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A B S T R A C T   

Objective: The immune microenvironment influenced clinical outcomes and treatment response of 
gastric cancer (GC) patients. Though thousands of immune-related genes (IRGs) have been 
identified, their effects on GC are not fully understood. The objective of the study is to analyze the 
correlations between the expression and effect of IRGs and clinical outcomes. Moreover, we 
evaluate the efficacy and value of utilizing the immune-related genes signature as a prognosis 
prediction model for GC patients. 
Methods: We identified the differentially expressed IRGs and systematically analyzed their func-
tions. We constructed a novel GC prognostic signature and a new nomogram, Moreover, we 
explored the infiltrated immune cell types in the immune microenvironment and discussed the 
genetic variation in GC IRGs. 
Results: Eight IRGs, including CCL15, MSR1, GNAI1, NR3C1, ITGAV, NMB, AEN, and TGFBR1 
were identified. Based on the prognostic signature, GC patients were distinguished into two 
subtype groups. As verified in multiple datasets, the prognostic signature exhibited good per-
formance in predicting the prognosis (AUC = 0.803, P-value <0.001) and revealed the different 
clinical features and infiltrated immune cell types in the immune microenvironment. 
Conclusions: In summary, we found that IRGs contributed to GC prognosis prediction and con-
structed an IRGs-based GC prognostic signature, which could serve as an effective prognostic 
stratification tool.   

1. Introduction 

Gastric cancer (GC) is one of the most common malignancies worldwide, with the incidence ranking 6th and the mortality ranking 
3rd. Most patients are diagnosed at an advanced stage and succumb to a worse prognosis and living quality [1]. Though fluoropyr-
imidine and platinum-based chemotherapy as the first-line therapy are standard treatments, the prognosis for the advanced-stage 
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patient remains unfavorable [2]. Existing treatments for GC are insufficient. Tumor recurrence and metastasis affect clinical man-
agement and lead to pessimistic survival. 

The immune microenvironment has been educated by the tumor, and meanwhile supports tumor growth. Human genes with 
immune system-related functions, named immune-related genes (IRGs), play a critical role in the development of the immune 
microenvironment [3]. However, the function and regulatory mechanism of these immune-related genes remain unclear and have not 
been systematically explored. Moreover, as the immune microenvironment influences tumor growth and response to therapeutic 
interventions, IRGs may serve as an effective predictor for GC prognosis [4,5]. 

In this study, we identified the differential expression IRGs in GC and found that expression differences of IRGs contribute to GC 
prognosis. Thus, we conducted a multilevel analysis, and a novel immune-related prognosis signature was established. The prognosis 
signature exhibited high accuracy in the training cohort, internally validated cohort, and external cohort. We further explored the 
infiltration cells in the immune microenvironment and discuss the possible regulatory mechanism of IRGs. We found that the prognosis 
of GC patients could be predicted and stratified effectively, and IRGs demonstrated the potential for offering more valuable infor-
mation for GC patients. 

2. Methods 

2.1. Data acquisition and processing 

We obtained 2498 immune genes from the ImmPort database (https://immport.niaid.nih.gov). The transcriptome data of GC 
patients with complete data were obtained from the TCGA database (https://portal.gdc.cancer.gov/), which contained 270 cases of 
tumor tissue and 28 cases of adjacent normal tissue. To validate the novel prognosis model, an external validation cohort was obtained 
from Gene Expression OMNIBUS (GEO) database (GSE84437, https://www.ncbi.nlm.nih.gov/geo/). As shown in Table 1, clinical 
parameters of the 270 GC patients including age, gender, pathological stage, histological grade, T stage, M stage, N stage, survival 
status, and survival duration were collected. Samples with missing information were excluded. The transcriptome data was corrected 
through the “Limma” package in R software. Immune genes with a P-value <0.05 and |log2FC (fold change)| > 1 were considered as 
different expression immune genes (DEIGs). The data was shared voluntarily and could be obtained from the above-mentioned 
websites freely with no requirement of ethics committee approval. 

2.2. Gene function enrichment analysis 

To realize the major functions of the above-mentioned DEIGs, we conducted the gene function enrichment analysis. Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analysis were also applied using the R ClusterProfiler package [6, 

Table 1 
Clinical parameters of included GC patients from TCGA in the training cohort and the validation cohort.  

