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Abstract: Aflatoxins (AF) are carcinogenic metabolites produced by different species of Aspergillus
which readily colonize crops. AFM1 is secreted in the milk of lactating mammals through the
ingestion of feedstuffs contaminated by aflatoxin B1 (AFB1). Therefore, its presence in milk, even
in small amounts, presents a real concern for dairy industries and consumers of dairy products.
Different strategies can lead to the reduction of AFM1 contamination levels in milk. They include
adopting good agricultural practices, decreasing the AFB1 contamination of animal feeds, or using
diverse types of adsorbent materials. One of the most effective types of adsorbents used for AFM1
decontamination are those of microbial origin. This review discusses current issues about AFM1
decontamination methods. These methods are based on the use of different bio-adsorbent agents such
as bacteria and yeasts to complex AFM1 in milk. Moreover, this review answers some of the raised
concerns about the binding stability of the formed AFM1-microbial complex. Thus, the efficiency of
the decontamination methods was addressed, and plausible experimental variants were discussed.

Keywords: decontamination; mycotoxins; Aflatoxin M1; milk; binding; stability

Key Contribution: This review tackles current issues about AFM1 decontamination methods
using different bio-adsorbents such as bacteria, yeasts or mixtures of both. The efficiency of these
decontamination methods in addition to their plausible experimental variants, advantages, limitations
and prospective applications were broadly discussed.

1. Introduction

Aflatoxins (AF) are secondary metabolites produced by several Aspergillus species, mainly by
Aspergillus flavus and A. parasiticus [1–4]. The AF contamination of food and feed after mold colonization
may occur at any stage extending from pre-harvest to consumption [5,6]. Thus, this can cause the direct
or indirect contamination of different food commodities including cereals, corn, rice, and peanuts.
Humid and warm environments are suitable for mold growth and AF production [7,8]. The group of
AF includes more than 20 known metabolites; the most important are the naturally occurring ones such
as B1, B2, G1, and G2 [9–11]. The toxicity of AF varies, but AFB1 remains the most toxic for humans
and animals [12–14]. Briefly, after ingestion and absorption by an animal’s gastrointestinal tract, AFB1
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is then transformed in the liver into AFM1 and aflatoxin M2 (AFM2) [15–18]. It is noteworthy to
mention that milk and its derivatives are widely consumed not only by adults but, more importantly,
by infants [19]. Interestingly, Williams et al. reported that more than 4.5 billion people worldwide are
at risk of exposure to foodstuffs contaminated with different levels of AF [20]. Upon investigation of
its toxicity, the International Agency for Research on Cancer (IARC) has classified AFM1 as a group
1 human carcinogen [21–23]. The secretion of AFM1 in milk varies widely according to different
factors including animal species, season and milking time, level of AFB1 intake, and volume of milk
produced by the mammal in question [24–26]. Once in milk, AFM1 is not degraded and can resist
different industrial treatments including milk sterilization or pasteurization, in addition to any other
heat treatments [27–31]. For this reason, AFM1 contamination remains a serious problem, not only in
produced milk but also in all its derived products including cheese, yoghurt, cream, and powdered
milk [32,33]. Due to AF’s harmful effects, several countries and international organizations have
strictly regulated AF levels in feed and food [34,35]. Thus, the highest acceptable level of AFM1 in
milk ranges between 0.05 µg/kg and 0.5 µg/kg, as established, respectively, by the European Union
(EU) and the Food and Drug Administration (FDA) [36,37]. Therefore, the adopted AFM1 limit in
milk (0.5 µg/kg) settled up in the USA, Brazil, Japan, and India is less restrictive compared to other
countries such as France, Germany, Belgium, Australia, and Turkey (0.05 µg/kg) [38]. Importantly,
the stricter the regulatory limits, the more food commodities are wasted, which results in a higher
economic loss [39,40]. Accordingly, these regulations depend on several factors including the economic
development level of each country, limits of consumption, and risk of exposure to AFM1 [41]. Moreover,
the trade of any AF-contaminated products was also prohibited [40]. The implementation of Good
Agricultural Practices (GAP) remains the best way to limit AF contamination in food and feedstuff

but cannot guarantee their absolute prevention [42–44]. In addition, innovative technologies to cut
pre- and post-harvest exposure to AF are strongly recommended. Some of these technologies include
ozone fumigation [45], irradiation biological [46,47], and chemical agents [40,48,49]. Highly promising
techniques such as using the biofilms of probiotic bacteria [50], chitin, and treated crustacean shells [51]
are under rigorous investigation. Furthermore, the use of different biotransforming agents such as
microorganisms and their purified enzymatic products can lead to the catabolization, cleaving, or
transformation of the AF molecule to less or non-toxic metabolites [52]. Similarly, several clay materials
including bentonite, hydrated sodium calcium aluminosilicate (HSCAS), zeolite, and activated charcoal
have shown varying abilities to reduce AF in contaminated feedstuff [52]. Up until now, the most
studied methods to mitigate AF contamination are mainly based on using biological adsorbents such
as bacteria and yeasts [52–54].

This review aims to critically discuss different methods for AFM1 decontamination by microbial
adsorption. Therefore, various treatments used for AFM1 decontamination by yeasts or bacteria will
be broadly scrutinized, and some experimental variants will be highlighted in order to help researchers
in improving the commonly used methods.

2. Toxic Effects of AFM1

Amongst all mycotoxins, AF present a high risk on the human health due to consumption of foods,
including milk and dairy products, contaminated with their derivatives such as AFM1 [55,56]. Hence,
the potential existence of AFM1 in milk, even in minor quantities, remains a worldwide alarming
issue due to the consumption of wide range of contaminated dairy products [38]. Accordingly, the
International Agency for Research on Cancer (IARC), following investigations on its toxicity, shifted
AFM1 classification from group 2B to group 1 human carcinogens [22,57].

