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Algal biomass (AB) is prospective source of valuable compounds, however,

Baltic Sea macroalgae have some challenges, because of their high microbial

and chemical contamination. These problems can be solved, by using

appropriate technologies for AG pre-treatment. The aim of this study was

to evaluate the influence of two pre-treatments, solid-state fermentation

with the Lactiplantibacillus plantarum LUHS135 and ultrasonication, on

the antioxidant and antimicrobial characteristics of macro- (Cladophora

rupestris, Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis) and

Spirulina (Arthrospira platensis) extracts. Also, combinations of extracts and

LUHS135 were developed and their characteristics were evaluated. The total

phenolic compound content was determined from the calibration curve and

expressed in mg of gallic acid equivalents; antioxidant activity was measured

by a Trolox equivalent antioxidant capacity assay using the DPPH• (1,1-

diphenyl-2-picrylhydrazyl), ABTS•+ 2,2
′
-azinobis-(3-ethylbenzothiazoline-6-

sulfonic acid), FRAP (Ferric Reducing Ability of Plasma) discoloration methods.

Antimicrobial activity was measured by using agar well di�usion assay

and in a liquid medium. The highest DPPH• and ABTS•+ was shown by

C.rupestris and F.lumbricalis extract × LUHS135 combinations, the highest
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FRAP - by non-pretreated C.rupestris and F.lumbricalis extract × LUHS135

combinations. Ultrasonicated samples inhibited four out of seven tested

pathogens. Finally, the tested pre-treatments showed good perspectives and

can be recommended for AB valorization.

KEYWORDS

solid-state fermentation, ultrasonication, algae, extracts, antimicrobial properties,

antioxidant properties, lactic acid bacteria

Introduction

Algal biomass can be converted into a wide range of

functional products (1). Despite, that they are a valuable source

of functional compounds, our previous studies showed that

the application of Baltic Sea macroalgae have some challenges

because of their high microbial and chemical contamination

(2). However, algae safety parameters could be improved by

applying ethanolic extraction, which is a suitable technology

for pathogen decontamination and reduces the toxic metal

concentration in algae extracts (3). In addition to improvements

in algae products’ safety parameters, it would be very beneficial

to increase extraction efficiency. Therefore, in this study, two

methods for algae pre-treatment were tested before extraction:

(I) solid-state fermentation (SSF) with a selected lactic acid

bacteria (LAB) strain and (II) ultrasonication. We hypothesized

that algae biomass pre-treatment before extraction can lead

to better properties of the extracts (higher antioxidant activity

and total phenolic compound (TPC) content, as well as

stronger antimicrobial properties against a broader spectrum

of pathogenic and opportunistic strains). In addition, to

increase the antimicrobial and antioxidant activity of the

prepared extracts, combinations of algae extracts and a pure

Lactiplantibacillus plantarum LUHS135 strain were developed.

Our previous studies showed that the above-mentioned strain

inhibits various pathogenic and opportunistic microorganisms

and is suitable for fermentation of various substrates (4–7). The

importance of algae biomass pre-treatment before extraction can

be explained by algae cell composition, which is protected by

complex cell walls (8, 9). It has been reported that the crucial step

in obtaining bioactive compounds from micro- and macroalgal

biomass is to achieve efficient cell disruption (10). Some algae

pre-treatment technologies are described in the literature, and

the most effective mechanical and biological techniques were

mentioned (11, 12). Despite the fact that physical pre-treatment

was found to be a cost-intensive process, ultrasonication

was recommended as the most promising method for cell

disintegration (9, 13, 14). Ultrasound breaks the cell structure

and improves material transfer by enhancing the extraction

from microalgae (9, 15–17). Also, biological pre-treatment with

fungi, bacteria and/or their enzymes can be used to degrade

lignin and hemicelluloses of algae cells (12, 18). There are

numerous studies on algae pre-treatment using biological tools

(19–21). In addition to the breakdown of lignin, biological

pre-treatment generates other valuable compounds such as

phenolic acids, benzoic acid, syringaldehyde, etc. (22). Other

major advantages of biological pre-treatment are low energy

consumption, simple operating conditions and equipment, no

requirement for recycling the chemicals after pre-treatment,

etc. (23–25). Solid state fermentation (SSF) process is based on

the microorganisms grown on solid or semi-solid substrates or

supports, and is more effective than the liquid phase submerged

fermentation (26). We hypothesized that algae biomass SSF can

lead to the deeper algae cells breakdown, which will lead to better

properties of the extracts.

The aim of this study was to evaluate the influence

of two pre-treatments, solid-state fermentation (SSF) with

the Lactiplantibacillus plantarum LUHS135 strain and

ultrasonication (for 45min at 35 kHz), on the antioxidant

and antimicrobial characteristics of macroalgae (Cladophora

rupestris, Cladophora glomerata, Furcellaria lumbricalis and

Ulva intestinalis) and microalgae [Spirulina (Arthrospira

platensis)] extracts. In addition, combinations of algae extracts

and the pure LUHS135 strain were developed and their

antioxidant and antimicrobial characteristics were evaluated.

Materials and methods

Algae samples and lactic acid bacteria
strain used in experiments

Samples of macroalgae (Furcellaria lumbricalis, Ulva

intestinalis, Cladophora rupestris and Cladophora glomerata)

were collected in May–June of 2021 on the Lithuanian coast.

Ulva intestinalis and C. glomerata samples were taken from

stones near the surface, while F. lumbricalis and C. rupestris

samples were taken after a storm along the shore. The collected

samples were cleaned three times in distilled water to remove

sand and macroscopic invertebrates. Microalgae Spirulina

(Arthrospira platensis) was purchased from the University

of Texas Biological Labs (Austin, Texas, United States),
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multiplied according to instructions given by producer and used

in experiments.

Before the experiments, all algal samples were lyophilized

using a freeze-dryer FD8512S (ilShin R© Europe, Ede, The

Netherlands) and ground into a powder (particle size< 0.2mm)

using a knife mill GM200 (Retsch, Düsseldorf, Germany).

Freeze-dried samples were maintained at room temperature in

a dark place until they were used.

The Lactiplantibacillus plantarum LUHS135 strain

(LUHS135) was obtained from the Lithuanian University

of Health Sciences collection (Kaunas, Lithuania). The

characteristics of the LAB strain used, including the inhibition

of strains of pathogenic and opportunistic bacteria, and

fungi are described by Bartkiene et al. (4). In addition, our

previous studies showed that fermentation of feed with

LUHS135 had a positive influence in vivo on piglets’ health

parameters (27–29). The above-mentioned LAB strains were

stored at−80◦C in a Microbank system (Pro-Lab Diagnostics,

United Kingdom) and propagated in de Man–Rogosa–

Sharpe (MRS) broth (CM 0359, Oxoid Ltd, Hampshire,

United Kingdom) at 30 ± 3◦C for 48 h before their use for

algae fermentation.

Fermentation and ultrasonication of algal
samples

The LUHS135 strain was multiplied as described in Algae

samples and lactic acid bacteria strain used in experiments

and used for algae powder (AP) fermentation. A total of 3mL

of the LAB strain multiplied in MRS (cell concentration, on

average, 9.0 log10 CFU mL−1) was inoculated to 100 g of

AP media (for 100 g of AP, 60mL of water was used) and

fermented at 30 ± 2◦C for 60 h. Control samples for pH

analysis were prepared without the addition of LAB. Our

previous studies showed that pure algae samples are not suitable

substrates for effective LAB growth (2), thus 2% (from the

algae sample amount) of yeast extract was added (ThermoFisher,

Kandel, Germany), with the purpose of improving the growth

of the LUHS135. Anaerobic conditions were attained by

incubating the fermentable substrate in anaerobic jars (Oxoid,

Basingstoke, Hampshire, United Kingdom), with GasPak

PlusTM (BBL, Cockeysville MD, United States). Samples for

pH analysis were taken after 12, 24, 36, 48 and 60 h

of fermentation.

