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ABSTRACT

Primer IDs (pIDs) are random oligonucleotide tags
used in next-generation sequencing to identify se-
quences that originate from the same template.
These tags are produced by degenerate primers dur-
ing the reverse transcription of RNA molecules into
cDNA. The use of pIDs helps to track the number of
RNA molecules carried through amplification and se-
quencing, and allows resolution of inconsistencies
between reads sharing a pID. Three potential issues
complicate the above applications. First, multiple cD-
NAs may share a pID by chance; we found that while
preventing any cDNAs from sharing a pID may be
unfeasible, it is still practical to limit the number of
these collisions. Secondly, a pID must be observed in
at least three sequences to allow error correction; as
such, plDs observed only one or two times must be
rejected. If the sequencing product contains copies
from a high number of RT templates but produces
few reads, our findings indicate that rejecting such
pIDs will discard a great deal of data. Thirdly, the use
of pIDs could influence amplification and sequenc-
ing. We examined the effects of several intrinsic and
extrinsic factors on sequencing reads at both the in-
dividual and ensembile level.

INTRODUCTION

In population sequencing applications, Sanger sequencing
by the detection of chain-terminating dideoxynucleotides
can only reproducibly detect minority variants that com-
prise a minimum of about 20% of the template popula-
tion (1-5). Next-generation sequencing (NGS) platforms
can provide considerably greater sensitivity because they

use large-scale parallelization of sequencing reactions to au-
tomate the sequencing of thousands of individual templates
at once. The high throughput afforded by NGS comes, how-
ever, at the cost of higher rates of sequencing error relative
to Sanger sequencing. In addition, the frequency of variants
among sequences (reads) produced by NGS does not nec-
essarily reflect their respective frequencies in the population
of templates because of the inherently stochastic nature of
polymerase chain reaction (PCR) amplification. While this
resampling error affects all PCR-based methods of sequenc-
ing, the increased sensitivity of NGS is more susceptible to
this effect.

Primer IDs (pIDs) are ‘tags’ used in NGS to address
these problems (6,7). pIDs are produced by incorporating
a string of degenerate nucleotides into the cDNA synthe-
sis primer. These produce a random string of nucleotides
that appears in each cDNA molecule produced by reverse
transcription from an original RNA molecule. After PCR
amplification, this random label thus appears in all of the
produced DNA copies of the original. Each pID consists of
a string of random nucleotides appearing somewhere (typ-
ically in the primer) in each sequenced observation com-
ing from the NGS platform. In principle, these oligonu-
cleotides function to identify all DNA copies after PCR am-
plification that were derived from the same RNA molecule.
This not only enables the investigator to estimate the num-
ber of RNA molecules being represented by the reads pro-
duced by NGS, but also provides a means of error cor-
rection by averaging out variation due to sequencing error
among reads with a common pID. We use the term ‘pID
design’ to refer to the number, type and arrangement of de-
generate nucleotides that will determine the composition of
pIDs. There are two major considerations in pID design:
first, the number of degenerate nucleotides or length of the
pID; and secondly, what combination of fully or partially
degenerate nucleotides will make up this number, where a
partially degenerate nucleotide can represent either two or
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three of the nucleotides. Together, these factors determine
the maximum number of pIDs; for example, a design of the
form NNNRNNN (using [IUPAC symbols for degenerate
nucleotides) admits 4° x 2 = 8192 possible pIDs. In this
study, we use analytical and experimental methods to eval-
uate the practical consequences of pID design in the context
of characterizing a population of RNA molecules by NGS-
based resequencing or ‘deep sequencing’. We consider three
distinct but interrelated consequences of pID design.

First, there is always a chance that two RNA molecules
receive the same plD (a collision), the probability of which is
determined by the number of pIDs and the number of RNA
molecules going into the reverse transcription and amplifi-
cation reactions. If this happens, the two RNA molecules
can no longer be distinguished using the pID. Assuming
that all possible pIDs are equally likely to attach to any
given RNA molecule, this situation is known in probability
theory and statistics as the birthday problem (8). We carry
out numerical analyses of the probabilities of attaining per-
fect or ‘adequate’ labelling of RNA molecules by pIDs un-
der varying conditions, where labelling is considered ade-
quate when the vast majority of RNA molecules receive
unique pIDs. Our analysis indicates that adequate labelling
is considerably easier to achieve than perfect labelling under
realistic experimental conditions, while retaining the advan-
tages of perfect labelling.