Variables Total (n = 270) Training cohort (n = 136) Validation cohort (n = 134) 

Age (year) 
<60 91 45 46 
≥60 179 91 88 
Gender 
FEMALE 109 52 57 
MALE 161 84 77 
Stage 
I 38 16 22 
II 81 43 38 
III 122 59 63 
IV 29 18 11 
T stage 
T1 13 9 4 
T2 55 21 34 
T3 132 68 64 
T4 70 38 32 
N stage 
N0 84 37 47 
N1 69 45 24 
N2 61 30 31 
N3 59 25 34 
M stage 
M0 251 125 126 
M1 19 11 8 
Grade 
G1 5 2 3 
G2 95 55 40 
G3 170 78 92  
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Fig. 1. Identification of differential expressed immune genes. (A) Volcano plot of differently expressed immune genes from TCGA database with a 
standard of | log2 FC | >1 and P-value <0.05. The orange dots in the volcano plots represent up-regulation, the blue dots represent down-regulation 
and the grey dots represent genes without differential expression. The top 5 up-regulated and top 5 down-regulated IRGs were listed. (B) The 
heatmap illustrated the top 20 differently expressed IRGs in comparison of normal tissues and GC tissues from the TCGA database. The colors in the 
heatmap from blue to yellow represent the fold change of the expression levels from low to high. (C ~ F) GO and KEGG analysis results of gene 
function enrichment analysis. The top 10 function annotations of each part were listed. DEIGs were mostly enriched in cell surface receptor-linked 
signal transduction, plasma membrane, cytokine activity, and cytokine-cytokine receptor interaction. (C) GO analysis results for biological process. 
(D) GO analysis results for cell components. (E) GO analysis results for molecular function. (F) KEGG pathways analysis results. 
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7]. Database for Annotation, Visualization, and Integrated Discovery (DAVID, https://david.ncifcrf.gov/) was employed to identify 
enriched KEGG and GO terms [8,9]. 

2.3. Survival analysis and expression comparison of DEIGs 

Univariate Cox regression analysis was conducted to explore the influence of each gene on overall survival (OS). We didn’t perform 
WGCNA combined with the PPI network for that protein translation was outside the scope of this article and not ignoring prognosis- 
related IRGs, The survival-related IRGs with a P-value<0.05 were identified and integrated into further multivariate Cox regression. 
Eight hub genes were screened from the multivariate Cox regression (P-value<0.05). The risk score of each patient was calculated 
according to the formula in Supplementary Formula 1. The patients in the cohort were divided into a high-risk group and a low-risk 
group according to the median risk score value of all patients. Survival information including survival status and survival time was 
obtained from the TCGA database. The “Survival” R package was utilized in the survival analysis. A Log-rank test was conducted to 
detect significant differences (P-value <0.05) in OS rates. The results were demonstrated in Kaplan-Meier (KM) survival curves. 

2.4. Functional analysis 

To understand the internal biological mechanisms of the immune genes scoring signature, the gene set enrichment analysis (GSEA, 
http://software.broadinstitute.org/gsea/downloads.jsp, version 3.0, the broad institute of MIT and Harvard) was performed between 
the high-risk group and the low-risk group. In detail, the number of marks was set to 1000, the ‘permutation type’ was as phenotype, 
the ‘collapse data set to gene symbols was set as false, and the ‘enrichment statistic’ was set to weight. The high-risk group was set as 
the experimental group while the low-risk group was set as the reference group. Moreover, Gene size >500 and < 15, P-value <0.05, 
and FDR <0.25 were set as the cut-off criteria. The immune microenvironment score was obtained by ESTIMATE, which is an algo-
rithmic tool for inferring the abundance of infiltrating immune cells. The bubble plot was drawn by R software. Based on TCGA GC 
data, the copy number variation (CNV) analysis was performed by the “R-Circos” package and the “R-ggplot2” package. Additionally, 
the online tool website Cbioportal (http://www.cbioportal.org/) was used to analyze gene mutation status, in which the threshold was 
set as P-value <0.05. The EPIC database was used for the quantitative analysis of immune cells. Eight IRGs sets were acquired from the 
MSigDB database, and ssGSEA (single-sample GSEA) used the ‘GSVA’ R package to calculate the signal intensity of a single sample. 