Briefly, AFB1 is initially absorbed by the gastrointestinal tract before being metabolized in the
liver [58,59]. Within 15 min after ingestion, AFM1 could be detected in the blood of the lactating
animal before being secreted in its milk and urine [15,58,60]. The biotransformation of AFB1 in the
animal liver is carried out by cytochrome P450 enzymes, thus metabolizing AFB1 into hydroxylated
AFM1 and AFB1 reactive epoxides [61,62]. While AFM1 is less toxic than AFB1, it is still highly
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harmful for humans and animal species [16,63]. As the major organ targeted by AFM1 is the liver, it is
considered a hepatotoxic metabolite [64,65]. In addition, other damaging effects including immunity
suppression, reduced milk production, and lower oxygen supply to body tissues may be caused by
AFM1 [66–68]. The toxicity of AF, including AFM1, and its impact on its host is sex, age, species,
and nutritional-behavior dependent [20,69]. It is important to highlight that breast-feeding is always
encouraged for infants due to its nutritional qualities and is even recommended by the WHO for six
months after birth [70]. Surprisingly, current studies on AFM1 in human breast milk conducted by
Radonić et al. on samples from Serbia revealed alarming contamination levels [71]. Tests conducted on
60 samples showed that around 85% of colostrum and the totality of collected breast milk samples
(four-to-eight months after delivery) were found highly contaminated with AFM1 in concentrations
beyond tolerable levels [71]. Results of this study and other studies demonstrate the need to raise
awareness about AFM1 presence in human milk [72].

3. Effective Strategies for AFM1 Reduction

3.1. Biological Control and Clay-Based Decontamination Methods

Strategies leading directly or indirectly to AFM1 reduction in milk vary from adopting good
agricultural practices to using innovative detoxification methods [51,73,74]. Better management and
monitoring of pre- and post-harvest conditions is an essential step to reduce AF contamination [5,75].
Several advanced techniques utilize biological methods such as bacteria, yeasts, and atoxigenic strains
to reduce AF contamination in the field and during storage [76,77]. Thus, these “biocontrol” methods
lead to the inhibition of fungal growth and AF production [52,78]. In addition, different types of
mineral clays have been tested for their capability to bind AF in animal feeds [79,80]. These adsorbents,
such as activated carbon (charcoal), zeolite, saponite-rich bentonite, and HSCAS, are able to bind AF,
thus reducing AFB1 absorption in the gastrointestinal track and its carry-over as AFM1 in milk [52,81].
For example, the inclusion of HSCAS in dairy feed has resulted in the reduction of up to 50% of
the concentration of AFM1 secreted in milk [82]. Furthermore, a recent study conducted by Carraro
et al. revealed that bentonite was also effective in reducing AFM1 contamination in milk to levels
below the European tolerable limits. Hence, the remaining residual bentonite amounts (0.4%) were in
low quantities and showed no harmful effects on human health [83]. There are several limitations of
using mineral adsorbents in beverages; they may affect its quality, color, texture, and various other
physicochemical properties [54]. Therefore, due to their limitations, several mineral binders are kept
for medical usage only [84]. In addition to their effect on food quality, many of these adsorbents are
non-specific, non-environmental friendly, and even toxic at high concentration levels [54,85]. All these
issues have led researchers to move toward more specific, non-toxic adsorbents, namely microbial
ones such as Lactic Acid Bacteria (LAB) and yeasts [86–88].

3.2. Microbial Decontamination of AFM1

The use of probiotic yeasts and LAB to bind AF in contaminated liquid foods has been widely
studied [89–93]. These biological adsorbents may be usually found in different foods including
several dairy products such as milk. Their safe status, in addition to the high capability to bind
mycotoxins, has lead researchers to test the ability of these adsorbents to bind AFM1 in milk and other
liquids [86,90,94]. Consequently, AFM1 binding was reported to be rapid, and the binding percentage
varied when changing different factors such as incubation time, temperature, pH, AFM1, and microbial
concentrations [38,95]. The use of heat-killed cells is actually more favorable for milk decontamination
than viable cells due to the contribution of the latter in product spoilage [86]. In order to assess the
binding capability of these adsorbents without interference with the food matrix effect, AFM1 binding
assays are initially conducted in buffer solutions such as phosphate-buffered saline (PBS) [74,96,97].
The efficiency of AFM1 binding by microbial adsorbents is detailed in this section.
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Table 1. Summary of studies evaluating AFM1 binding by different bacterial strains.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal
Force (g/rpm)

Initial Binding
(%)

Final Binding
(%) Reference

B
ac

te
ri

a

L. rhamnosus GG [50 µg/L]—[1010] PBS Viable 18 h 10 min—3000 g 55.62 ± 0.2 aλ 51.32 ± 0.3 a’*

[59]L. rhamnosus GG [50 µg/L]—[1010] PBS 90 ◦C—1 h 18 h 10 min—3000 g 63.08 ± 0.3 a 59.67 ± 0.4 a’*

L. rhamnosus GG [100 µg/L]—[5 × 108] PBS Viable 18 h 10 min—3000 g 1.38 ± 0.2 λ 0.51 ± 0.23*

L. acidophilus NCC 36 [5 µg/L]—[107] PBS Viable 0 h 15 min—3000 g 3.44 ± 3.04 β -

[77]