Secondly, shallow read depth of RNA molecules, or num-
ber of reads (i.e. deep-sequencing observations) coming
from a given RNA molecule, is another effect of pID de-
sign. As discussed previously, another benefit to using pIDs
is the ability to turn resampling or oversampling to our ad-
vantage by using it to correct for sequencing error. If the am-
plicon pool has been perfectly labelled, or well-enough la-
belled that any collisions in labelling are infrequent enough
to not significantly affect the data, then one can exactly
trace which reads correspond to the same original RNA
molecule. In order to construct a consensus sequence for an
RNA molecule, there must be at least three reads for that
molecule, as ties between two reads cannot be resolved. (In
fact, three or more reads may still create such ties—for ex-
ample if three reads have A, C and G at a given base—but
this is considered to occur infrequently enough to be a neg-
ligible possibility.) Because of this, it is suggested that RNA
molecules with read depth below three be rejected from
analysis as a more trustworthy consensus sequence cannot
be formed (6). To assess the impact of shallow read depths,
we perform serial dilution and Roche 454 NGS experiments
on two plasma samples from HIV-positive subjects. In addi-
tion, we analyse data from another 454 NGS experiment on
serum samples serially obtained from three hepatitis C virus
(HCV)-positive subjects. We find that substantial fractions
of data are unavailable for error correction because they are
represented by fewer than three reads. Using these data, we
develop a generalized statistical model of the sensitivity of
shallow read depth to experimental conditions.

Thirdly, we consider whether using pIDs introduces any
biases to the resulting data. If using pIDs might cause a cer-
tain sequence variant to be observed in numbers completely
unlike its actual prevalence, then we cannot trust the results
obtained using this technique. Using data from the same
experiments, we examine the effects of the different pIDs
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on amplification/sequencing bias. Since the 454 platform is
particularly susceptible to insertion/deletion (indel) errors
when sequencing homopolymers, and since pIDs can intro-
duce homopolymers to the sequenced DNA molecules, we
also examine the effects of pIDs on indel error probabilities
at the microscopic level.

Overall, we find that the pID technique is accompanied
with several intrinsically unavoidable challenges. However,
our models and experimental results indicate that under an
optimal range of experimental conditions, some of these
challenges, such as imperfect labelling, may have a minimal
impact on the utility of this technique. We also find that the
other challenges can be overcome with careful considera-
tion of experimental design and by more recent advances
in NGS technologies that can yield much higher numbers
of reads. The principles behind the pID method and theo-
retical analysis performed here apply generally to sequenc-
ing of an RNA population (or DNA population sequenc-
ing, though the wet bench procedures we describe would
not apply). Our primary experiment consists of HIV viral
population sequencing on the 454 platform; the technique
was originally developed in this context (6), and it has been
of great interest to researchers and clinical practitioners in
this field. We also evaluate the pID method on NGS data
derived from HCV populations using the 454 platform un-
der a different set of experimental conditions. We describe
these analyses and experiments in the following.

MATERIALS AND METHODS

To avoid confusion between the different types of products
and molecules occurring at different stages of the process
of reverse transcription, amplification and sequencing, we
will introduce the following terminology. (These terms are
introduced in the context of HIV sequencing, but they also
apply to the HCV case.) In HIV RNA sequencing, one starts
with a plasma sample; from this sample, an extract contain-
ing RNA molecules is produced; from this extract, a por-
tion of the RNA molecules is reverse transcribed into com-
plementary DNA (¢cDNA) and amplified via PCR to pro-
duce an amplicon pool consisting of DNA copies (or ampli-
cons) of the cDNA. The HCV experiment followed the same
steps except that the starting samples were serum samples
rather than plasma samples. The same principles hold for
any other RNA sequencing procedure which follows these
steps.

We define the RNA molecule count of an amplicon pool
to be the total number of HIV RNA molecules that are
represented by DNA copies in the pool after extraction,
reverse transcription and amplification. Neither extraction
nor reverse transcription is completely efficient, and if an
RNA molecule is lost during extraction or fails to reverse-
transcribe, then this RNA molecule will never be amplified
and, therefore, never sequenced. These inefficiencies must
be considered when estimating the RNA molecule count of
an amplicon pool.

Another piece of convenient notation: we will refer to a
pID design consisting of m consecutive N’s as Nm. For ex-
ample, the design NNNNNNNN is N8. For a given design
length m, Nm is the design that admits the most possible
pIDs.
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Labelling: Let us briefly describe the birthday problem
and its effect. Assuming that all possible pIDs are equally
likely to bind to any RNA molecule during the application
of sequencing primers to the RNA molecules, the probabil-
ity that » RNA molecules all receive unique pIDs from a
pool of N possible choices is:

"IN N-1 N—n+1
1_[ =1x X oo X ———.
pin N N N

()

We call such an event perfect labelling. This ignores the fact
that not all RNA molecules in the sample population have
been extracted and reverse transcribed, meaning that there
are ‘lost” RNA molecules that are never tagged or ampli-
fied, and, therefore, never represented in the eventual se-
quencing product. However, assuming further that all RNA
molecules are independently equally likely to be lost, the
same formula holds if 7 is taken to be the number of RNA
molecules that successfully reverse transcribe and N is the
same pool of possible pIDs.