2.5. Statistical analysis 

All analyses were performed using R (version 3.6.1; https://www.r-project.org/). All statistical tests were two-tailed, and a P-value 
<0.05 was considered to be significant. Continuous variables with normal distribution were compared by independent t-test, while 
those with skewed distribution were compared by Mann-Whitney U test. Based on Pearson Correlation Coefficient, the correlation 
matrix was constructed. The ROC curves were performed by the “SurvivalROC” R package and used to explore the sensitivity and 
specificity of the signature. To explore the effects of individual variables on survival, the univariate regression model was applied. To 
further confirmed the independent impact factors associated with survival, the multivariate Cox regression model was used. With the 
regression coefficients based on the above Cox analysis, the nomogram was constructed. 

3. Results 

3.1. Identification of differentially expressed IRGs (DIRGs) and functional annotation 

In total, 2498 IRGs were obtained from the ImmPort database. The transcriptome data of 270 gastric cancer cases and 28 adjacent 
normal tissue cases gained from the TCGA database were conducted for differential analysis. Ultimately, 446 IRGs emerged with 
significant expression differences between GC and normal tissue (P-value<0.05, Fig. 1A). There were 283 up-regulated IRGs and 163 
down-regulated IRGs were identified (Fig. 1A, Table S1). Moreover, the expression profile of the top 10 up-regulated and the top 10 
down-regulated genes was displayed in the heat map (Fig. 1B). 

We mainly focus on the regulatory function of the immune microenvironment of these DEIRGs. Thus, we conducted the Kyoto 
Encyclopedia of Genes and Genomes (KEGG) and gene ontology (GO) analyses to further explore their biological connotation. As 
shown in Fig. 1C, the top 3 enriched biological processes were cell surface receptor-linked signal transduction, immune response, and 
regulation of cell proliferation; the top 3 enriched cell components were extracellular region, plasma membrane, and plasma mem-
brane part (Fig. 1D); the top 3 molecular functions were cytokine activity, protein kinase activity, and growth factor activity (Fig. 1E); 
top 3 pathway were cytokine-cytokine receptor interaction, pathways in cancer and chemokine signaling pathway (Fig. 1F). Most of 
the above-mentioned biological behaviors were associated with immune regulation and tumor progression. We could conclude that 
these DEIRGs contribute to an abnormal immune microenvironment in GC tissues. 

3.2. Identification of the prognosis-related DEIRGs and construction of the prognostic signature 

To further reveal which of the DEIGs were related to overall survival (OS), univariate Cox regression analysis was applied. 28 of the 
446 DEIRGs were identified significantly associated with OS (Fig. S1). TCGA GC data were randomly divided into two cohorts (training 
cohort = 134, validation cohort = 136, Table 1). Further regression analysis was further performed (Fig. 2A). Finally, 8 hub-DEIRGs 
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were selected as the independent risk factors of OS. 
Based on the expression coefficient of the 8 hub-DEIRGs, the prognostic signature was established (Table S3, Formula S1). Given the 

risk score calculated by the prognostic signature, patients were arranged into the high-risk group and low-risk group (Fig. 2B). The 
survival profile of different groups was demonstrated in Fig. 2C, and a heat map was implemented to depict the heterogeneity 
expression of the 8 DEIGs between groups (Fig. 2D). 

Next, we evaluated the efficacy of the prognostic signature in multiple datasets. The Kaplan–Meier analysis revealed that the high- 
risk group showed a significantly lower overall survival compared with the low-risk group in the training cohort (P-value<0.001, 
Fig. 2E). As shown in Fig. 2F, the ROC curve indicated the amplified sensitivity and specificity of the prognostic signature (1-year OS 
AUC = 0.803). The signature was further verified in the validation cohort (P-value = 0.013, Figs. S2 and S3). Similarly, the prognostic 

Fig. 2. Construction and validation of the novel prognostic signature. (A) Multivariate Cox regression analysis of the 8 hub IRGs in the novel 
prognostic score. (B) According to the risk scores of the patients in the training cohort, the patients were divided into a high-risk group (pink) and a 
low-risk group (blue) by the mean value of the risk score of all patients. (C) Survival status of patients in a high-risk group (pink) and low-risk group 
(blue). The survival time of the high-risk group was shorter than the low-risk group. (D) Heatmap of the expression of the 8 hub IRGs of the novel 
prognostic signature in comparison between high-risk group and low-risk group. E-H. Kaplan–Meier survival analyses and time-dependent ROC 
curves in the training and total cohorts. ROC, receiver operator characteristic. AUC is the area under the curve. (E) Kaplan–Meier survival analysis 
between the high-risk group and low-risk group in the validation cohort with a P-value <0.001. (F) AUC in ROC analysis for signature at the 1-, 3-, 
and 5-year survival time in the validation cohort, with an AUC of 0.803, 0.758, and 0.750. (G) Kaplan–Meier survival analysis between the high-risk 
group and low-risk group in both cohorts with a P-value <0.001. (H) AUC in ROC analysis for signature at the 1-, 3-, and 5-year survival time in both 
cohorts with an AUC of 0.756, 0.705, and 0.680. 
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signature exhibited as an effective predictor in the entire cohort, which was verified in the Kaplan–Meier analysis (P < 0.001, Fig. 2G) 
and demonstrated a 1-year OS AUC = 0.756 (Fig. 2H). 