L. acidophilus NCC 36 [5 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 22.23 ± 10.76 β -

L. acidophilus NCC 36 [5 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 22.24 ± 4.67 -

L. acidophilus NCC 36 [20 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 24.78 ± 1.39 -

L. acidophilus NCC 36 [20 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 23.10 ± 5.19 -

L. acidophilus NCC 36 [5 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 26.38 ± 4.99 -

L. acidophilus NCC 36 [5 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 25.29 ± 5.03 -

L. acidophilus NCC 36 [20 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 26.22 ± 4.93 -

L. acidophilus NCC 36 [20 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 24.50 ± 4.40 -

L. acidophilus NCC 36 [5 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 23.73 ± 2.52 -

L. acidophilus NCC 36 [10 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 24.13 ± 4.67 -

L. acidophilus NCC 36 [20 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 25.07 ± 7.96 -

L. acidophilus NCC 36 [5 µg/L]—[108]
Reconstituted

skim milk Viable 4 h 15 min—1800 g 22.70 ± 3.36 -

L. rhamnosus [5 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 20.21 ± 6.16 -

L. rhamnosus [5 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 22.16 ± 7.14 -

L. rhamnosus [20 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 22.88 ± 7.11 -

L. rhamnosus [20 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 21.64 ± 1.66 -

L. rhamnosus [5 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 23.37 ± 4.81 -

L. rhamnosus [5 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 24.16 ± 3.33 -

L. rhamnosus [20 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 27.78 ± 7.50 -
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Table 1. Cont.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal
Force (g/rpm)

Initial Binding
(%)

Final Binding
(%) Reference

B
ac

te
ri

a L. rhamnosus [20 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 26.69 ± 5.48 -
[77]

L. rhamnosus [5 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 25.13 ± 6.19 -

B
ac

te
ri

a

L. rhamnosus [10 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 22.86 ± 9.33 -

[77]

L. rhamnosus [10 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 22.86 ± 9.33 -

L. rhamnosus [20 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 26.27 ± 1.92 -

L. rhamnosus [5 µg/L]—[108]
Reconstituted

skim milk viable 4 h 15 min—1800 g 21.74 ± 3.56 -

B. bifidum Bb13 [5 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 23.48 ± 6.12 -

B. bifidum Bb13 [5 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 26.65 ± 2.60 -

B. bifidum Bb13 [20 µg/L]—[108] PBS Viable 0 h 15 min—3000 g 24.77 ± 4.35 -

B. bifidum Bb13 [20 µg/L]—[108] PBS Viable 24 h 15 min—3000 g 26.33 ± 1.82 -

B. bifidum Bb13 [5 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 27.74 ± 2.97 -

B. bifidum Bb13 [5 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 25.12 ± 5.33 -

B. bifidum Bb13 [20 µg/L]—[108] PBS 90 ◦C—50 min 0 h 15 min—3000 g 28.97 ± 3.49 -

B. bifidum Bb13 [20 µg/L]—[108] PBS 90 ◦C—50 min 24 h 15 min—3000 g 27.31 ± 1.82 -

B. bifidum Bb13 [5 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 25.41 ± 4.60 -

B. bifidum Bb13 [10 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 25.64 ± 3.18 -

B. bifidum Bb13 [20 µg/L]—[108]
Reconstituted

skim milk Heat-killed 4 h 15 min—1800 g 27.31 ± 1.82 -

L. plantarum [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 5.60 ± 0.45 bA 3.71 ± 0.02 b’*
[69]

L. plantarum [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 13.11 ± 0.89 b 8.229 ± 0.03 b’*
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Table 1. Cont.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal
Force (g/rpm)

Initial Binding
(%)

Final Binding
(%) Reference

B
ac

te
ri

a

L. plantarum [150 µg/L]—[1010] PBS viable 24 h 15 min—1800 g 8.09 ± 1.33 cA 5.571 ± 0.06 c’*

[69]

L. plantarum [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 14.14 ± 1.03 c 7.60 ± 0.03 c’*

E. avium [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 7.36 ± 1.10 d 5.19 ± 0.08 d’*

E. avium [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 12.42 ± 2.20 d 7.070 ± 0.126 d’*

E. avium [150 µg/L]—[1010] PBS viable 24 h 15 min—1800 g 6.64 ± 1.40 e 2.69 ± 0.06 e’*

E. avium [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 13.13 ± 2.14 e 7.446 ± 0.13 e’*

B
ac

te
ri

a

P. pentosaceus [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 8.68 ± 1.24 f 5.36 ± 0.07 f’*

[69]

P. pentosaceus [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 15.16 ± 2.40 f 8.65 ± 0.14 f’*

P. pentosaceus [150 µg/L]—[1010] PBS viable 24 h 15 min—1800 g 7.76 ± 0.95 g 5.45 ± 0.079 g’*

P. pentosaceus [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 13.86 ± 1.01 g 7.86 ± 0.07 g’*

L. gasseri [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 21.37 ± 2.76 h 16.91 ± 0.117 h’*

L. gasseri [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 32.57 ± 1.96 h 20.6 ± 0.07 h’*

L. gasseri [150 µg/L]—[1010] PBS Viable 24 h 15 min—1800 g 22.77 ± 1.81 i 14.51 ± 0.017 i’*

L. gasseri [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 32.30 ± 0.98 i 20.77 ± 0.012 i’*

L. bulgaricus [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 30.22 ± 1.43 kB 19.05 ± 0.05 k’*

L. bulgaricus [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 36.32 ± 1.09 k 23.81 ± 0.05 k’*

L. bulgaricus [150 µg/L]—[1010] PBS Viable 24 h 15 min—1800 g 33.54 ± 1.56 B 18.02 ± 0.10 p’*

L. bulgaricus [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 33.93 ± 1.91 23.5 ± 0.08 p’*

L. rhamnosus [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 17.13 ± 3.01 lC 14.96 ± 0.05 l’*

L. rhamnosus [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 35.69 ± 3.13 l 23.02 ± 0.13 l’*



Toxins 2019, 11, 304 7 of 23

Table 1. Cont.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal
Force (g/rpm)

Initial Binding
(%)

Final Binding
(%) Reference

B
ac

te
ri

a

L. rhamnosus [150 µg/L]—[1010] PBS Viable 24 h 15 min—1800 g 27.79 ± 2.67 mC 16.51 ± 0.05 m’*

[69]