Algae samples were ultrasonicated before extract

preparation for 45min at 35 kHz (temperature of samples

during the ultrasonication was 40 ± 2◦C) using ultrasonic

bath (Bandelin Sonorex, Bandelin electronic GmbH & Co. KG,

Berlin, Germany).

Both fermented and ultrasonicated algae samples were

lyophilised and used for extract preparation.

Extracts and extract × lactiplantibacillus
plantarum LUHS135 strain combinations
preparation

Five grams of the lyophilized algal samples (non-pretreated,

fermented and ultrasonicated, for a total of 15 samples)

were extracted with 100mL of ethanol/water (70:30 v/v) (30)

by incubation at room temperature (22 ± 2◦C) overnight

with stirring (Vibramax 100, Heidolph, Nuremberg, Germany).

Then, extracts were centrifuged at 3,500 rpm for 10min

at 4◦C and filtered through Whatman No. 4 filter paper.

Ethanol was removed by rotary evaporation in the extract. The

concentrate and the supernatant of the extract were lyophilized

and weighted.

For the preparation of extract × LUHS135 strain

combinations, it was propagated in MRS broth (CM 0359,

Oxoid Ltd, Hampshire, United Kingdom) at 30 ± 3◦C

for 48 h, and a pure LUHS135 strain was used (LUHS135

strain/algae extract; 50/50, by volume). The principal scheme

of the experiment is given in Figure 1. Three groups of

samples were prepared: (I) extracts and extracts × LUHS135

combinations prepared from non-pre-treated algae, (II)

extracts and extracts × LUHS135 combinations prepared from

ultrasonicated algae and (III) extracts and extracts × LUHS135

combinations prepared from fermented algae. In every group

pure extract as well as extract combinations with the LUHS

strain were tested (ClaR = Cladophora rupestris; ClaG =

Cladophora glomerata; Ul=Ulva intestinalis; Furc= Furcellaria

lumbricalis; Sp = Spirulina (Arthrospira platensis); non =

extracts prepared from non-pre-treated algae; ultr = extracts

prepared from ultrasonicated algae; ferm = extracts prepared

from fermented algae; LUHS135 = extract × LUHS135

strain combination). There were 30 samples total: Group

(I): ClaRnon, ClaRnonLUHS135, ClaGnon, ClaGnonLUHS135,

Furcnon, FurcnonLUHS135, Ulnon, Ul nonLUHS135, Spnon
and SpnonLUHS135; Group (II): ClaRultr, ClaRultrLUHS135,

ClaGultr, ClaGultrLUHS135, Furcultr, FurcultrLUHS135, Ulultr,

UlultrLUHS135, Spultr and SpultrLUHS135 and Group (III):

ClaRferm, ClaRfermLUHS135, ClaGferm, ClaGfermLUHS135,

Furcferm, FurcfermLUHS135, Ulferm, UlfermLUHS135, Spferm
and SpfermLUHS135.

Analysis of algae color characteristics and
pH

The color coordinates of the algae extracts and their

combinations with the LUHS135 strain were evaluated using

a CIE L∗a∗b∗ system (CromaMeter CR-400, Konica Minolta,

Marunouchi, Tokyo, Japan) (3). The pH of samples was

evaluated with an “inoLab pH Level 3” pH meter (Hanna

Instruments, Weilheim, Germany).
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FIGURE 1

The principal scheme of the experiment.

Determination of the total phenolic
compound content

The total phenolic compound (TPC) content in the

extracts was determined according to the Folin–Ciocalteu

method (31) with slight modifications (32). Samples (1.0mL)

were introduced into test cuvettes followed by 5.0mL

10% (1/10, v/v) of Folin–Ciocalteu’s reagent by diluting a

stock solution with ultra-pure distilled water and 4.0mL of

Na2CO3 (7.5%). The system was then placed at ambient

temperature for 1 h. The absorbance was measured at 765 nm

using a Genesys-10 UV/VIS spectrophotometer (Thermo

Spectronic, Rochester, NY, United States). The concentration

of TPC was determined from the calibration curve and

expressed in mg of gallic acid equivalents (GAE) in ml

of extracts.

Determination of the antioxidant
capacity of algae extracts

The antioxidant activity of algae extracts was measured

by DPPH•, ABTS•+ and FRAP discoloration methods.

Calculation of all antioxidant activity assays was carried out

using Trolox calibration curves and expressed as µmol of

the Trolox equivalent (TE) per one gram of ml of extract

(µmol TE/ml).

DPPH• activity

The DPPH• (2,2-diphenyl-1-picrylhydrazyl hydrate free

radical) scavenging capacity of the algal extracts was determined

by the method of Brand-Williams et al. (33) with slight

modifications (34). Twenty microliters of extract were allowed

to react with 2mL of DPPH• ethanolic solution (2mL, 6 ×

10−5 M) by mixing in a cuvette with a 1 cm path length for

30min in the dark. The decrease in absorbance was measured

at 515 nm using a Genesys-10 UV/VIS spectrophotometer

(Thermo Spectronic, Rochester, NY, United States).

ABTS•+ activity

The radical scavenging activity of extracts was also

measured by ABTS•+ (2,2
′
-azino-bis(3-ethylbenzthiazoline-6-

sulphonic acid) radical cation assay (35) as described by

Urbonaviciene et al. (32). ABTS•+ solution (2mM) was

prepared by dissolving 2,2
′
-azinobis (3-ethylbenzothiazoline-6-

sulfonic acid) diammonium salt in 50mL of phosphate-buffered

saline (PBS) obtained by dissolving 8.18 g NaCl, 0.27 g KH2PO4,

1.42 g Na2HPO4 and 0.15 g KCl in 1 L of pure water. The pH

of the prepared solution was adjusted to 7.4 using NaOH. Then

the K2S2O8 solution (70mM) was prepared in pure water.

Briefly, 2mL of ABTS•+ radical solution was mixed with 20

µL extract also in a 1 cm path length cuvette. The reaction

mixture was kept at ambient temperature in the dark for 30min,

and the absorbance was read at 734 nm using a Genesys-10

UV/Vis spectrophotometer (Thermo Spectronic, Rochester, NY,
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United States). Trolox was used as a standard. A duplicate

determination was made from each extract.

FRAP activity

The ferric reducing antioxidant power (FRAP) assay was

carried out by the method of Benzie and Strain (36) with

some modifications (37). For the FRAP assay, 0.3M of sodium

acetate buffer (pH 3.6) was prepared by dissolving 3.1 g of

sodium acetate and 16mL of acetic acid in 1,000mL of

distilled water; a 10mM TPTZ solution was prepared by

dissolving 0.031 g of TPTZ in 10mL of 40mM HCl; and

a 20mM ferric solution was prepared by dissolving 0.054 g

of FeCl3·6H2O in 10mL of distilled water. Working FRAP

reagent was prepared by freshly mixing acetate buffer, TPTZ

and ferric solutions at a ratio of 10:1:1. Two milliliters of

freshly prepared FRAP working solution and 20 µL of extract

were mixed and incubated for 30min at ambient temperature.