3.3. Clinical validation of the prognostic signature 

As the efficacy of the prognostic signature was verified, we constructed a nomogram for the convenience of clinical application 
(Fig. 3A). Following the above results, the high-risk group demonstrated a shorter OS than the low-risk group. Moreover, the cali-
bration curve of 3-year OS (Fig. 3B) and 5-year OS (Fig. 3C) suggested that the nomogram exhibited a high accuracy in OS prediction. 

Furthermore, univariate and multivariate Cox regression analyses about age, gender, stage, grade, TNM stage, and risk score were 
conducted to verify the independence. The Univariate Cox model revealed that age, pathological stage, T stage, M stage, N stage, and 
risk score were correlated with OS (Fig. S2). While in the multivariate Cox model, only age and risk score were proved to be the 
independent predicted factor (Fig. S3). 

We also found an obvious correlation between risk score and pathological stage (Fig. 3D–I). Moreover, the proportion of 8 hub 
genes was researched in different gender, different histological grades, and different pathological stages (Fig. 3J-O). It was presented 
that NR3C1 and GNAI1 were significantly relevant to the development of gastric cancer. 

3.4. Functional analysis of risk scores and external validation 

Additionally, we investigated the bio-correlation between risk scores and the biological behavior of gastric cancer. Gene set 
enrichment analysis of risk score was performed based on the TCGA gastric cancer cohort. The result indicated that the high-risk score 
was related to angiogenesis, epithelial-mesenchymal transition, hypoxia, and UV response DNA pathways (Fig. 4A–D). Based on the 
TCGA GC dataset, the copy number variation (CNV) analysis of 8 model genes was performed by utilizing the R-Circos package and R- 
ggplot2, and the resultant frequency of copy number variation was displayed (Fig. 4F), in which GNAI1 and MSR1 had the most 
variable frequency. Additionally, the single nucleotide polymorphism composition (SNP) analysis was also conducted (Fig. 4G). As a 
result, ITGAV exhibited most SNPs, consistent with the missense mutation, frameshift delete, and so on. 

As shown in Fig. 4E, the expression of immune genes is correlated with tumor microenvironment immune cell infiltration. Tumor 
purity is mainly associated with MSR1, NR3C1, and ITGAV. Up-regulated MSR1 contributes to macrophage M2 infiltration. GNAI1 
contributes to CD4 T cells’ memory resting and inhibits T cell CD4 memory activation. In summary, the expression of the 8 hub 
immune genes in the high-risk group demonstrated an immunosuppressive environment, mediated by M2 macrophage infiltration, 
dendritic cell (DC) resting promotion, and activation inhibited. These results showed that immune genes play immense roles in tumor- 
suppressive microenvironment regulation. 

Moreover, an external validation cohort was set (P = 0.003) (Fig. 4H). The results exhibited similar significance and served as an 
effective prediction tool (Fig. 4I). 

4. Discussion 

Notwithstanding numerous efforts that have been made to improve the diagnosis and therapeutic effects, gastric cancer remains 
one of the most threats to human health, with more than 1,000,000 new cases worldwide per year [10]. However, owing to gene 
heterogeneity, not everyone could benefit from surgery or chemotherapy. It is well-documented that the role of the immune system as 
the key defense pathway against cancer contributes to the development of the new era of cancer immunotherapies [11]. Moreover, 
tumor cells exacerbate immunosuppressive pathways and foster a tolerant microenvironment [12]. Suppressive immune cells and 
secreted chemokines cytokines modulate the tumor microenvironment and favor the growth and expansion of cancer cells [13]. Thus, 
exploring molecular biomarkers and histopathology is greatly meaningful. Establishing an IRG-based signature to identify GC patients 
quickly and appropriately may contribute to purposive and personalized clinical treatment decisions. 