L. rhamnosus [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 45.67 ± 1.65 m 22.45 ± 0.063 m’*

B. lactis [150 µg/L]—[1010] PBS Viable 15 min 15 min—1800 g 16.89 ± 2.01 n 13.34 ± 0.115 n’*

B. lactis [150 µg/L]—[1010] PBS 100 ◦C—1 h 15 min 15 min—1800 g 36.56 ± 2.46 n 23 ± 0.22 n’*

B. lactis [150 µg/L]—[1010] PBS Viable 24 h 15 min—1800 g 23.62 ± 4.13 o 13.71 ± 0.29 o’*

B. lactis [150 µg/L]—[1010] PBS 100 ◦C—1 h 24 h 15 min—1800 g 35.84 ± 3.85 o 21.22 ± 0.316 o’*

L. rhamnosus strain GG [150 µg/L]—[1010] skim milk Viable ≈16 h 15 min—3500g 18.8 ± 1.9 pD -

[78]

L. rhamnosus strain GG [150 µg/L]—[1010] skim milk 100 ◦C—1 h ≈16 h 15 min—3500 g 26.6 ± 3.2 pE -

L. rhamnosus strain GG [150 µg/L]—[1010]
full cream

milk Viable ≈16 h 15 min—3500 g 26.0 ± 1.5 qD -

L. rhamnosus strain GG [150 µg/L]—[1010]
full cream

milk 100 ◦C—1 h ≈16 h 15 min—3500 g 36.6 ± 1.1 qE -

LAB pool
(L.delbrueckii spp.

Bulgaricus, L.
rhamnosus and B.lactis)

[0.5 µg/L]—[1010]
UHT skim

milk 100 ◦C—1 h 30 min 15 min—1800 g 11.5 ± 2.3 - [66]

LAB pool
(L.delbrueckii spp.

Bulgaricus, L.
rhamnosus and

B.lactis)

[0.5 µg/L]—[1010]
UHT skim

milk 100 ◦C—1 h 60 min 15 min—1800 g 11.7 ± 4.4 - [66]

Results are the average ± SD for triplicates sample. Two-way ANOVA was conducted. Indicates a significant binding differences (p < 0.05) between: (*) Initial and final binding % of viable
or heat-killed bacteria. (a, b, c, d, e, f, g, h, I, j, k, l, m, n, o, p, q, r, s, t, q) viable and heat-killed bacteria before washing. (a’, b’, c’, d’, e’, f’, g’, h’, i’, j’, k’, l’, m’, n’, o’) viable and heat-killed
bacteria after washing. (A, B, C, D, E) bacteria treated at different incubation time. (λ, β) bacteria treated at different AFM1 concentration.
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Table 2. Summary of studies evaluating the AFM1 binding by different yeast strains.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal Force
(g/rpm)

Initial Binding
(%) Reference

Ye
as

t

S. cerevisiae [0.5 µg/L]—[109] UHT skim milk 100 ◦C—1 h 30 min 15 min—1800 g 90.3 ± 0.3 A
[66]

S. cerevisiae [0.5 µg/L]—[109] UHT skim milk 100 ◦C—1 h 60 min 15 min—1800 g 92.7 ± 0.7 A

Kluyveromyces lactis [50 µg/L]—[109] PBS 121 ◦C—10 min 72 h 15 min—6000 rpm 60.14 ± 2.5 λ

[68]

Kluyveromyces lactis [50 µg/L]—[5 × 109] PBS 121 ◦C—10 min 72 h 15 min—6000 rpm 69.14 ± 1.8 λ

S. cerevisiae [50 µg/L]—[109] PBS 121 ◦C—10 min 72 h 15 min—6000 rpm 64.52 ± 1.83 β

S. cerevisiae [50 µg/L]—[5 × 109] PBS 121 ◦C—10 min 72 h 15 min—6000 rpm 78.74 ± 1.82 β

CYS-NV
(S. cerevisiae + k. lactis) [50 µg/L]—[5 × 109] PBS 121 ◦C—10 min 72 h 15 min—6000 rpm 85.68 ± 1.84

Results are the average ± SD for triplicates sample. Two-way ANOVA was conducted. Indicates a significant binding differences (p < 0.05) between: (A) Yeast treated at different incubation
time. (λ, β) yeast treated at different AFM1 concentration.
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Table 3. Summary of studies evaluating AFM1 binding by a mixture of yeasts and bacterial strains.

Type Strain [AFM1]—[Cells] Solution Treatment Incubation
Time (37 ◦C)

Centrifugal
Force (g/rpm)

Initial Binding
(%) Reference

M
ix

tu
re

LAB pool + S. cerevisiae [0.5 µg/L]—[1010] LAB
pool + [109] S. cerevisiae

UHT skim milk 100 ◦C—1 h 30 min 15 min 1800 g 91.7 ± 0.5 A
[66]

LAB pool + S. cerevisiae [0.5 µg/L]—[1010] LAB
pool + [109] S. cerevisiae

UHT skim milk 100 ◦C—1 h 60 min 15 min 1800 g 100.0 ± 0.0 A

CPYS-NV
(B. bifidum +

L. acidophilus +
L. Plantarum +
S. cerevisiae +

k. lactis)

[50 µg/L]—[5 × 109] PBS 121 ◦C—10 min
(b)—20 min (y) 72 h - 87.92 ± 1.10

[68]
CPYS-NV

(B. bifidum +
L. acidophilus +
L. Plantarum +
S. cerevisiae +

k. lactis)

[50 µg/L]—[5 × 109] skim milk 121 ◦C—10 min (b)
121 ◦C—20 min (y) 12 h - 80.56 ± 2.19 B

[50 µg/L]—[5 × 109] skim milk 121 ◦C—10 min (b)
121 ◦C—20 min (y) 24 h - 86.64 ± 1.5 B