The change in absorbance due to the reduction of the ferric-

tripyridyltriazine (Fe III-TPTZ) complex by the antioxidants

present in the samples was measured at 593 nm using a Genesys-

10 UV/VIS spectrophotometer.

Evaluation of the antimicrobial activity of
algal extract samples

The algal extracts as well as algal extract × LUHS135

strain combination antimicrobial properties were evaluated

by testing their abilities to inhibit the following pathogenic

and opportunistic strains: Salmonella enterica, Bacillus cereus,

Enterococcus faecium, Staphylococcus aureus, Escherichia coli,

Streptococcus mutans and Enterococcus faecalis. Antimicrobial

properties of the samples were evaluated by using the agar well

diffusion method and in a liquid medium.

For the agar well diffusion assay, suspensions of 0.5

McFarland standard of each pathogenic bacterial strain were

inoculated onto the surface of cooled Mueller–Hinton agar

(Oxoid, Basingstoke, UK) using sterile cotton swabs.Wells 6mm

in diameter were punched in the agar and filled with 50 µL

of the algal extract. The antimicrobial activities against the

tested bacteria were established by measuring the inhibition

zone diameters (mm). The experiments were repeated three

times, and the average diameter of the inhibition zones in mm

was calculated.

To evaluate the antimicrobial activity of the algal extracts

and algal extracts × LUHS135 combinations in liquid medium,

the algal samples were diluted 1:3 (v/v) with physiological

solution. Then we added 10 µL of the pathogenic and

opportunistic bacterial strains, cultured in a selective medium,

to the different concentrations of samples (500 and 2,000 µL)

and incubated them at 35◦C for 24 h. After incubation, the

viable pathogenic and opportunistic bacterial strains in algal

extract and/or in algal extracts × LUHS135 combination were

controlled by plating them on selective medium. The results

were interpreted as (–) if the pathogens did not grow on the

selective medium and (+) if the pathogens grew on the selective

medium. Experiments were performed in triplicate.

Statistical analysis

Extract preparation of algal samples was performed in

duplicate, while all analytical experiments were carried out

in triplicate. The calculated mean values, using the statistical

package SPSS for Windows (Ver.15.0, SPSS, Chicago, IL,

United States), were compared using Duncan’s multiple range

test with significance defined at p ≤ 0.05. A linear Pearson’s

correlation was used to quantify the strength of the relationship

between the variables. The results were recognized as statistically

significant at p ≤ 0.05.

Results and Discussion

Selection of algae fermentation duration
before extract preparation according to
changes in their pH

The changes in pH values during algae fermentation

are shown in Figure 2. In comparison to the non-fermented

samples, a pH higher than 7.0 was established for Cladophora

rupestris, Ulva intestinalis and Spirulina samples (7.35, 7.98

and 7.72, respectively). Non-fermented Cladophora glomerata

and Furcellaria lumbricalis samples had average pH values of

5.95 and 6.74, respectively. The most intensive fermentation

and reductions of pH values was found from 0–12 h and

from 12–24 h of fermentation. From 0–12 h and from 12–

24 h of fermentation the pH values of Cladophora rupestris,

Cladophora glomerata, Ulva intestinalis, Furcellaria lumbricalis

and Spirulina samples reduced by an average of 1.36 and 1.12,

1.18 and 1.04, 1.17 and 1.13, 1.26 and 1.27 and 1.28 and 1.19

times, respectively.

Although fermentation during the period from 24–36 h

was not as intensive as fermentation in previous studies, after

36 h of fermentation significantly lower pH values for all of

the tested algae samples were found when compared with

samples fermented for 24 h. However, after 48 h of fermentation

significant differences between the algae pH values were not

found, and after 72 h of fermentation some of the algae

sample pH values started to increase. Univariate analyses of

variance showed that the variety of algae is a significant

factor in sample pH (p = 0.017). However, the duration of

fermentation and interaction with analyzed factors did not

significantly affect the pH of the samples. According to these
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FIGURE 2

The pH of the non-fermented and fermented algae samples after 12, 24, 36, and 60h of fermentation [ClaR - Cladophora rupestris; ClaG -

Cladophora glomerata; Ul - Ulva intestinalis; Furc - Furcellari lumbricalis; Sp - Spirulina (Arthrospira platensis)]. Data are represented as means (n

= 3) ± SE. Means with di�erent letters (a–e) are significantly di�erent (p ≤ 0.05). The color of the letters coincides with the color of the sample in

the graph.

results, a fermentation duration of 36 h for extract preparation

was selected.

Literature on algae fermentation is scarce; however, our

previous studies showed that fermentation of the LUHS135

strain (duration of fermentation 12 h) significantly reduced the

pH of C. rupestris.However, the pH of other tested algae samples

(U. intestinalis and F. lumbricalis) remained unchanged (2). One

of the main goals of the fermentation process is to drop the

pH, and on average, the recommended pH for fermented food

is 4.6. A decrease in pH is an indicator of an effective process;

however, changes to the fermentable substrate can be caused

by many factors, i.e., the technological microorganism’s (used

for fermentation) characteristics, nutrient source in fermentable

media, duration of fermentation, humidity of the substrate, etc.

It has been reported that the moisture content of the substrate

has a significant influence on pH and, in most cases, lower pH

values and higher total titratable acidity were obtained for peas

in solid state fermentation conditions (38). The practice of LAB-

based food, as well as feed fermentations, happened accidentally

in the beginning, but soon spread due to its many benefits

including nutrition, safety and flavor (38, 39). Overall, during

the fermentation process many compounds are obtained as

secondary metabolites of technological microorganisms (40, 41).

Also, bound phenolic compounds are bio-converted from their

conjugated forms to their free forms, and this is explained by

their breakdown, activities of the fermentable substrate enzymes,

as well as activity of technological microorganisms (42). Finally,

this study showed that yeast extract is a suitable supplement for

increasing algae samples fermentation effectiveness.

Color coordinates and pH of algae
extracts and algae extracts × LUHS135
combinations

Color coordinates (L∗ = lightness; a∗ = redness; -a∗ =

greenness; b∗ = yellowness; -b∗ = blueness) and pH of the

algae extracts and algae extracts × LUHS135 combinations

are shown in Table 1. When comparing all three groups of

extracts (non-pre-treated, ultrasonicated and fermented before

extraction), the lowest L∗ coordinates were from ClaGnon,

ClaRultr and ClaRfermLUHS135 samples (42.5, 41.3 and 49.5

NBS, respectively). The most intensive greenness (-a∗) was

from Ulnon, Ulultr and Ulferm samples (-14.7,−13.7 and−6.86

NBS, respectively). The lowest yellowness (b∗) was from

ClaGnon, Spultr and ClaGferm samples (24.8, 23.7 and 23.1

NBS, respectively).

When comparing all of the samples, all of the analyzed

factors as well as their interactions had significant effects on

all color coordinates; however, algae species, pre-treatment used

before extract preparation, extract × LUHS135 combination

interaction, algae species × pre-treatment interaction and the

algae species × LUHS135 combination interaction did not have

significant effects on pH of samples (Table 1). In contrast, the

pre-treatment × LUHS135 combination interaction, as well as

the algae species × pre-treatment × LUHS135 combination

interaction, showed a significant influence on sample acidity (p

= 0.031 and p = 0.004, respectively). Also, a weak, negative

correlation between the sample pH and a∗ coordinate was found

(r = −0.289, p = 0.006) (Table 2). In all cases, the addition
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TABLE 1 Color coordinates (L*, lightness; a*, redness; –a*, greenness; b*, yellowness; –b*, blueness) and pH of the algae extracts and algae extracts

× LUHS135 combinations.