In this study, we developed an individualized IRGs-based signature and validated its effectiveness in predicting the prognosis for GC 
patients. Specifically, we identified 446 DEIGs and constructed an 8 hub-IRGs (AEN, ITGAV, GNAI1, MSR1, CCL15, NMB, NR3C1, and 
TGFBR1) risk score signature. We conducted the ROC curve to investigate the prognostic value of the signature with a P-value<0.001 
and an AUC equal to 0.803 [14]. We further explore the association between the signature and clinical features. As expected, the 
high-risk group possessed worse OS, higher histological grade, and higher pathological stage, which may correlate to poor outcomes. 
Furthermore, the effectiveness of the signature was examined in the validation cohort and total cohort. These results demonstrated the 
efficacy of the IRGs-based signature in prognosis prediction and may serve as an effective prognostic stratification tool. 

Moreover, we explore the function of the immune genes. In the KEGG and GO analysis, the DEIGs showed significant relevance with 

Fig. 3. Nomogram construction for OS prediction in GC patients and the validation of clinical features. (A) Based on the prognostic signature, the 
nomogram was established to predict the OS of patients with GC. (B) Plots displaying the calibration of the nomogram measuring the consistency 
between the prediction and actual 3− year OS in all patients. (C) Plots displaying the calibration of the nomogram measuring the consistency 
between the prediction and actual 5− year OS in all patients. (D–I) Correlation between the risk score of IRGs and different clinical features. (D) Age. 
(E) Gender. (F) Stage. (G) T stage. (H) N stage. (I) M stage. (J–O) Correlation analysis between TNM & Stage and 8 model genes in gastric cancer 
cases. (J) Correlation analysis between pathologic stage and 8 model genes expression in gastric cancer cases. (K) Correlation analysis between 
tumor stage and 8 model genes expression in gastric cancer cases. (L) Correlation analysis between metastasis stage and 8 model genes expression in 
gastric cancer cases. (M) Correlation analysis between node stage and 8 model genes in gastric cancer cases. 
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the immune microenvironment. The most enriched biological processes including cell surface receptor-linked signal transduction and 
immune response exhibited the immense role of the DEIGs in the regulation of the immune microenvironment. Enriched cell com-
ponents, molecular functions, and pathways also attached the importance of immune regulators in tumor progression. GSEA analysis 
further confirmed that 8 hub immune genes contributed to tumorigenesis and tumor progression. Immune cell infiltration analysis 
indicates increased macrophage M2 and decreased dendric cell infiltration in the high-risk group, suggesting the suppressive immune 
microenvironment may lead to a worse prognosis. 

The hub IRGs were proven to regulate tumor immune microenvironment in literature. Integrin αv (ITGAV) belongs to the integrin 

Fig. 4. GESA analysis, immune cell infiltration analysis, and copy number variation analysis of the IRGs in GC. (A–D) Gene set enrichment analysis 
(GSEA). (A) Angiogenesis. (B) Epithelial-mesenchymal transition. (C) Hypoxia. (D) UV response DN. (E) Correlation between 8 hub IRGs and 
immune cell infiltration. The fold change of the high-risk group compared with the low-risk group was shown as the number in the circle. Immune 
cell infiltration analysis indicates an immunosuppressive microenvironment, mediated by increased tumor M2 macrophage infiltration and 
decreased dendritic cell activation in the high-risk group. (F–G) Copy number variation analysis and gene mutation analysis. (F) Stem plot of copy 
number variation analysis. (G) Distribution of highly variant mutated genes correlated with signature. (H–I) Kaplan–Meier survival analysis and 
Time-dependent ROC curve in the external validation cohorts (GSE84437), from the GEO (https://www.ncbi.nlm.nih.gov/geo/) database. (H) 
Kaplan–Meier survival analysis between the high-risk group and low-risk group, with a P-value = 0.003. (I) AUC in ROC analysis for signature at the 
1-, 3-, and 5-year survival time, with an AUC = 0.613, 0.600, and 0.610, respectively. 
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family, one of the transmembrane receptors that take part in cellular interaction with the extracellular matrix, which is related to the 
growth, migration, and invasion of GC cells [15]. Integrin has been reported upregulated in GC mediated by M2 macrophages [16], 
which contributes to the immunosuppressive microenvironment and serves as the potential target for immunotherapy. MSR1 
(macrophage scavenger receptor1) is another target of tumor-associated macrophages. Monoclonal antibodies targeting MSR1 
enhance NK cell activation, NK cell-mediated killing, and reverse immunosuppressive tumor microenvironment [17]. GNAI1 (G 
protein subunit αi1) is relevant to GTP binding and signal transduction activity [18]. GNAI1 regulates CXCL12-CXCR4/CXCR7 che-
mokine axis and leads to immune resistance in gastrointestinal malignancies [19]. NMB (Neuromedin B) is a negative regulator for 
Type 2 innate lymphocytes and inhibits immune response [20]. CCL15 recruits myeloid-derived suppressive cells (MDSCs) to the 
tumor tissue, resulting in an immunosuppressive microenvironment. The immunosuppressive microenvironment accounts for shorter 
relapse-free survival (RFS) and poor prognosis [21]. AEN (apoptosis-enhancing nuclease) is a mediator of p53-dependent apoptosis 
[22]. Increased NR3C1 (Nuclear Receptor Subfamily 3 Group C Member 1, Glucocorticoid Receptor) expression is found in CD8+