Computing the number of pIDs required to achieve a
high probability of ‘good enough’ coverage (under the con-
tinuing assumption that all possible pIDs are equally likely
to attach to any given RNA molecule) is a combinatorial
problem: the formulae are reasonably straightforward to de-
rive, but are computationally difficult. For example, sup-
pose that we would like to compute the probability that all
but 5 RNA molecules receive unique pIDs. The problem is
similar in spirit to the classic problem of counting the num-
ber of ways to assemble a poker hand, such as two pair
or three of a kind. We need to enumerate all the possible
ways that we could end up with five RNA molecules shar-
ing pIDs, compute the probabilities of each and sum them.
Is there one pair of RNA molecules sharing one pID and
another three sharing a second pID, for example, or do five
RNA molecules all share one pID? We use the resulting for-
mulae to compute the number of possible pIDs required to
limit the number of collisions in a manner we make precise
below.

Let us introduce some notation to assist in the counting
of certain assignments of pIDs to RNA molecules. We say
that a pID is a k-tag if it is shared by &k RNA molecules.
For example, if perfect labelling is achieved for an ampli-
con pool representing n RNA molecules, then there are ex-
actly n 1-tags. If there are two pIDs that get assigned two
RNA molecules each, one that gets assigned three RNA
molecules, and then the rest of the RNA molecules get
unique pIDs, then this amplicon pool has one 3-tag, two
2-tags and (n — 7) 1-tags.

We define a probabilistic model to describe the labelling
of RNA molecules with pIDs and use combinatorial proba-
bility calculations (described in Section S2.2 of the Supple-
mentary Materials) to compute the probabilities for ‘95%
good’ labelling, which we define as consisting of outcomes
where the number of distinct pIDs represented in the am-
plicon pool is at least 95% the number of RNA molecules.
(Note that this guarantees that at least 90% of the RNA
molecules represented in the amplicon pool have unique
pIDs; in this worst-case scenario, the other 10% have all col-
lided and received pIDs that they share with one other of
these unlucky molecules.) This accepts that there will likely
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be pIDs shared by several RNA molecules represented in
our amplicon pool, but in small quantities. When this be-
comes too computationally expensive to perform (for large
RNA molecule counts), we continue on with two methods.
First, we compute these probabilities for labellings better
than 95% good, which reduces the amount of computation
necessary because, in the language of Section S2.2 of the
Supplementary Materials, fewer k-tag configurations need
to be considered. Secondly, to get results for 95% good la-
belling of larger RNA molecule counts, we compute ap-
proximations as described in Section S2.3 of the Supple-
mentary Materials.

Shallow read depth

In the following, we define a k-RNA to be an RNA molecule
with read depth k. We will call 1- and 2-RNAs singletons and
doubletons, respectively.

Our primary HIV data are drawn from a serial dilution
experiment using plasma samples coming from two HIV-
positive subjects: P1, reported viral load (rVL) 3.12 x 10°
copies/ml; and P2, rVL 1.78 x 10° copies/ml. (We make
a distinction between reported viral load and true pVL to
emphasize the error occurring in the viral load assay.) For
each, 60 pl of eluent is produced from 0.5ml of plasma.
Each plasma extract is serially diluted so that extracts at full
concentration, 10-fold dilution, and 100-fold dilution were
considered.

Each of the 2 x 3 = 6 resulting subject-dilution com-
binations is amplified starting with 5ul of extract, target-
ing codons 96-194 of the HIV reverse transcriptase (HIV-
specific primer sequence TTTGYTCTATGCTGCCCTAT,;
note that the degenerate nucleotide Y is not used as part of a
pID, but because both C and T frequently appear in that po-
sition of HIV sequences), using different degenerate primers
representing different pID designs. The pID designs consid-
ered are: N9 (4° = 262144 possible pIDs); NNDNNHNNV
(4% x 33 = 110592 possible pIDs) and NBDHVBDHYV (4 x
38 = 26 244 possible pIDs).

Three replicates are performed for each of the 2 x 3 x
3 = 18 subject-dilution-design combinations; we refer to
a subject-dilution-design-replicate combination as a batch.
We produce 2 x 3 x 3 x 3 = 54 batches as above. In addi-
tion, one replicate is produced for each subject at 10-fold di-
lution with a pID design of RYRYRYRYR (2° = 512 possi-
ble pIDs). In total, 56 batches are so produced, and of these
54 successfully produce amplicon pools, with two failing to
amplify. We will also refer to these amplicon pools simply
as batches. Details of the wet bench methodology, includ-
ing primers and thermal cycler settings, are included in the
Supplemental Materials, Section S1.