[50 µg/L]—[5 × 109] skim milk 121 ◦C—10 min (b)
121 ◦C—20 min (y) 48 h - 88.6 ± 1.3 C

[50 µg/L]—[5 × 109] skim milk 121 ◦C—10 min (b)
121 ◦C—20 min (y) 72 h - 90.88 ± 1.09 C

Results are the average ± SD for triplicates sample. Two-way ANOVA was conducted. Indicates a significant binding differences (p < 0.05) between: (A, B, C) cells treated at different
incubation time. (b): Bacterial strains (y): Yeast strains.
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Tables 1–3 represent a summary of the literature using bacteria, yeasts, or a mixture of them for
AFM1 decontamination. In addition, the stability of the formed complex in milk or in PBS before
(Initial) and after (Final) washing is also highlighted.

3.2.1. Binding Efficiency of Bacterial Strains

AFM1 binding efficiency by different bacterial strains is shown in Table 1. Kabak et al. reported
that the binding of AFM1 by viable Lactobacillus and Bifidobacterium strains in PBS depends on the AFM1
contamination level and incubation time. In addition, they indicated that heating the bacterial pellets
did not improve their ability to remove AFM1 from PBS [98]. These findings were not consistent with
Bovo et al. (2015), who reported that AFM1 bound by heat-killed E. avium, L. plantarum, P. pentosaceus,
B. lactis, and L. gasseri was significantly greater than the amount bound by viable cells [91]. In fact,
these results were in accordance with another study conducted by Assaf et al. in which the percentage
of AFM1 bound by L. rhamnosus GG in PBS increased significantly, reaching up to 63.08% after heat
treatment [74]. This binding increase was explained by the fact that AFM1 may adhere to bacterial
cells via electrostatic bonding, thus suggesting that AFM1 is bound to cell wall components, namely
polysaccharides and peptidoglycans [99,100]. Furthermore, during heat treatment, the cell wall
components are affected by the denaturation of proteins, resulting in an increase in the hydrophobic
nature of the cell’s surface in addition to a possible formation of Maillard reaction products [101].
Hence, this denaturation allows AFM1 to bind to bacterial cell wall components that were not accessible
when cells were intact [101]. A change in LAB concentration was sufficient to result in a variation of
the amount of bound AFM1. According to Kabak et al., a reduction of the bacterial concentration
resulted in a significant decrease of bound AFM1 in PBS [102]. This observation was congruent with an
Assaf et al. finding, where the binding of AFM1 to L. rhamnosus GG greatly increased after increasing
the bacterial concentration [74]. Besides, Kabak et al. mentioned that the amount of eliminated AFM1
was not affected by the contamination level of AFM1 in PBS [102].

However, similar findings in milk have been reported by Pierides et al., who demonstrated
that heat-killed L. rhamnosus GG were able to more efficiently remove AFM1 than viable cells [103].
Accordingly, AFM1 removal in full cream milk (36.6%) was higher compared to skim milk (26.6%),
though both were lesser than in PBS. In this regard, the same researchers justified the lower AFM1
removal in milk compared to PBS by the decrease in the availability of free AFM1 possibly associated
with casein and other milk contents [103]. In addition, in 2013, Corassin et al. demonstrated that by
using a pool of LAB in ultra-high temperature processing (UHT) skim milk, the bound amount of
AFM1 has not significantly improved even after an increase in the incubation time [86]. These findings
suggested that the binding process of AFM1 with LAB is completed in a fast manner.

3.2.2. Binding Efficiency of Yeast Strains

Upon using different type of yeast strains to bind AFM1 (Table 2), Corassin et al. reported that
the binding of AFM1 by Saccharomyces cerevisiae in UHT skim milk was significantly higher (up to
92.7%) compared to the binding by LAB pool (up to 11.7%) [86]. Furthermore, in 2018, Abdelmotilib
et al. stated that the combination of non-viable yeast strains (Kluyveromyces lactis and S. cerevisiae)
had a higher AFM1 removal effect (85.68%) compared to separate yeast strains (up to 78.74%) [90].
Furthermore, the study showed that the removal of AFM1 by Kluyveromyces lactis increased significantly
with an increasing yeast concentration [90].

3.2.3. Binding Efficiency of Bacteria and Yeasts Mixed Pools

Upon using a combination of bacterial strains (L. Plantarum, L. acidophilus, and B. bifidum) and
yeast strains (Kluyveromyces lactis and S. cerevisiae) (Table 3), Abdelmotilib et al. demonstrated that this
mixture showed the highest binding of AFM1 in a PBS medium (87.92%) [90]. Similarly Corassin et
al. revealed that the amount of AFM1 bound by a mixture of LAB pool and S. cerevisiae in UHT skim
milk was significantly higher, reaching up to 100% after 60 min of incubation [86]. In fact, this increase
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in the mixture’s ability to remove AFM1 compared to bacteria or yeast strains was explained by the
additive effect of both S. cerevisiae and LAB pool, making more accessible sites available for AFM1
fixation. After increasing the total microbial cell concentration in milk by forming a mixed pool of
strains, the possible increase in AFM1 retention among microbial cells was not taken into consideration
as a potential cause for this binding increase and should be further studied.