Extracts and

extract ×

LUHS135

combination

Color coordinates, NBS pH Multivariate analysis of variance

L* a* b* Factor Depen-dent

variable

p

Extracts and extracts× LUHS135 combinations prepared from non-pre-treated algae Algae species L* 0.0001

ClaRnon 64.6± 0.32g −13.8± 0.11b 47.5± 0.36g 6.77± 0.031d a* 0.0001

ClaRnonLUHS135 61.1± 0.26e −1.40± 0.15g 44.6± 0.33e 3.95± 0.032a b* 0.0001

ClaGnon 42.5± 0.10a −1.75± 0.192f 24.8± 0.18a 5.92± 0.124b pH 0.712

ClaGnonLUHS135 50.6± 0.12b 2.61± 0.105h 34.8± 0.39c 3.96± 0.115a Pretreatment used before L* 0.0001

Furcnon 79.2± 0.34h −3.57± 0.022c 32.2± 0.16b 6.19± 0.036c extracts preparation a* 0.0001

FurcnonLUHS135 60.5± 0.25d 10.4± 0.24k 47.8± 0.25g 3.92±0 .025a b* 0.0001

Ulnon 52.4± 0.32c −14.7± 0.16a 41.3± 0.37d 6.99± 0.092e pH 0.052

Ul nonLUHS135 62.9± 0.13f −2.27± 0.031e 45.8± 0.33f 3.95± 0.071a Extract× LUHS135 L* 0.0001

Spnon 59.9± 0.32d −3.40± 0.114d 49.1± 0.31h 8.69± 0.102f combination interaction a* 0.0001

SpnonLUHS135 64.6± 0.10g 4.04± 0.015j 44.9± 0.12e 3.94± 0.044a b* 0.0001

Extracts and extracts× LUHS135 combinations prepared from ultrasonicated algae pH 0.0001

ClaRultr 41.3± 0.31a −1.55± 0.064d 24.4± 0.21b 5.82± 0.032b Algae species× L* 0.0001

ClaRultrLUHS135 45.0± 0.24b 3.42± 0.121j 29.2± 0.10c 3.94± 0.091a pre-treatment interaction a* 0.0001

ClaGultr 50.8± 0.37c −7.16± 0.092b 33.5± 0.34d 6.37± 0.034d b* 0.0001

ClaGultrLUHS135 59.8± 0.36f −0.65± 0.021f 40.0± 0.32e 3.93± 0.022a pH 0.058

Furcultr 71.8± 0.44h 2.23± 0.105g 52.6± 0.35j 6.09± 0.093c Algae species× LUHS135 L* 0.0001

FurcultrLUHS135 65.1± 0.26g 4.43± 0.113k 45.7± 0.22g 3.89± 0.031a combination interaction a* 0.0001

Ulultr 55.4± 0.37d −13.7± 0.24a 45.7± 0.34g 7.01± 0.074e b* 0.0001

UlultrLUHS135 57.1± 0.10e −1.26± 0.031e 47.1± 0.12h 3.92± 0.032a pH 0.362

Spultr 79.9± 0.41j −5.40± 0.154c 23.7± 0.24a 7.67± 0.107f Pre-treatment× LUHS135 L* 0.0001

SpultrLUHS135 65.3± 0.31g 5.17± 0.072l 44.6± 0.27f 3.92± 0.094a combination interaction a* 0.0001

Extracts and extracts× LUHS135 combinations prepared from fermented algae b* 0.0001

ClaRferm 54.7± 0.25b −4.55± 0.094b 33.5± 0.34c 5.09± 0.064b pH 0.031

ClaRfermLUHS135 49.5± 0.37a 3.33± 0.046f 34.5± 0.22d 4.02± 0.084a Algae species× L* 0.0001

ClaGferm 63.2± 0.22e 1.95± 0.164d 23.1± 0.40a 5.06± 0.040b pre-treatment× LUHS135 a* 0.0001

ClaGfermLUHS135 62.4± 0.24d 7.75± 0.140h 45.8± 0.41g 4.07± 0.011a combination interaction b* 0.0001

Furcferm 65.6± 0.27g 4.67± 0.021g 43.8± 0.44f 5.59± 0.064c pH 0.004

FurcfermLUHS135 64.0± 0.38f 8.31± 0.163j 48.0± 0.31h 4.06± 0.052a

Ulferm 76.8± 0.25j −6.86± 0.111a 31.6± 0.22b 4.95± 0.081b

UlfermLUHS135 56.8± 0.42c 6.50± 0.202h 41.7± 0.14e 3.97± 0.094a

Spferm 83.1± 0.14k −1.67± 0.174c 31.5± 0.15b 5.20± 0.107b

SpfermLUHS135 71.7± 0.21h 3.08± 0.037e 43.2± 0.38f 3.98± 0.075a

ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-

treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination; L*, ightness; a*, redness;

–a* , greenness; b*, yellowness; –b*, blueness; NBS, National Bureau of Standards units; data are represented as means (n = 3 replicates of analysis) ± SE. a–l indicate the same analytical

parameters in different algae species groups. Means with different letters are significantly different (p ≤ 0.05).

of the LUHS135 multiplied strain reduces the algae extracts ×

LUHS135 combinations until an average pH of 3.96; however,

the highest pH was for Spnon, Spultr and Furcferm samples (8.69,

7.67 and 5.59, respectively).

The color changes can be explained by the fact that

during fermentation, the substrate is acidified, and organic

acids have an influence on oxidation processes which can lead

to color changes (38). In many cases, colored compounds
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TABLE 2 Correlations between the color coordinates (L* = lightness;

a* = redness; –a* = greenness; b*
= yellowness; –b*

= blueness) and

pH of the algae extracts and algae extracts × LUHS135 combinations.

Parameters Pearson

correlation (r) and

significance (p)

Parameters

L* a* b* pH

L* r 1 −0.157 0.452** 0.135

p 0.140 0.0001 0.205

a* r −0.157 1 −0.065 −0.289**

p 0.140 0.546 0.006

b* r 0.452** −0.065 1 0.093

p 0.0001 0.546 0.386

pH r 0.135 −0.289** 0.093 1

p 0.205 0.006 0.386

**Correlation (r) is significant (p) at the 0.01 level (2-tailed).

lead to higher antioxidant properties of the product and/or

extract; however, specific antioxidant properties are related to

specific phenolic compound profile composition (3). However,

oxidation of diffused phenolic compounds can also occur

(43). In addition to fermentation, ultrasonication could cause

color changes in compounds. Ultrasonic waves cause rapid

compressions and expansions and destroy substrate cells, and

the phenomenon of cavitation is responsible for a reduction of

the diffusion boundary layer (44–48). It has been reported that

ultrasonication increases extraction efficiency (49, 50). However,

other published studies showed that the use of ultrasound as a

pre-treatment for carrots contributed to significant changes in

their color (51). From this point of view, it is very important to

evaluate the changes of the antioxidant properties of the treated

samples because reductions in colored compounds could lead

to lower antioxidant activity. For this reason, during the second

stage of the experiment, antioxidant activities and total phenolic

compound content were analyzed.

The total phenolic compound and
antioxidant activity of algae extracts and
algae extracts × LUHS135 combinations

The aim of this study was to evaluate Also, combinations of

extracts and LUHS135 were developed and their characteristics

were evaluated. The total phenolic compounds content was

determined from the calibration curve and expressed in mg

of gallic acid equivalents; antioxidant activity was measured

by a Trolox equivalent antioxidant capacity assay using

the DPPH• (1,1-diphenyl-2-picrylhydrazyl), ABTS•+ 2,2
′
-

azinobis-(3-ethylbenzothiazoline-6-sulfonic acid), FRAP (Ferric

Reducing Ability of Plasma) discoloration methods.