Every batch that successfully produces an amplicon pool
is sequenced on a Roche /454 GS-FLX pyrosequencing plat-
form in the ‘reverse’ direction (from the 3’ end to the 5
end). The sequencing plate is divided into eight sequenc-
ing regions, and batches are distributed among the first
seven of them. To distinguish between batches run on the
same region, a different sequencing barcode is attached to
the cDNA molecules produced at the reverse transcription
step for each batch, allowing reads to be traced back to
their source batches. There are 12 such barcodes (labelled A
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through L), allowing 12 batches to be run on the same se-
quencing region. After sequencing, the data are processed
using the standard 454 quality filters (9) and Python scripts
that collect and collate information about the pIDs; the pro-
cedure is detailed in Section S3.1.1 of the Supplementary
Materials.

We supplement this experiment with HCV viral sequenc-
ing data examining the NS5B gene taken by the 454 plat-
form. These data are produced from serum samples serially
obtained from three HCV-positive subjects, which we refer
to as HCV1 (7 time points), HCV2 (14 time points) and
HCV3 (11 time points). After extraction, reverse transcrip-
tion and PCR amplification is performed on an amount of
extract intended to contain 10 000 RNA molecules. The
pID design N9 is used in all cases. The resulting data is
then processed through a different processing pipeline, de-
veloped in-house. The pipeline used for our HIV experiment
is built solely for that experiment, and would require modi-
fication to work for the purposes of the larger HCV exper-
iment our data are drawn from. The pipeline used for the
HCYV data is newer and more general, but its raw results
appear similar to those of the original pipeline (see Section
S3.1.1 of the Supplemental Materials). See Sections S1 and
S3.1.2 of the Supplementary Materials for further details
on the experiment and the pipeline. For this experiment, we
use the term ‘batch’ to refer to a specific subject and time
point, and the amplicon pool coming from the correspond-
ing sample; there are 32 batches in total.

To evaluate the relationship between the number of RNA
molecules observed and the dilution of the batches, we turn
to a statistical model (described in Section S3.2 of the Sup-
plementary Materials), validating the model by comparing
its predictions with both our HIV data and our HCV data.
Note that our model only produces loose confidence inter-
vals, and as such we do not claim our validations against ex-
perimental data to be particularly strong evidence in favour
of our model. Nonetheless they provide a simple guide to
suggest how our model performs.

Biases at the microscopic level

We define the read depth ‘success’ of a pID in a batch to be
its read depth divided by the total number of reads produced
from the batch it belonged to. We examine each pID se-
quenced to see if its success depends significantly on several
intrinsic factors (including the homopolymer score, which
summarizes the extent of mononucleotide repeats present in
the pID) and extrinsic factors, described in Section S4.1 of
the Supplemental Materials. Using these explanatory vari-
ables, we fit a generalized linear model using a gamma distri-
bution with inverse link function to our HIV data. We also
perform this regression with our HCV data excluding the
extrinsic factors, which are not applicable due to the differ-
ences in experimental conditions and processing pipelines.
Additionally, we analyse the susceptibility of different
pIDs to be affected by indel error. An observed pID is con-
sidered to have an indel error if it is of length 8 or 10 and can
be ‘corrected’ by a single insertion or deletion, respectively,
to another observed plID of length 9. We perform a logistic
regression on the probability that a pID is sequenced with
an indel error using the same intrinsic and extrinsic explana-
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tory factors as our regression on pID success. We restrict
our data to pIDs that were observed more than once, be-
cause our definition of an indel error does not include pIDs
exhibiting indel error that only appear once; they must be
observed at least one time in their proper length 9 form, and
at least one other time in an erroneous length 8 or 10 form.
This analysis is only applicable to our HIV data; we can-
not directly perform this analysis on our HCV data as the
pipeline used does not perform this correction.

Biases at the macroscopic level

We evaluated the impact of macroscopic factors on the HIV
experiments where these factors were varied. Restricting
to one of P1 and P2 at a time, we consider all of the se-
quenced batches, rejecting those that produced fewer than
500 reads (assuming such low-depth batches are indicative
of a systematic problem at some point in the amplification
and/or sequencing). Our data collection scheme uses the
pIDs to correct for oversampling, taking the consensus of
each pID’s associated reads as the sequence of its corre-
sponding RNA molecule, but we do not discard the sin-
gleton and doubleton reads. However, we do discard data
coming from pIDs whose consensus sequence contained a
mixture.

Focusing on a 100 bp portion of RT, for each subject we
identify all variants observed in any batch coming from that
subject, across all experimental conditions. For the variants
occurring at higher than 2% prevalence in total, we track
their prevalence within each batch to see if the pID design
used or dilution of the batch have any biasing effects. There
were six such variants in subject P1 and three in subject P2.