3.2.4. AFM1/Microbial Complex Binding Stability

Few studies assessed the stability of the AFM1/microbial complex after successive washing steps
(Final binding). In this regard, in 2008, Kabak et al. reported that the binding of AFM1 to bacterial
cells was partially reversible, and small amounts of AFM1 (up to 8.54%) were released back into
the PBS solution [98]. Furthermore, Bovo et al. revealed that some AFM1 were released back into
PBS after several washes but with greater percentages (up to 87%) [91]. Likewise, our observation
indicated that after five successive washes, the percentage binding of AFM1 to viable and heat-treated
L. rhamnosus GG decreased (up to 4.3%) [74]. Several investigators showed that the binding between
AFM1 and bacteria is partially reversible, suggesting the implication of non-covalent bonds such as
hydrogen bonds and van der Waals interactions [104,105]. A potential clarification of this variation in
the released amounts of AFM1 can be explained by the difference in the binding sites between strains
or to cross-linked interactions between AFM1 molecules and different microbes [106]. It is noteworthy
to mention that the stability of the formed AFM1/microbial complex remains crucial; thus, a stable
complex ensures a safe excretion of mycotoxins from the human body [38,107].

3.3. Plausible Experimental Variants

Depending on the performed experiments, the AFM1 binding assays using LAB or yeasts have
shown some unexplained differences in the percentage of bound AFM1. In this section, we will try
to explain the plausible causes of these differences and actions that could be taken in order to better
clarify and analyze the given results.

3.3.1. Applied Heat Treatment

The heat treatment of bacteria, yeasts, or mixtures is not performed in a similar way (Tables 1–3).
Hence, some tests are conducted by heating bacteria at 90–100 ◦C, while others are conducted by
autoclaving at 121 ◦C. In both terms, the bacteria are heat-killed, but the effect of exerted heat on cell
wall components (proteins, peptidoglycan, etc.) and their structures are not taken into consideration.
However, depending on heating time, type, and temperature, reversible or irreversible denaturation
events may take place [108]. Possibly, a reversible thermal denaturation of proteins or other cell
wall components will cause their renaturation after heating [109]. Thus, this may cause an absence
of significant changes in AFM1 binding after heat treatment, as shown by Kabak et al. (Table 1).
Nevertheless, in another scenario, a variation of the heat rate may cause an irreversible denaturation of
proteins and other cell wall components in addition to increasing the number of dissociated electrostatic
bonds [74,109,110]. Consequently, it will affect the fixation of AFM1 on its binding sites in the cell wall.
These results may explain some of the findings in which an increase in AFM1 binding was observed
after heat treatment (Tables 1–3). In addition, heating may affect this binding through the formation of
Maillard reaction products between proteins, polysaccharides, and peptides [101,111].

3.3.2. Working Temperature

In the conducted experiments for AFM1 binding by microbial adsorbents, the incubation
temperature of AFM1-microbial suspension is clearly indicated (Tables 1–3). On the other hand,
there is a lack of information regarding the working temperature of the carried out experiment that
is usually not similar to the fixed incubation temperature of the suspended complex (e.g., 37 ◦C).
Microbial pellets, PBS, and milk may have been stored cold before conducting the binding assay that
may take place at room temperature. In addition, for heat-killed bacteria, the temperature of the



Toxins 2019, 11, 304 12 of 23

bacterial pellets may not directly return to room temperature before being suspended in contaminated
milk or PBS. Since we are dealing with an electrostatic type of bonding, a variation in the temperature
may affect the binding of AFM1 to microbial cells [112]. Thus, for more accuracy, it may be better to
indicate the working temperature for the performed assay.

3.3.3. Washing Steps

Testing the stability of the formed AFM1/microbial complex after successive washes was not
always considered to be critical, and, for this reason, it was not conducted in all experiments (Tables 1–3).
Due to the formation of electrostatic bonds, which are weak-to-intermediate in strength (hydrogen and
van der Waals), it could be assumed that a certain amount of bound AFM1 may return to suspension
(up to 87%) [74,91]. Nevertheless, electrostatic bonding may not be the only reason behind this decrease
in bound AFM1 after washing steps. Accordingly, some AFM1 may be retained among bacteria or
yeasts even without binding [74]. Therefore, conducting several washes until complete stabilization in
the amount of bound AFM1 may be necessary to make appropriate assumptions regarding the actual
binding percentage.

3.3.4. Filtration Step

The use of a filtration step to separate microbial adsorbents from AFM1 was not quite favorable
due to the retention of some AFM1 that may take place in the filter even without the presence of any
adsorbents [74]. Thus, the filtration of a suspension of AFM1 and bacteria may increase the retention
of AFM1 in the filter due to membrane pore blockage by the bacteria and the formation of a cake
layer. Furthermore, in order to avoid any malfunctions in High Performance Liquid Chromatography
(HPLC), some manufacturer’s instruction manuals [113] recommend filtering all samples before AF
quantification [114–117]. In addition, it is worth mentioning that the use of a filtration step for
supernatant samples after AFM1 binding may entail errors in the real amount of bound AFM1 [74].
For this reason, it might be better to keep controls for filtration steps at different AFM1 concentrations.
In addition, these controls will help in sorting between retained AFM1 in filtration step and unrecovered
AFM1 from milk following its clean-up by an immunoaffinity column (IAC). Furthermore, in order
to reduce AFM1 retention in the filter, selecting the most appropriate filter membrane (membrane
materials, pore size, etc.) may be crucial.

3.3.5. Centrifugation Step

In an AFM1 binding assay, the centrifugation steps are usually conducted to separate bacteria or
yeasts from the containing medium (milk, PBS, etc.) [74,103]. For this reason, not much attention was
given for the effect of centrifugal speed on AFM1 binding. Therefore, different speeds were used in the
conducted experiments (Tables 1–3). We highlighted in our previous study that the centrifugation
step is implicated in the binding of AFM1 to microbial adsorbents via increasing the contact among
them [74]. For this reason, the centrifugation speed and time may affect the amount of bound AFM1,
even without changes in other experimental conditions. Hence, the implication of the centrifugation
step in AFM1 binding should not be ignored, and further studies may be needed.