The total phenolic compounds (TPC) content of the algae

extracts and the influence of two pre-treatments, solid-state

fermentation with the Lactiplantibacillus plantarum LUHS135

and ultrasonication is given in Table 3. In comparison, the

TPC content multivariate analysis of variance showed that algae

species (p ≤ 0.0001), algae × pre-treatment before extraction

interaction (p ≤ 0.0001) and algae species × LUHS135

combination interaction (p ≤ 0.003) had significant effects

on TPC content in samples. The lowest TPC content in the

non-pre-treated samples group was found in ClaRnon, Ulnon
and Spnon samples (on average 1.18mg GAE/mL), and the

highest was found in ClaRnonLUHS135 and FurcnonLUHS135

samples (on average 13.28mg GAE/mL). In comparison, for

extracts and extracts × LUHS135 combinations prepared from

ultrasonicated algae, the lowest TPC content was found in

Spultr samples (0.51mg GAE/mL), and the highest TPC content

was in ClaRultrLUHS135, ClaGultrLUHS135 and FurcultrLUHS135
samples (on average 12.23mg GAE/mL). Similar tendencies

were established in the fermented samples group, and the lowest

TPC content was found in Spferm samples (2.77mg GAE/mL)

while the highest was in ClaRfermLUHS135 and FurcfermLUHS135
samples (on average 12.76 mg GAE/mL).

The antioxidant properties of two pre-treatments, solid-state

fermentation with the Lactiplantibacillus plantarum LUHS135

and ultrasonication, on of macro- (Cladophora rupestris,

Cladophora glomerata, Furcellaria lumbricalis, Ulva intestinalis)

and Spirulina (Arthrospira platensis) extracts were estimated

and compared by DPPH•, ABTS•+, and FRAP methods. In

a comparison of the 2,2-diphenyl-1-picryhydrazyl (DPPH•)

radical scavenging activity of all three groups of samples

(non-pre-treated, ultrasonicated and fermented), multivariate

analysis of variance showed that all of the analyzed factors

and their interactions had significant effect on the DPPH•

radical scavenging activity of the samples (factors: algae

species and pre-treatment before extraction (fermentation

and/or ultrasonication), LUHS135 combination, algae species

× LUHS135 combination interaction, algae extract × pre-

treatment before extraction interaction, pre-treatment before

extraction × LUHS135 combination interaction and the algae

species × LUHS135 combination × pre-treatment before

extraction interaction, p ≤ 0.0001). In comparison to the

non-pre-treated (before extraction) samples group, the lowest

DPPH• radical scavenging activity was found in ClaRnon,

Ulnon and Spnon samples (on average, 0.188 µmol TE/mL),

and the highest DPPH• radical scavenging activity was shown

in ClaRnonLUHS135 and FurcnonLUHS135 samples (on average

1.86 µmol TE/mL). In extracts and extracts × LUHS135

combinations prepared from ultrasonicated algae, the lowest

DPPH• radical scavenging activity was found in Spultr (0.078

µmol TE/mL); however, ClaRultrLUHS135, ClaGultrLUHS135 and

FurcultrLUHS135 samples showed an average of 14.4 times

higher DPPH• radical scavenging activity. Similar to the

ultrasonicated group samples, in fermented samples we found
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TABLE 3 Antioxidant activities and total phenolic compound content of algae extracts and algae extracts × LUHS135 combinations.

Extracts and extract ×

LUHS135 combination

DPPH•, µmol TE/mL ABTS•+, µmol TE/mL FRAP, µmol TE/mL TPC, mg GAE/mL

Extracts and extracts× LUHS135 combinations prepared from non-pre-treated algae

ClaRnon 0.180±0.017a 0.704±0.032a 0.077±0.006b 1.30±0.095a

ClaRnonLUHS135 1.87±0.141f 4.60±0.092f,g 2.19±0.210h 12.8±0.032f

ClaGnon 0.245±0.028b 2.70±0.071d 0.360±0.034c 5.50±0.158b

ClaGnonLUHS135 0.676±0.046c 4.44±0.110f 0.728±0.063e 11.7±0.140e

Furcnon 1.52±0.104e 3.68±0.101e 0.869±0.047f 9.76±0.086c

FurcnonLUHS135 1.84±0.093f 4.65±0.152f,g 2.37±0.235h 13.77±0.160f

Ulnon 0.197±0.013a 2.20±0.076b 0.063±0.005a 1.15±0.073a

UlnonLUHS135 0.834±0.079d 4.26±0.095f 1.21±0.114g 11.27±0.079d,e

Spnon 0.187±0.017a 2.44±0.084c 0.051±0.004a 1.10±0.081a

SpnonLUHS135 0.661±0.056c 4.41±0.141f 0.603±0.037d 10.83±0.011d

Extracts and extracts× LUHS135 combinations prepared from ultrasonicated algae

ClaRultr 0.288±0.037b 2.37±0.110d 1.14±0.072f 6.38±0.284d

ClaRultrLUHS135 1.09±0.093f 4.45±0.312g 0.932±0.064e 12.26±0.546f

ClaGultr 0.259±0.035b 1.55±0.091c 0.117±0.009c 5.06±0.216c

ClaGultrLUHS135 1.02±0.104f 4.52±0.234g 0.540±0.047d 12.19±0.631f

Furcultr 0.704±0.078d 2.27±0.155d 1.03±0.084f 6.13±0.277d

FurcultrLUHS135 1.26±0.088f 4.67±0.191g 1.68±0.086g 12.23±0.495f

Ulultr 0.403±0.039c 1.33±0.084b 0.058±0.006b 1.85±0.115b

UlultrLUHS135 0.762±0.066d 4.26±0.255f 1.23±0.121f 11.16±0.558e

Spultr 0.078±0.010a 0.223±0.027a 0.031±0.013a 0.51±0.045a

SpultrLUHS135 0.877±0.049e 3.91±0.214e 1.34±0.114f 11.11±0.533e

Extracts and extracts× LUHS135 combinations prepared from fermented algae

ClaRferm 0.288±0.029c 3.42±0.212c 0.274±0.026b 7.07±0.234c

ClaRfermLUHS135 1.63±0.052f 5.04±0.321f 1.82±0.154f 12.70±0.540 f

ClaGferm 0.202±0.025b 2.21±0.044b 0.227±0.021b 7.06±0.304c

ClaGfermLUHS135 0.819±0.078d 4.43±0.103e 1.10±0.112c 11.43±0.482e

Furcferm 1.11±0.130e 3.86±0.094d 1.28±0.123c 9.53±0.270d

FurcfermLUHS135 1.45±0.132f 5.36±0.332f 1.68±0.142e 12.81±0.499f

Ulferm 0.202±0.012b 2.11±0.073b 0.258±0.027b 3.60±0.245b

UlfermLUHS135 0.891±0.055d 4.52±0.081e 1.17±0.140d 11.24±0.334e

Spferm 0.140±0.008a 1.29±0.050a 0.054±0.006a 2.77±0.142a

SpfermLUHS135 1.12±0.111e 4.79±0.131e 1.34±0.121d 11.75±0.422e

ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-

treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract × LUHS135 strain combination; DPPH• , 1,1-diphenyl-

2-picrylhydrazyl; ABTS•+ , 2,2
′
-azinobis-(3-ethylbenzothiazoline-6-sulfonic acid); FRAP, Ferric Reducing Ability of Plasma; TPC, total phenolic compounds content; GAE, gallic acid

equivalents TE, Trolox equivalent; data are represented as means (n = 3 replicates of analysis) ± SE. a–h indicate the same analytical parameters for different algae species groups, and

means with different letters are significantly different (p ≤ 0.05).

the lowest DPPH• radical scavenging activity in Spferm samples

(0.140 µmol TE/mL) and the highest in ClaRfermLUHS135 and

FurcfermLUHS135 samples (on average 1.54 µmol TE/mL). Also,

DPPH• radical scavenging activity showed a weak positive

correlation with samples’ a∗ coordinates (r = 0.231, p = 0.028).