Since a visual inspection of these prevalences may not re-
veal any associations to the naked eye, we obtain a quan-
titative interpretation of these associations by performing
a multinomial logistic regression on the probabilities of any
given read coming from a P1 batch belonging to one of these
six top P1 variants (and implicitly the probability of it be-
longing to any other variant outside these six), and similarly
for the three top P2 variants. The explanatory factors are the
pID design used and the dilution of the batch.

Using the same data, we also vary the error correction
method used to examine whether sequence diversity was
affected. We consider two facets of the error correction
method: one, which pIDs are retained and which are re-
jected based on read depth (we call this the keep scheme);
and two, how mixtures in the resulting consensus sequence
are handled (we call this the mixture resolution scheme). The
keep schemes we consider are: not rejecting any plDs; re-
jecting singletons and rejecting singletons and doubletons.
The mixture resolution schemes we consider are: rejecting
pIDs whose consensus sequence contain any mixtures (we
call this censoring); and counting any such pIDs fraction-
ally towards each of the consensus sequence’s possible res-
olutions equally (we call this equal weighting). For example,
under this scheme the sequence AARY counts as 1/4 of a
read towards all of AAAC, AAAT, AAGC and AAGT.

As our baseline, we use a keep scheme that does not
reject any pIlDs and censored mixtures. We compare this
baseline against the other two keep schemes where single-
tons are rejected and where both singletons and doubletons
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are rejected, still censoring. Then, we compare the base-
line against an error correction method using the same keep
scheme (keeping all pIDs) but using an equal weighting mix-
ture resolution scheme instead. We perform two multino-
mial regressions on the probabilities of a read belonging to
any of the aforementioned top six P1 variants using first the
keep scheme, and then the mixture resolution scheme, as the
explanatory variable, and similarly for the top three P2 vari-
ants.

The HCV data do not lend itself to this analysis. All
samples come from different virus populations—even the
samples coming from the same subject come from different
times, so that the virus population will have evolved between
sampling times—so variants should not necessarily be ex-
pected to appear across samples in similar prevalences.

RESULTS
Perfect and 95%-good labelling

Recall that using pIDs to label RNA molecules in an NGS
experiment should enable one to enumerate the number
of RNA molecules represented within the resulting reads;
however, if different RNA molecules receive the same labels,
then this ability is reduced.

Using Equation (1) to compute the number of pIDs re-
quired to achieve a high probability (0.9) of perfect labelling
for selected RNA molecule count values (see Section S2.1,
and particularly Table S5, of the Supplementary Materi-
als) shows that even for low-to-moderate reported RNA
molecule counts, the number of pIDs required to assure per-
fect labelling may be prohibitively high. For example, the
design N15 admits 1 073 741 824 possible pIDs; this is al-
ready a long design, and yet this would still be insufficient
to handle amplicon pools with a reported RNA molecule
count of 10 000 with an acceptable probability of perfect la-
belling. Let P4 denote the probability of event A; indeed,
Equation (1) may be approximated (10) as

2
P{n RNA molecules are perfectly labelled} ~ exp(— 2nTV> ,
so that if a 0.9 probability of perfectly labelling » RNA
molecules is desired, the number of pIDs required to achieve
it is

N N~ T ST Ao
210g(0.9)

i.e. it grows roughly quadratically in 7.

Figure 1 illustrates the predicted number of pIDs that
must be admitted by the pID design to ensure a 90%
chance of achieving: perfect labelling, in which every RNA
molecule receives its own pID; or 95%-good labelling. The
shaded diamonds depict the numbers required for other lev-
els of good labelling that we were able to compute. The
above approximation to the number required for perfect la-
belling is drawn in a dotted line. In ‘deep sequencing’ ap-
plications of NGS that focus on the detection of rare vari-
ants, the number of RNA molecules is likely to exceed 10°;
lower counts would diminish the need for NGS. At such
numbers, one would require about 4.74 x 10° pIDs to ob-
tain a 90% chance of perfect labelling. A pID design would
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Figure 1. A log-log plot summarizing our labelling findings. The points
marked by diamonds are the points we found by exact calculations for la-
belling better than 95% good.

require at least 12 fully degenerate nucleotides to yield an
adequate number of pIDs (Supplemental Materials, Figure
S2). In contrast, a much lower number of pIDs (about 2.48
x 10%) would be required to have a 90% chance of attaining
‘97.5%-good’ (better than 95%-good) labelling of 10° RNA
molecules (Figure 1). Details of our calculations and tables
containing detailed results are provided in Section S2.4 of
the Supplemental Materials.