tumor-infiltration lymphocytes [23]. TGFBR1 (TGFβ receptor1) takes part in TGFβ signaling, which drives immune evasion that 
promotes T cell exclusion [24]. Overall, most genes are relevant to immune system regulation [25]. On the one hand, abnormal gene 
expression of tumors leads to an immunosuppressive microenvironment; on the other hand, the repurposed microenvironment sup-
ports tumor progression in return [26]. 

Though previous studies have proposed several signatures for prognosis [27–29], no genome-wide profiling studies of GC have 
been performed. Due to small datasets and the absence of sufficient validation, none of them was utilized in clinical practice [30]. In 
our work, differentially expressed IRGs in GC were investigated. We constructed and validated a novel immune-related predictable 
signature for GC patients. We utilized univariate Cox regression analysis and multivariate Cox regression analysis for DEIGs screening 
rather than WGCNA combined with the PPI network. The analysis mode of WGCNA and PPI is to classify genes through data processing 
and classify genes with similar expression patterns or interacting genes into one module for further classification [31,32]. However, 
such a screening procedure may ignore some hub genes that do not exist in modules or have no interaction but are equally important. 
In this study, we performed expressional differences analysis, univariate Cox regression analysis, and multivariate Cox regression 
analysis for targeted gene screening. These genes were further validated via clinical correlation. Therefore, we confirmed the genes 
that predict the prognosis of patients. Mendelian randomization analysis is another method for causal relationship analysis [33,34]. It 
provides insight into the causal relationship between exposure factors and epidemiology outcomes on gene differences level [35]. 
However, in limited sample size, such a strategy may lead to unfavorable bias [36]. 

The limitations of our study still existed. Firstly, datasets with sequencing information would be better. Secondly, our attention was 
mainly paid to gene expression and gene mutation level, while other genetic behaviors such as epigenetic regulation and protein 
translation were outside the scope of this article. For a similar reason, we didn’t perform WGCNA combined with the PPI network. 
Moreover, due to the limitation of sample size, mendelian randomization analysis was not utilized. In addition, the effectiveness of the 
signature needs to be proven in clinical practice and prospective studies should be conducted to test the utility in the individualized 
management of GC. Nevertheless, our analysis provides valuable information about GC survival outcomes. 

Collectively, we established and validated the prognostic signature in the training cohort and validated cohort respectively, which 
effectively divides GC patients into different risk groups. Therefore, individuals with worse predicted prognoses can be identified for 
personalized therapeutic interventions before the disease advances. With a high performance (P-value<0.001, AUC = 0.803) and 
validated prediction, the nomogram could serve as a prognostic stratification tool for GC patients to assist in decision-making and 
individual treatment scheduling. Moreover, all genes in the signature were proved to contribute to the immunosuppressive micro-
environment. Based on these results we may conclude that IRGs themself may be a manipulated variable in the tumor microenvi-
ronment. And the immune-related predictable instrument for prognosis will be helpful to clinical guidance and personalized 
immunotherapy development. 

5. Conclusions 

We constructed an eight-gene signature and a new nomogram, which can be used as prognostic stratification tools for GC patients to 
assist in decision-making and individual treatment scheduling. In addition, the relationship between genes and tumor immune 
microenvironment was also taken into account in the research, which may facilitate immunotherapy progression. 
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