The -a∗ and -b∗ coordinates are related to chlorophyll’s (-a

and -b) greenish lipid-soluble pigments and causes the typical

coloration of green algae (52, 53). However, carotenoids with

a higher number of conjugated double bonds show red color

and possess antioxidant properties (54). Other colored algae

compounds with antioxidant properties are astaxanthin (52,

55–59) and canthaxanthin (β,β-carotene-4,4
′
-dione), which

belongs to xanthophylls, and is widely used as a feed additive

as an antioxidant (60–64).

2, 2
′
-azino-bis ethylbenzthiazoline-6-sulfonic acid

(ABTS•+) radical cation scavenging of the samples showed

similar tendencies to DPPH• and FRAP, and a multivariate

analysis of variance showed that all of the analyzed factors and
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TABLE 4 Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated using the agar well–di�usion method.

Extracts and extract ×

LUHS135 combination

Pathogenic and opportunistic bacteria strain

Salmonella

enterica

Bacillus

cereus

Enterococcus

faecium

Staphylococcus

aureus

Escherichia

coli

Streptococcus

mutans

Enterococcus

faecalis

Diameter of the Inhibition zone, mm

Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae

ClaRnon nd 16.1± 1.3d 15.3± 0.2c nd nd nd nd

ClaRnonLUHS135 nd 12.3± .2b 11.5± 0.2b 12.4± 0.4c nd nd nd

ClaGnon nd 15.2± 0.6d Nd Nd nd nd nd

ClaGnonLUHS135 nd 16.0± 0.3d 8.0± 0.1a 11.5± 0.3b nd nd nd

Furcnon nd 13.4± 0.5c nd nd nd nd nd

FurcnonLUHS135 nd 11.2± 0.1a nd 12.3± 0.1c nd nd nd

Ulnon nd 12.3± 0.3b nd Nd nd nd nd

Ul nonLUHS135 nd 16.1± 0.2d nd 8.0± 0.2a nd nd nd

Spnon nd 12.4± 0.2b nd Nd nd nd nd

SpnonLUHS135 nd 16.4± 0.3d nd Nd nd nd nd

Extracts and extracts× LUHS135 combinations prepared from ultrasonicated algae

ClaRultr nd 18.2± 0.5b nd Nd nd nd nd

ClaRultrLUHS135 nd 16.4± 0.2a nd 14± 0.5b nd nd nd

ClaGultr nd nd nd nd nd nd nd

ClaGultrLUHS135 nd nd 12.6± 0.4 8.0± 0.1a nd nd nd

Furcultr nd nd nd Nd nd nd nd

FurcultrLUHS135 nd nd nd Nd nd 8.0± 0.2a nd

Ulultr nd nd nd nd nd Nd nd

UlultrLUHS135 nd nd nd nd nd 12± 0.3b nd

Spultr nd nd nd nd nd Nd nd

SpultrLUHS135 nd 18.1± 0.5b nd 14.6± 0.6b nd Nd nd

Extracts and extracts × LUHS135 combinations prepared from fermented algae

ClaRferm nd 16.3± 0.6c nd Nd nd Nd nd

ClaRfermLUHS135 nd Nd nd 15.4± 0.3c nd Nd nd

ClaGferm nd Nd nd nd nd Nd nd

ClaGfermLUHS135 nd 14.2± 0.2b nd 12.1± 0.1a nd Nd nd

Furcferm nd 13.4± 0.4a nd 13.3± 0.2b nd Nd nd

FurcfermLUHS135 nd 13.1± 0.1a nd nd nd Nd nd

Ulferm nd nd nd nd nd Nd nd

UlfermLUHS135 nd nd nd nd nd Nd nd

Spferm nd nd nd nd nd Nd nd

SpfermLUHS135 nd nd nd nd nd Nd nd

ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-

treated algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract× LUHS135 strain combination; nd, not determined; data

are represented as means (n = 3 replicates of analysis) ± SE. a–d indicate the same analytical parameters in different algae species group, and means with different letters are significantly

different (p ≤ 0.05).

their interactions had significant effects on sample ABTS•+

(algae species p ≤ 0.0001, pre-treatment before extraction p

≤ 0.0001, LUHS135 combination p ≤ 0.0001, algae species

× LUHS135 combination interaction p = 0.015, algae extract

× pre-treatment before extraction interaction p ≤ 0.0001,

pre-treatment before extraction × LUHS135 combination

interaction p ≤ 0.0001, algae species × LUHS135 combination

× pre-treatment before extraction interaction p ≤ 0.0001). In

comparison, in the non-pre-treated before extraction sample

group, the lowest ABTS•+ was in ClaRnon samples (0.704

µmol TE/mL) and the highest was in ClaRnonLUHS135 and

FurcnonLUHS135 samples (on average 4.63 µmol TE/mL).

Frontiers inNutrition 10 frontiersin.org

https://doi.org/10.3389/fnut.2022.990274
https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org


Tolpeznikaite et al. 10.3389/fnut.2022.990274

FIGURE 3

Images of the inhibition zones of the algae extracts and algae extracts × LUHS135 combinations evaluated using the agar well di�usion method

[ClaR, Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis)];

US, algae biomass pre-treated with ultrasound; LAB, algae biomas fermented with LUHS135 strain before extraction; LUHS135, extract

composition with LUHS135 strain; C,control (physiological solution)].

The highest ABTS•+ in the ultrasonicated group was from

ClaRultrLUHS135, ClaGultrLUHS135 and FurcultrLUHS135 samples

(on average 4.55 µmol TE/mL) and the lowest was from

Spultr samples (0.223 µmol TE/mL). Similar tendencies

were found in the fermented samples group: the lowest

ABTS•+ was from Spferm samples (1.29 µmol TE/mL) and

the highest was from ClaRfermLUHS135 and FurcfermLUHS135
(on average 5.20 µmol TE/mL). ABTS•+ showed a weak,

positive correlation with samples’ a∗ coordinates (r = 0.303,

p= 0.004).

The ferric reducing antioxidant power (FRAP), which

shows the ability of an antioxidant in reducing Fe(III) into

Fe(II), demonstrated that all of the analyzed factors and their

interactions had significant effects on the FRAP of the samples

(p ≤ 0.0001). In comparison to the group that was not pre-

treated before extraction, the lowest FRAP was established in
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Ulnon and Spnon samples (on average 0.057 µmol TE/mL)

and the highest FRAP was found in ClaRnonLUHS135 and

FurcnonLUHS135 samples (on average 2.28 µmol TE/mL). In

comparison to the ultrasonicated sample group, the lowest

FRAP was found in Spultr samples (0.031 µmol TE/mL) and

the highest in FurcultrLUHS135 samples (1.68 µmol TE/mL).

In the fermented samples group, the lowest FRAP was in

Spferm samples (0.054 µmol TE/mL) and the highest was

in ClaRfermLUHS135 (1.82 µmol TE/mL). FRAP showed a

moderate negative correlation with the b∗ coordinates of

samples (r = 0.509, p = 0.0001). Phycobilin pigments are

found in cyanobacteria and in the chloroplasts of red algae

(52, 65). Liutein has a strong antioxidant effect (66). The main

colored compounds in microalgae are fucoxanthin, lutein and

β-carotene, and they also are described as good antioxidants

(58, 59, 67–69). Zeaxanthin is a xanthophyll family carotenoid

(70) and possesses antioxidant properties as well (71–75).