Shallow read depths

To assess the suitability of the statistical model we devised
for the read depths of observed RNA molecules, we applied
it to the data from our serial dilution experiment target-
ing HIV reverse transcriptase. We found that the theoret-
ical predictions made by the model appeared to at least fol-
low the shape of the true observed data for the undiluted
batches, although it performed progressively worse as the
dilution factor increased; details of this validation may be
found in Section S3.3 of the Supplementary Materials. We
also applied the model to the HCV data; this, too, yielded
mixed results (see Section S3.3 of the Supplementary Mate-
rials for details). Its performance on undiluted batches sug-
gests that this model captures at least some of the true be-
haviour, so we proceed to use this model to make predictions
on the number of RNA molecules that will be lost during
error correction.

Figure 2 shows the theoretical expected proportion of se-
quenced reads belonging to singleton or doubleton RNA
molecules. Every singleton rejected translates to one read re-
jected, and every doubleton rejected translates to two reads
rejected. It is apparent from this graph that even at mod-
erate RNA molecule counts and numbers of reads, a sub-
stantial portion of sequenced reads belong to rejected RNA
molecules. Large numbers of reads are necessary to avoid
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Figure 2. Theoretical expected proportion of reads discarded by rejecting
singletons and doubletons using our model as described in Section S3.2
of the Supplemental Materials. The lines represent different values for the
RNA molecule count m, and the x-axis represents the number of reads
produced N. More RNA molecules mean more rejected reads for a fixed
number of reads; more reads means fewer rejected reads for a fixed number
of RNA molecules. The approximate parameters of (6) are marked with a
shaded diamond; approximate parameters when using 12-way multiplex-
ing of a 454 sequencing plate are marked with a shaded box.

this. The approximate parameters used in (6) (~2000 RNA
molecules and >20 000 reads) are marked with a grey di-
amond; our model predicted that under their experimen-
tal conditions, almost none of their data would be rejected.
(Supplementary Figure S3A of (6) indicates that roughly
30.5% of their observed pIDs were singletons and 7.5%
were doubletons, indicating that across their total 72 162
reads, roughly 3% of their reads belonged to rejected RNA
molecules. One possible cause for this discrepancy is se-
quencing error in the pID, causing two identical pIDs to be
read as distinct.) In contrast, parameters approximating our
current experimental results (~2500 RNA molecules and
3000 reads) are marked with a grey box; in this regime more
than half of the reads are expected to be discarded.

Figure 3 shows the expected proportion of reads belong-
ing to k-RNAs coming from an amplicon pool producing
20 000 total reads, and the same for an amplicon pool pro-
ducing 3000 total reads. The lines represent different RNA
molecule counts m for the amplicon pool. As the RNA
molecule count increases, reads tend to belong to pIDs with
fewer representatives, eventually getting close to 0 for k > 1
while the number of singletons increases. From this we see
that many more RNA molecules are expected to be retained
after discarding singletons and doubletons when there are
an ample number of sampled reads.

Table S11 of the Supplementary Materials shows the per-
centage of reads belonging to singleton and doubleton pIDs
across all sequenced batches, and demonstrates how many
reads may be rejected due to error correction. Note that
these numbers are totalled across all sequenced batches, so
they should not be directly compared to the results in Figure
2.

PAGE 6 OF 10
A 20000 reads
2
- -5~ RNA molecule count = 500 T
g @ | —©—- RNA molecule count = 1000
o
8§ -~ RNA molecule count = 2000
- © | ——  RNA molecule count = 10000
5 o AN
C
£ < |
5 o
PR
S o |
25 +
3 11+
read depth of RNA molecule
B 3000 reads
Q]

proportion of reads
00 02 04 06 08

read depth of RNA molecule

Figure 3. Expected proportion of reads belonging to k&-RNAs for k =
3,4,...,10, 11 + for amplicon pools with the specified RNA molecule
count where sequencing produced: (A) 20 000 total reads; and (B) 3000
total reads. Calculations were again done using our model as described in
Supplementary Section S3.2. (A) reflects the conditions of (6); (B) roughly
reflects the number of reads one might obtain from a single amplicon pool
when using 12 sequencing barcodes to multiplex the sequencing plate on
the 454 platform.

Effects of pIDs on amplification and sequencing: microscopic

Amplification and sequencing success: Results from our gen-
eralized linear model analysis of amplification and sequenc-
ing success for the HIV experiment are summarized in Ta-
ble S13 of the Supplementary Materials. It appears that, of
the intrinsic factors we considered, none had significant ef-
fects. Success in amplifying and producing reads was much
more affected by the extrinsic factors considered, indicating
that bigger discrepancies come from differences in the RT,
amplification and sequencing steps. This is not surprising
in view of our analyses above; pID read depth is expected
to increase as the number of reads from the batch increases
and as the RNA molecule count decreases, and whether this
happens or not is decided mostly at the level of the extrinsic
factors (i.e. at the level of the batch and how it is processed).

