes were purchased from Life Technologies (Barcelona, Spain).
The final volume of the reaction was 20 pL containing 1x TaqMan
Universal PCR Master Mix II, 1x TagMan probe (both from Life
Technologies, Barcelona, Spain), 3 pL of cDNA, and nuclease-free
Milli-Q H,O.

APRT Enzymatic Activity Assay

The assay was adapted from the original paper of Johnson et al.”” with
some modifications. Basically, this method is based on the change in
absorbance of adenine at 260 nm due to its conversion to AMP by
APRT. First, mutant or repaired cells (5 x 10°) were lysed with
200 pL of 0.1% Triton X-100 in 100 mM Tris-HCI (pH 7.4). After vor-
texing, cell extracts were centrifuged at 10,000 x g for 10 min at 4°C
and the supernatant was kept in ice until APRT activity determina-
tion. Protein concentration of the cell lysates was determined by
the Bio-Rad protein assay following the instructions of the manufac-
turer. The 500-puL incubation mixture consisted of 0.25 mM adenine,
5 mM MgCl,, 1 mM phosphoribosyl pyrophosphate, and 50 mM
Tris-HCI (pH 7.4) (all from Sigma-Aldrich, Madrid, Spain). To start
the reaction, 190 pL of cell lysate was added to the incubation mixture
at 37°C. After vortexing, 200 pL of sample was immediately removed
and placed into a new tube containing 200 pL of LaCl; (Sigma-Al-
drich, Madrid, Spain), followed by rapid mixing to stop the reaction
(to). After 30 min of reaction, another sample was removed and pro-
cessed as mentioned before (t30). Finally, 400 uL of 40 mM Na,HPO,
was added to each sample, mixed, and centrifuged at 10,000 x g for
5 min at 4°C. The absorbance of the clear supernatant was measured
at a wavelength of 260 nm in a UV-1700 UV-Vis spectrophotometer
(Shimadzu, Duisburg, Germany). Data were represented as enzyme
milliunits (mU), corresponding to the amount of enzyme that cata-
lyzes the conversion of 1 nmol of adenine per minute, divided by
the mg of total protein extract.
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A scheme representing the different assays (DNA sequencing, mRNA
expression, and enzymatic activity) performed to confirm the func-
tionality of aprt upon repair are shown in Figure 1C.

Gene Correction Frequency

Gene correction frequency was determined for the S23 mutant cell
line using the HpS23Elrep repair-PPRH. Transfection was per-
formed either in asynchronous cells or with cells in the S phase of
the cell cycle. Synchronization in S phase was achieved following
the protocol described by Chin et al.,”® which consisted basically in
incubating the cells in medium supplemented with 0.1% serum for
72 h followed by incubation with 1.5 mM hydroxyurea for 15 h. After
transfection and selection in +AAT medium, surviving cell colonies
were fixed with 6% formaldehyde, stained with crystal violet (both
from Sigma-Aldrich, Madrid, Spain), and counted.

Whole-Genome Sequencing Analyses

Total genomic DNA was extracted from both $23 mutant cells and
S§23 repaired cells using the method previously described in “DNA
Sequencing” above. Both samples were sequenced with a whole-
genome approach with an average target coverage of 26x in the
facilities of the National Center for Genomic Analyses (CNAG),
Barcelona, Spain. The CHO genome and annotation CHO-K1
[ATCC]_RefSeq_2014 assembly was obtained from https://
chogenome.org/ and used as a reference genome. The sequenced
reads were mapped into the CHO-K1[ATCC]_RefSeq_2014 assem-
bly using the GEM3 aligner’® with default parameters. The CHO-
K1[ATCC]_RefSeq_2014 assembly was very fragmented with more
than 100,000 contig fragments. To avoid mapping problems in small
contigs that could lead to false-positive variant calls and to simplify
the analysis, a set of 3,158 contigs longer than 100 kb covering around
90% of the genomic sequence (2.2 Gb) was used to analyze the num-
ber of variants and the genotype of both samples. For this analysis, we
used the variants calls computed with HaplotypeCaller from the
Genome Analysis Toolkit”* following their best practices guidelines.
As the covered regions could be different among samples and
genomic regions, we applied a filter to ensure that there was enough
reliable information in both samples. A set of variants with enough
support in the two samples was created. Thus, we required that the
genomic position had a coverage of at least 10 reads in both samples,
and if there was an alternative allele, it had to have a coverage of at
least three reads with the alternative variant. The filter reduced the to-
tal number of reported variants around 30% but ensured that all calls
were reliable and comparable between the two samples.