3.3.6. Presence of an S-layer

The bacterial S-layer (surface layer) is a layer of thickness between 5 and 25 nm that forms the
outermost cell envelope which covers the entire bacteria [118,119]. This layer is composed of proteins or
glycoproteins arranged in different shapes in oblique, square, or hexagonal lattice symmetry [120,121].
In addition, the S-layer pore sizes range between 2 and 8 nm in diameter [118,122]. It is possible that
this layer acts as a barrier against the entry of AFM1 and binding to the LAB cell wall peptidoglycans
or polysaccharides. The potential role of the S-layer in the adsorption or retention of AFM1 should be
elucidated after its extraction. It is important to mention that not all LAB have an S-layer [123]. A clear
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indication of its presence or absence gives a better understanding of the cell wall structure that may
affect the binding of AFM1.

3.3.7. Detection and Quantification Techniques

To quantify AFM1 in milk, it is always essential to properly manipulate the samples and choose
the appropriate detection method. The reversed-phase HPLC method is a widely used technique for its
detection [114–117]. Other commonly known methods are the enzyme linked immune-sorbent assay
(ELISA) and thin-layer chromatography (TLC) [49]. Both the ELISA and TLC methods are cost-effective
and easy to handle. For these reasons, they are mainly used as AFM1 screening methods [124].
However, although the use of reverse phase HPLC is more expensive and requires skilled staff, it
remains highly accurate with higher sensitivity and specificity [114]. The detection of AFM1 by HPLC
is still of great importance due to its high sensitivity, accuracy, reliability, and possibility for column
re-usage [114]. In contrast to ELISA, the HPLC method requires a clean-up of AFM1 from milk by
using an IAC [116]. Along these lines, various experimental variants may occur at any stage, from
sample handling to extraction, detection, or quantification of residual AFM1.

These inaccuracies are not only limited to the binding of AFM1 by microbial adsorbents but may
extend to binding of different types of mycotoxins including aflatoxin B1, ochratoxin A, patulin, and
other toxins following similar procedures [106,108,125,126].

4. Advantages and Limitations

The mechanism of AFM1 decontamination by LAB, yeasts, or mixtures present different advantages
over other chemical, physical, or biological methods. This section highlights several advantages of the
previously discussed methods in addition to different limitations which may act as a barrier toward
their industrial commercialization and that need to be further investigated.

4.1. Advantages of Microbial Decontamination

4.1.1. Reduction of AFM1 Bioaccessibility

The use of microbial adsorbents to complex AFM1 may provide an additional strategy to reduce
its bioavailability [38]. Hence, a decrease in the amount of free AFM1 for intestinal adsorption will
occur. Serrano-Nino et al. revealed that the bioaccessibility of AFM1 in an in vitro digestive model
was reduced after AFM1 binding by microbial probiotic strains [127]. Accordingly, B. bifidum NRRL
B-41410 and L. acidophilus NRRL B-4495 were able to reduce the relative bioaccessibility of AFM1 by
45.17% and 32.20%, respectively. Moreover, tests conducted on mice revealed that the concurrent
administration of Lactobacillus plantarum MON03 (LP) with AFM1 strongly reduced the adverse effects
of AFM1 [128]. Therefore, there were no significant differences in tested parameters compared to the
control mice [128]. In addition, several studies revealed that the binding of AF to LAB strains increased
when simulated in a gastrointestinal environments. As a result of the exposure of LAB cells to bile, an
alteration of proteins and phospholipids of the cell envelope may take place, resulting in increased
binding [18,89,129,130].

4.1.2. Adsorption Specificity and Effectiveness

The use of either physical methods, such as heating and irradiation [131,132], or chemical methods,
including solvent extraction, ammoniation, and ozone treatment [133–136], for AFM1 removal have
many limitations. These detoxification methods are expensive, time consuming, and may cause
significant nutritional losses compared to the microbial methods. Thus, microbial decontamination is
found to be more effective and highly specific [137]. As observed in Tables 1–3, the binding of LAB
with AFM1 varied not only between species but also within different strains of the same species, which
is an additional indicator of the specificity of this type of binding. Hence, the additional confirmation
of AFM1 binding specificity that is supposed to be exerted in specific sites of the microbial cell wall
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including polysaccharides and peptidoglycan, in addition to its binding mechanisms, needs to be
further investigated.

4.1.3. Consumer Product Safety

The use of several probiotics that are “Generally Recognized as Safe” (GRAS) microorganisms for
the milk detoxification of AFM1 has made this process safer. It is worth mentioning that probiotics
can exert beneficial effects on the host, including consumers of milk and dairy products [138].
The above-discussed methods suggest that supplementing milk with probiotics may be a suitable
solution for AFM1 removal in dairy products. In addition, the microbial control of AF production
by LAB probiotic strains conferred better protection to milk and other contaminated dairy products
during the storage period [52]. Different LAB such as L. plantarum, L. fermentum, and L. rhamnosus
are known to be widely used as microbial inoculants for fermentation purposes including milk
fermentation [139–141]. Therefore, the use of such microbial binders that are commonly found in dairy
products and used in their processing is highly preferable. On the other hand, when using chemical or
physical agents, some residues may be left in milk that will negatively affect the organoleptic quality of
milk, putting the safety of the consumers at risk. Thus, using microbial adsorbents for the elimination
of AFM1 from liquids such as milk remains a highly promising strategy.

4.2. Limitations of Microbial Decontamination

4.2.1. Microbial Supplementation Limits and Conditions

It is important to indicate that adding microbial agents to milk is acceptable to a certain limit.
Current US standards require coliforms no greater than 10 cfu/mL in grade ‘A’ pasteurized fluid milk
and a total plate counts of less than 20,000 cfu/mL [142]. Therefore, researchers must be aware of
this issue that would be better if taken into consideration when performing the binding assays and
fixing the needed microbial concentration. In addition, legislation concerning the total amount of
dead and viable bacteria in milk and milk products varies regionally, and respecting these norms is a
main concern for the safety of the consumers of dairy products. Adding different amounts of viable
LAB, yeasts, or a mixture of both to milk is not quite favorable due to their uncontrolled proliferation.
For example, yeasts such as Kluyveromyces sp. and Saccharomyces sp. usually cause milk spoilage by
fermenting milk lactose [143].