In the HCV data we found that the base content of the
pID had significant effects, with each of the C-, G- and T-
content having significant associations with decreased suc-
cess (C-content, P < 0.0001; G-content, P < 0.0001; T-
content, P = 0.0061). See Table S16 of the Supplementary
Materials for details.
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Indel probability: The coefficients found in our logistic re-
gression are shown in Table S14 of the Supplementary Ma-
terials. (Recall that our method for identifying indels was
described in Section 2.)

First, we consider the intrinsic factors. We found that the
homopolymer score (recall the definition from Supplemen-
tary Section S4.1) had a small but significant association
with a higher rate of indel error (P < 0.0001): reads with
higher homopolymer scores were more likely to produce in-
del errors, consistent with the 454 platform’s known issues
with homopolymer sequencing. The number of G’s appear-
ing in the pID also appeared to have a small but border-
line significant effect, with error probability increasing as
the number of G’s increases (P = 0.052).

We next consider the extrinsic factors. The batch rVL
had a significant but small effect, with higher batch rVLs
significantly associated with a slightly higher error rate (P
= 0.043). The pID design used also appeared to be sig-
nificant, with the N9 and NBDHVBDHYV designs being
more indel-prone than the others (P < 0.0001). Only one
sequencing barcode had a significant effect (P = 0.0013),
with barcode F (sequence CGTGTCTCTA) associated with
a slightly higher error rate over the baseline (barcode A,
sequence ACGAGTGCGT). Certain plate regions also ap-
peared to have significant effects. Plate region 2 was asso-
ciated (P = 0.0034) with a higher probability of indel error
than the baseline (plate region 1), while regions 3, 4 and 5
were all associated (P < 0.0001) with lower probabilities of
indel errors than the baseline. Table S15 in the Supplemen-
tal Materials shows that region 2, in particular, exhibited a
lower average read quality score than the other regions save
for region 7, perhaps commensurate with its effect on error
probability. Note, though, that these extrinsic factors may
be confounded by uneven distribution of the other intrinsic
factors.

Effects of pIDs on amplification and sequencing: macroscopic

Figure 4 shows the prevalences of the six variants we tracked
for subject P1 across all undiluted batches. For reference,
the prevalences of the top two variants (35% and 16%, re-
spectively) are plotted as dashed lines. From this plot, no
biases were immediately visually evident. Similarly, no bi-
ases were visually evident for subject P2 (not shown). Our
multinomial logistic regression did indicate, however, some
significant factors. The only significant design-related effect
was on the most prevalent sequence, for which there was
a significant (P = 0.029) increase in relative log odds from
0.072 when design NBDHVBDHYV is used to 0.22 when de-
sign N9 was used. Dilution had a small but significant ef-
fect on the prevalences of two variants: for the second-most
prevalent, a 10-fold decrease in concentration decreased the
relative log odds by 0.095 (P = 0.041); and for the fifth-most
prevalent, a 10-fold decrease in concentration decreased the
relative log odds by 0.22 (P = 0.017). All coefficients of the
regression may be found in Table S17 of the Supplementary
Materials.

Using design N9 did disrupt the ordering of most to least
probable, causing the fourth- and fifth-most prevalent vari-
ants to swap (except when the dilution was 100-fold). Note,
though, that the effects of using design N9 on the fourth-
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Figure 4. The prevalences of the top six variants observed in subject P1
across undiluted batches. The pID design used is denoted along the x-axis.
For comparison, the overall prevalences of the top two variants are de-
noted with dashed lines.

and fifth-most prevalent variants were borderline signifi-
cant at best. In all other settings, the ordering of variants
by their probability did not change.

For P2, we performed the same fitting on the three most
prevalent variants, noting that after removing batches pro-
ducing too few reads the only batches that remained used ei-
ther pID design NBDHVBDHYV or NNNNNNNNN. The
design used had no significant effect on any of the three vari-
ants (variant 1, P = 0.37; variant 2, P = 0.39; variant 3, P
= 0.15), while dilution had a significant or borderline sig-
nificant but small effect (variant 1, P = 0.026; variant 2, P
= 0.051; variant 3, P = 0.015). None of these factors dis-
rupted the ordering of the variants. See Table S18 of the
Supplementary Materials for the regression coefficients.