To check the possible off-target effects by insertion of the repair-
PPRH construct in different regions of the genome, we performed
similarity searches to identify genomic sequenced reads that could
contain the repair-PPRH sequence. The alignment software BLAST®
was run with word size parameter set to 15 to speed up the search.
With a word size of 15, BLAST required a seed of 15 bases from
the query to be identical to the target sequence in the database to start
the alignment. Only the sequences with an alignment with an ex-
pected p value lower than 1e—03 were taken for the analysis.
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DNA Binding Assays

To prepare the probe for the binding assays, the target dsDNA
sequence of the HpS23Elrep repair-PPRH was PCR amplified using
genomic DNA from S23 mutant cells and the S23-Fw and S23-Rv
primers. The dsDNA PCR product (200 ng) was 5 end labeled
with [y-**P]ATP (3,000 Ci/mmol) (PerkinElmer, Madrid, Spain) us-
ing T4 polynucleotide kinase (New England Biolabs, USA) in a 10-uL
reaction mixture, according to the manufacturer’s protocol. After in-
cubation at 37°C for 1 h, 90 pL of Tris-EDTA buffer (1 mM EDTA
and 10 mM Tris, pH 8.0; Sigma-Aldrich, Madrid, Spain) was added
to the reaction mixture, which was subsequently filtered through a
Sephadex G-50 (Sigma-Aldrich, Madrid, Spain) spin column to elim-
inate the unincorporated [y-**P]ATP.

Binding experiments were carried out by incubating the radiolabeled
DNA probe (20,000 cpm) with a length of 160 bp with different un-
labeled oligodeoxynucleotides in a buffer containing 10 mM MgCl,,
100 mM NaCl, and 50 mM HEPES (pH 7.2). Binding reactions
(20 pL) were incubated 5 min at 92°C followed by 25 min of cooling
down until reaching room temperature. In the case of the D-loop for-
mation gel-shift assays, binding reactions were incubated 5 min at
92°C and 5 min at 37°C (invading oligonucleotides were added to
the mix at this point) and 20 min of cooling down until reaching
room temperature. Unspecific DNA (poly(d:dC)) was included in
each condition at a 1:2 unspecific DNA/specific DNA ratio. Electro-
phoresis was performed on a nondenaturing 10% polyacrylamide
gels containing 10 mM MgCl,, 5% glycerol, and 50 mM HEPES
(pH 7.2). Gels were run at a fixed voltage of 220 V (4°C) using a
running buffer containing 10 mM MgCl, and 50 mM HEPES
(pH 7.2). Finally, gels were dried at 80°C, exposed to photostimulable
phosphor plates, and visualized on a Storm 840 Phosphorimager
(Molecular Dynamics, GE Healthcare, Barcelona, Spain).
ImageQuant software v5.2 was used to visualize the results.

Statistical Analyses

Data are represented as the mean + SEM values of three experiments.
Statistical analyses were performed using ordinary one-way ANOVA
with Dunnett’s multiple comparison tests. Gene frequency data were
analyzed with an unpaired Student’s t test. Analyses and representa-
tion of the data were carried out using GraphPad Prism version 6.0
software (GraphPad, La Jolla, CA, USA).
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