4.2.2. Removal of Supplemented Microorganisms

If the concentrations of microbial agents necessary for AFM1 decontamination surpass the allowed
limits, then they cannot remain in milk and a treatment for their removal is required. The removal
of LAB or yeasts that were previously supplemented into milk using a filtration step is not easy to
achieve due to several limiting factors. Within the required milk treatment for microbial removal, low
membrane selectivity may take place in addition to its high operating costs [144]. Furthermore, size
similarities between different milk components such as microbial adsorbents and fat can make this
process harder to accomplish at low cost, and additional steps may be required. Thus, a proportion of the
native milk fat globules which are similar in size to bacteria must be removed by centrifugal separation
before conducting a microfiltration step [144]. It appears that this removal process is expensive, and
important milk components may be lost, which means that they have to be re-supplemented later due
to their significance to consumers.

4.2.3. Binding Reversibility

As previously reported in this review, the binding of AFM1 to microbial adsorbents is partially
reversible. Hence, the non-covalent type of binding between microbial binders and AFM1 may be
a main concern related to its industrial application. Since milk contamination by AFM1 and its
maximum tolerable limits are not similar worldwide, the amount of supplemented yeasts, bacteria,
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or mixture of both in AFM1-contaminated milk needs to be regularly assessed. Thus, estimating the
amounts of needed adsorbents is hard to achieve due to the partial reversibility of this type of bonding.
Additionally, the stability of AF binding in milk or other liquids may differ according to different
environmental condition including storage time, pH, milk temperature, and concentration of the used
microbial adsorbents [145]. It remains tough to continuously monitor the amounts of free AFM1 and
estimate the concentration of microbial agents in an unstable environment, especially when microbial
additives bound to AFM1 are destined to be retained in milk.

5. Prospective Industrial Applications

Numerous microbial adsorbents have been tested in order to determine their potential ability to
bind AF in milk and other dairy products, but, so far, researchers have not been able to commercially
implement a fully reliable method. For this reason, several prospective methods for industrial
applications are discussed in this section.

5.1. Microbial Fixation on Support or Membrane

The proposed method reported by Foroughi et al. in 2018 consists of immobilizing yeast such
as Saccharomyces cerevisiae on perlite support to detoxify AFM1-contaminated milk [146]. The results
showed a significant reduction in AFM1 concentration for all tested milk samples with various initial
AFM1 contents. The highest reduction of AFM1 obtained was 81.3% after 80 min of milk circulation
in the biofilter. This study revealed the high capability of immobilized yeast cells to detoxify AFM1
without any changes of its physicochemical properties. These promising results may be used for
additional research such as fixing effective quantities of LAB, yeasts, or mixtures on a support or
membrane that may be used to detoxify AFM1 by passing contaminated liquids through or over it. The
formation of customized biofilters or cartridges containing these biological adsorbents may be more
suitable for industrial application. Therefore, microbial cell immobilization is a remarkable method
that may lead to different practical applications addressing not only AFM1 contamination in dairy
products but also mycotoxins decontamination in beverages.

5.2. Microbial Biofilm Formation

A potential solution to the retention of microbial agents used for AFM1 decontamination in milk
was shown in a study conducted by Assaf et al. in 2019 [50]. Tests were carried out to examine the
ability of biofilm formed by probiotic LAB strains in tubes or in plates to eliminate AFM1. Hence, L.
rhamnosus GG biofilm was able to significantly remove (up to 60.74%) AFM1 from contaminated whole
milk. In addition, no significant difference in milk protein content was observed after AFM1 binding.
Therefore, passing contaminated milk through or over the resultant biofilm for AFM1 decontamination
could be a direct application of this method. It is important to mention that probiotic LAB and yeasts
are able to form biofilms on different type of surfaces [147]. As such, their emerging applications in
mycotoxin decontamination should be further elucidated.

5.3. Customized Rotating Mixer

As previously shown, an increase of AFM1 exposure to microbial adsorbents may affect the
amount of AFM1 bound by LAB [74]. Thus, the binding of AFM1 to heat-killed L. rhamnosus GG
increased when coupled to a mixing step such as pipetting [74]. For this reason, it may be suitable to use
a customized rotating mixer that can increase the contact between AFM1 and microbial binders, thus
decreasing the amount of microbial inoculum needed and the decontamination time. This procedure
may be coupled with a filtration step to remove the supplemented microbial agents. Noting that even
without any microbial supplementation, the increase of contact between AFM1 and milk components
including LAB and proteins such as casein may result in an increase in the binding of free AFM1,
thereby decreasing AFM1 bioavailability in contaminated milk [148–150].
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6. Conclusions

Among all mycotoxins, the group of aflatoxins has received much attention due to their severe
impact on human and animal health. In fact, numerous studies have investigated various microbial
agents for their potential to bind AFM1. In this review, we aimed to investigate AFM1 decontamination
methods by using microbial adsorbents and to emphasize the role of different experimental variants on
complex binding and stability. Accordingly, this work highlights several experimental parameters that
should be taken into consideration to optimize the binding of AFM1 in milk and other liquids. The
decontamination of AFM1 using microbial adsorbents is still under vigorous investigation, and a better
understanding of its binding mechanism and stability is needed. In addition, considerable testing of
the physiochemical properties of milk after decontamination needs to be elucidated. Further studies
on using these agents for AFM1 decontamination are still needed before the industrial implementation
of the developed methods on milk products. This review highlights the use of different AFM1
decontamination methods and their plausible inaccuracies, thus answering some essential questions
for a better understanding and improvement of these methods.
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