In essence, the radical scavenging activities of DPPH• and

ABTS•+ are based on the ability of antioxidants to donate a

hydrogen atom or an electron to stabilize radicals by converting

them to the non-radical species (76, 77). Our results reflected the

ability of all prepared ethanolic extracts to donate a hydrogen

atom or electron to both radicals. In general, algal extracts rich

in natural polyphenolics can function as antioxidants (76, 78).

In this study, several methods based on different principles

were used to determine the in vitro antioxidant activity of algae

extracts. Other studies have reported that the FRAP method

should be used in combination with other methods because it

cannot measure all antioxidants of complex compounds (79,

80). Antioxidant properties of food and/or feed are desirable

characteristics because antioxidants reduce oxidation processes

(81). Also, it has been reported that both scavenging and

antioxidant activities are related to TPC content (82). We

found that TPC content in samples showed a moderate positive

correlation with samples’ a∗ coordinates (r= 0.592, p= 0.0001),

a negative weak correlation with samples’ pH (r = −0.294,

p = 0.005) and a moderate positive correlation with samples’

ABTS•+ (r = 0.300, p = 0.004) and FRAP (r = 0.247, p =

0.019). However, a correlation between the DPPH• and TPC

content was not found. It was previously reported that in

ethanolic extracts the correlation between TPC content and total

antioxidant capacity is high, but the correlation with FRAP assay

is minimal, and the correlation between the total antioxidant

capacity and TPC content is positive and very significant in

ethanolic extracts, whereas it is negative in methanolic ones (83).

However, in the free form, phenolic compounds have a better

bio-accessibility because of released free aglycones and increased

antioxidative activity (84, 85), and fermentation could decrease

free phenolic compound content in samples because they may

bind with other molecules present in the fermentable matrix,

i.e., might be hydrolysed and/or be degraded by microbial

enzymes (42, 84). According to Li et al. (86), LAB fermentation

has a significant impact on the phenolic profile, as well as

on antioxidant activity, because during the process, various

phenolic acids could be excreted to the fermentable matrix (86).

It was reported that Furcellaria extracts, in comparison with

Cladophora and Ulva sp., had the highest antioxidant activity

of all the macroalgae alcoholic extracts tested (87). It has also

been shown that the ethanolic extract of green and red seaweeds

exhibit a high scavenging activity and a higher DPPH• of brown

and green seaweeds in comparison with red (83, 88–90). The

lower correlation between FRAP values and TPC content in

extracts shows that the phenolic compounds are not involved in

the antioxidant activity through this pathway, but there might be

some effects involving other active compounds (83). The current

study showed that the combinations of extracts and LUHS135

could improve antioxidant properties of the substrate.

Antimicrobial characteristics of the algal
extracts

Antimicrobial activity of the algae extracts and algae

extracts × LUHS135 combinations were evaluated using the

agar well–diffusion method. The results are shown in Table 4

and Figure 3. In a comparison of all three groups (non-pre-

treated, ultrasonicated and fermented), the highest number

of samples (of all tested samples) that showed antimicrobial

properties against at least one pathogen was found in the

non-pre-treated samples group. All of the tested samples in

this group showed inhibition properties against Bacillus cereus

(the highest diameter of inhibition zones (DIZ), on average

16.0mm, was found by ClaRnon, ClaGnon, ClaGnonLUHS135, Ul

nonLUHS135 and SpnonLUHS135samples). Also, 3 out of 10 samples

of this group showed inhibition properties against Enterococcus

faecium (ClaRnon, ClaRnonLUHS135 and ClaGnonLUHS135, with

DIZ of 15.3, 11.5 and 8.0mm, respectively) and 4 out of 10

samples of this group showed inhibition properties against

Staphylococcus aureus (ClaRnonLUHS135, ClaGnonLUHS135,

FurcnonLUHS135and Ul nonLUHS135, with DIZ of 12.4, 11.5,

12.3 and 8.0mm, respectively). Despite the fact that the

highest number of samples (of all tested samples) showed

antimicrobial properties against at least one pathogen in

the non-pre-treated samples group, a broader spectrum of

pathogen inhibition was found in the ultrasonicated sample

group (inhibition properties against Bacillus cereus showed

in ClaRultr, ClaRultrLUHS135 and SpultrLUHS135 samples,

inhibition properties against Enterococcus faecium showed in

ClaGultrLUHS135, inhibition properties against Staphylococcus

aureus showed in ClaRultrLUHS135, ClaGultrLUHS135 and

SpultrLUHS135 and inhibition properties against Stretococcus

mutans showed in FurcultrLUHS135 and UlultrLUHS135 samples).

In the comparison of extract samples prepared from fermented

algae, ClaRferm, ClaRfermLUHS135 and FurcfermLUHS135 showed

inhibition properties against one out of seven tested pathogens
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TABLE 5 Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated in liquid medium by testing

concentration of algae extract and/or algae extract × LUHS135 combination at a concentration of 500 µL and pathogen concentration at 10 µL.

Extracts and extract

× LUHS135

combination

Pathogenic and opportunistic bacteria strains

Salmonella

enterica

Bacillus

cereus

Enterococcus

faecium

Staphylococcus

aureus

Escherichia

coli

Streptococcus

mutans

Enterococcus

faecalis

Inhibition zone, mm

Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL

ClaRnon + + + + + + +

ClaRnonLUHS135 + + + + + + +

ClaGnon + + + + + + +

ClaGnonLUHS135 + + + + + + +

Furcnon + + + + + + +

FurcnonLUHS135 + + + + + + +

Ulnon + + + + + + +

Ul nonLUHS135 + + + + + + +

Spnon + - + + + - +

SpnonLUHS135 + + + + + + +

Extracts and extracts × LUHS135 combinations prepared from ultrasonicated algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL

ClaRultr + + + + + + +

ClaRultrLUHS135 + + + + + + +

ClaGultr + + + + + + +

ClaGultrLUHS135 + + + + + + +

Furcultr + + + + + + +

FurcultrLUHS135 + + + + + + +

Ulultr + + + + + + +

UlultrLUHS135 + + + + + + +

Spultr + + + + + + +

SpultrLUHS135 + + + - + + +

Extracts and extracts × LUHS135 combinations prepared from fermented algae

Concentration of algae extract 500 µL, concentration of pathogen 10 µL

ClaRferm + + - - + + +

ClaRfermLUHS135 + + + + + + +

ClaGferm + + + + + + +

ClaGfermLUHS135 + + + + + + +

Furcferm + + + + + + +

FurcfermLUHS135 + + + + + + +

Ulferm + + + + + + +

UlfermLUHS135 + + + + + + +

Spferm + + + + + + +

SpfermLUHS135 + + + - + + +

Pathogen control

Pathogen + + + + + + +

Interpretation of results: negative (–) means the pathogens did not grow on the selective culture medium; positive (+) means the pathogens grew on the selective culture medium; ClaR,

Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated

algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract× LUHS135 strain combination.
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TABLE 6 Antimicrobial activity of the algae extracts and algae extracts × LUHS135 combinations evaluated in liquid medium by testing the

concentration of algae extract and/or algae extract × LUHS135 combination at a concentration of 2,000 µL and pathogen concentration at 10 µL.

Extracts and extract

× LUHS135

combination

Pathogenic and opportunistic bacteria strains

Salmonella

enterica

Bacillus

cereus

Enterococcus

faecium

Staphylococcus

aureus

Escherichia

coli

Streptococcus

mutans

Enterococcus

faecalis

Inhibition zone, mm

Extracts and extracts × LUHS135 combinations prepared from non-pre-treated algae

Concentration of algae extract 2,000 µL, concentration of pathogen 10 µL

ClaRnon + + - + + + -

ClaRnonLUHS135 + + + + + + +

ClaGnon + + + + + + -

ClaGnonLUHS135 + + + + + + +

Furcnon + + + + + + +

FurcnonLUHS135 + + + + + + +

Ulnon + + - + + + +

Ul nonLUHS135 + + + + + + +

Spnon + - - + + - -

SpnonLUHS135 + + - + + + +

Concentration of algae extract 2,000 µL, concentration of pathogen 10 µL

ClaRultr + + + + + - +

ClaRultrLUHS135 + + + + + + +

ClaGultr + + + + + + +

ClaGultrLUHS135 + + + + + + +

Furcultr + + + + + + +

FurcultrLUHS135 + + + + + + +

Ulultr + + - + + - +

UlultrLUHS135 + + + + + + +

Spultr + + + + + + +

SpultrLUHS135 + + + - + + +

Extracts and extracts × LUHS135 combinations prepared from fermented algae

Concentration of algae extract 2,000 µL, concentration of pathogen 10 µL

ClaRferm + + - - + + +

ClaRfermLUHS135 + + + + + + +

ClaGferm + + + + + + -

ClaGfermLUHS135 + + + + + + +

Furcferm + + + + + + +

FurcfermLUHS135 + + + + + + +

Ulferm + + + + + + +

UlfermLUHS135 + + + + + + +

Spferm + + + + + - +

SpfermLUHS135 + + + - + + +

Pathogen control

Pathogen + + + + + + +

Interpretation of results: negative (–) means the pathogens did not grow on the selective culture medium; positive (+) means the pathogens grew on the selective culture medium; ClaR,

Cladophora rupestris; ClaG, Cladophora glomerata; Ul, Ulva intestinalis; Furc, Furcellaria lumbricalis; Sp, Spirulina (Arthrospira platensis); non, extracts prepared from non-pre-treated

algae; ultr, extracts prepared from ultrasonicated algae; ferm, extracts prepared from fermented algae; LUHS135, extract× LUHS135 strain combination.
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[ClaRferm and FurcfermLUHS135 inhibited Bacillus cereus

(DIZ 16.3 and 13.1mm, respectively) and FurcfermLUHS135
inhibited Staphylococcus aureus (DIZ 16.3mm)]. Also,

ClaGfermLUHS135 and Furcferm samples showed inhibition

properties against both Bacillus cereus and Staphylococcus

aureus strains (DIZ against Bacillus cereus 14.2mm and

13.4mm, respectively, and DIZ against Staphylococcus aureus

12.1mm and 13.3mm, respectively).

The results of antimicrobial activity of the algae extracts

and algae extracts × LUHS135 combinations evaluated in

liquid medium by testing concentrations of algae extract and/or

the algae extract × LUHS135 combination in 500 and 2000

µL concentrations and pathogen concentration of 10 µL

are shown in Tables 5, 6, respectively. We found that at a

concentration of 500 µL in liquid medium, Spnon samples

inhibited Bacillus cereus growth, ClaRferm samples inhibited

Enterococcus faecium growth, SpultrLUHS135, ClaRferm and

SpfermLUHS135 samples inhibited Staphylococcus aureus growth

and Spnon samples inhibited Streptococcus mutans growth.

By increasing algae extract and algae extracts × LUHS135

combinations concentrations to 2000 µL, in addition to the

mentioned antimicrobial properties, Enterococcus faecium was

also inhibited by ClaRnon, Spnon, SpnonLUHS135 and Ulultr
samples, Streptococcus mutans was inhibited by ClaRultr, Ulultr
and Spferm samples and Enterococcus faecalis was inhibited by

ClaRnon, ClaGnon, Spnon and ClaGferm samples.

Algae are a good source of bioactive compounds, and

some of them possess broad spectrum activities, including

antimicrobial activities (3, 91, 92). Bacillus cereus is a facultative

aerobic spore-forming bacterium (93, 94), and is a well-known

foodborne pathogen that is able to grow in the intestinal

tracts of insects and mammals (94). Ulva species inhibit the

growth of some Gram-positive pathogens (Bacillus cereus and

Staphylococcus aureus) at ≤500 µg/mL concentration (95).

Gram-positive bacteria are more susceptible to algae extracts,

in comparison with Gram-negative bacteria, which is explained

by extracts’ compositions (high concentration of phenolic

compounds, terpenoids, alkaloids, etc.), which damage the

cellular wall. In contrast, the external membrane of Gram-

negative bacteria acts as a barrier, preventing any substance

from passing through (96). Among the predominant human

pathogens, Staphylococcus aureus is the foremost cause of

gastroenteritis (94, 97). Cladophora rupestris inhibits S. aureus

growth (with DIZ 16.3mm) (98, 99). Also, ethanolic extracts

of Cladophora sp. possess stronger antibacterial activity against

S. aureus in comparison with Ulva sp. extracts (96). However,

different compositions of extrahent can lead to different

properties of the extracts (96). In red seaweeds, including

F. lumbricalis, strong inhibition properties against S. aureus

were also reported (99–102), and it is thought that red types

of seaweed are very promising agents against S. aureus (99).

Also, Gram-positive bacteria (B. cereus and S. aureus) showed

higher sensitivity to Spirulina extracts in comparison with

Gram-negative ones (103). Elshouny et al. (104) reported, that

Spirulina possesses antimicrobial activity against not only S.

aureus, but also inhibits E. coli and Salmonella spp. growth.

Mohammed et al. (105) reported, that Gram-positive strains

are more sensitive to Cladophora, Spirulina platensis and S.

glomerata extracts than Gram-negative ones, and the highest

inhibitory efficacy was found to be against S. aureus (105).

Another pathogenic and opportunistic strain, E. faecium, is

a significant opportunistic human pathogen with a broad

host range (106). Enterococcus faecium causes big problems

because of its broad resistance to antimicrobials (106). From

this point of view, natural antimicrobials, which could be

used for opportunistic pathogenic strain inhibition, become

very important. Streptococcus mutans can cause dental decay

(107, 108), and some S. mutans proteins contribute to the

pathogenesis of S. mutans by promoting adherence to dental

plaque (107, 109–112). Also, Sirbu et al. (113) reported that TPC

in algae extracts is related with their antibacterial activity. In

this study we established that there are moderate correlations

between ABTS•+ and E. faecalis DIZ and between the TPC

content in extracts and S. aureus DIZ (r = 0.388, p = 0.0001;

r = 0.340, p = 0.001, respectively). However, further research

is needed to evaluate which compounds are responsible for the

inhibition of these pathogens.

Conclusions

This study confirmed, that the species of algae is significant

factor on samples pH (p = 0.017) and 2% of yeast extract leads

to more effective fermentation of algal biomass, as after 36 h of

SSF, significant lower algae pH values were obtained. The highest

DPPH•, ABTS•+, and FRAP antioxidant properties were

shown by non-pretreated Cladophora rupestris and Furcellaria

lumbricalis extract combinations with LUHS135, in comparison

with extracts without LUHS135. Amoderate positive correlation

of TPC with samples ABTS•+ (r = 0.300, p = 0.004) and

FRAP (r = 0.247, p = 0.019) was established, however,

between samples DPPH• and TPC content correlations were

not found. Despite, that in the non-pre-treated samples group

the highest number of samples showed antimicrobial properties

at least against one pathogen, a broader spectrum of pathogens

inhibition showed ultrasonicated samples group (inhibited 4

out of 7 tested pathogens). Finally, despite, that the extract

combinations with LUHS135 strain showed prospective results,

further research is needed to evaluate, which compounds are

responsible for antioxidant properties of the extracts, as well as

pathogens inhibition.
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