Next we consider the effect of error correction methods.
Figure 5 shows the dependence of the prevalences of the top
six variants observed in subject P1 on the keep scheme and
the mixture resolution scheme employed. The keep scheme
used had a notable effect on the prevalences of variants 1
and 3 especially, while the mixture resolution scheme ap-
pears to have had little effect. The multinomial logistic re-
gressions supported this: changing the keep scheme from
retaining all pIDs to removing singletons had a significant
odds effect on the prevalences of several variants, includ-
ing variants 1 and 3 (variant 1, P < 0.0001; variant 2, P =
0.0033; variant 3, P = 0.0026; variant 4, P = 0.0056; vari-
ant 5, P = 0.13; variant 6, P = 0.015), while changing it to
removing singletons and doubletons had less significant ef-
fects, but still had a significant effect on variants 1 and 3
(variant 1, P = 0.0035; variant 2, P = 0.13; variant 3, P =
0.0053; variant 4, P = 0.055; variant 5, P = 0.27; variant 6,
P = 0.068). Changing the keep scheme while holding fixed
a censoring mixture resolution scheme had a large effect
on the total number of RNA molecules observed: retaining
all pIDs, 10 555 RNA molecules were identified across all
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Figure S. Star plots displaying the prevalences of the top six variants observed in subject P1 by keep scheme and by mixture resolution scheme, respectively.
The distance along each line radiating from the centre represents the prevalence of each variant. In the former, a censoring mixture resolution scheme was

used for all settings; in the latter, all pIDs were retained for all settings.

P1 batches; rejecting singletons, the number was reduced to
1864; rejecting both singletons and doubletons further re-
duced the number to 950. Meanwhile, no significant effect
was observed in changing the mixture resolution scheme
from censoring to equal weighting (variant 1, P = 0.063;
variant 2, P =0.17; variant 3, P =0.18; variant 4, P = 0.26;
variant 5, P = 0.25; variant 6, P = 0.32). The mixture reso-
lution scheme had a much smaller effect on the total num-
ber of RNA molecules observed: from a baseline of 10 555
when censoring to 11 084 when equally weighting mixtures
(in both cases retaining all pIDs). See Supplementary Ta-
bles S19 and S20 for the regression coefficients. Also, see

Section S5 of the Supplementary Materials along with the
associated figures and tables for the analogous results for
the top three variants of P2.

DISCUSSION

Our sections on labelling and shallow read depths illus-
trate two issues that must be considered when using pIDs
in NGS:

(1) having insufficiently many possible pIDs can lead to
collisions in labelling that detract from the usefulness
of the method; and
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(i1) a low read count relative to the RNA molecule count
interferes with the ability to use pID-based consensus
error correction.

In (6), the first issue was likely averted because they aimed
to start their amplification reaction with 10 000 virus par-
ticles. If roughly 20% of these virus particles were eventu-
ally represented in their reads (based on the lab efficiency
factors we estimated to describe the proportion of RNA
molecules that successfully amplify—see Section S3.3 of the
Supplemental Materials), then the resulting RNA molecule
count was likely on the order of 2000, which Figure S2 in
the Supplementary Materials shows can be well covered by
the 65 536 possible pIDs admitted by their pID design (N8).
Our calculations indicate that care must be taken in the pID
design to admit enough possible pIDs. For example, in Sec-
tion S3.3 of the Supplemental Materials, we saw that la-
belling collisions were possibly a factor in observing fewer
singletons and doubletons than theoretically expected be-
cause multiple distinct RNA molecules might have been at-
tached to the same pID. If this happens, then the ability
to effectively track distinct RNA molecules may be com-
promised. The problem will also occur when using samples
with very high viral loads. Sample rVLs may exceed 10° HIV
RNA copies/ml; the procedure followed in this study might
yield amplicon pools with a RNA molecule count of up-
wards of 30 000. At that point, the length of the pID de-
sign required to admit a sufficiently high number of pIDs
to avoid collisions may become prohibitive. One possible
workaround with such samples is to dilute them down so
that the RNA molecule count does not exceed the design’s
‘capacity’ (this is done in (6)); if one needs to observe more
RNA molecules than this diluted sample produces after se-
quencing, then one can sequence several replicate batches.

Jabara et al avoided the second problem because up-
wards of 20 000 reads were generated for each amplicon
pool considered (6). However, Roche/454 sequencing runs
often use sequencing tags to allow several amplicon pools to
be run on the same plate (11-13), as our procedure did, with
the tradeoff that fewer reads can be generated per ampli-
con pool. Optimistically, when 12-way multiplexing is used
as in our HIV experimental procedure, ~2000-3000 reads
can be generated per amplicon pool; Figures S3 and S4 of
the Supplementary Materials show that the number can fre-
quently be significantly less than this. Under such condi-
tions, if the RNA molecule counts are high (for example, if
the source sample has a high viral load), discarding single-
tons and doubletons may lead to the rejection of the bulk of
the reads produced. This also affected our HCV data, where
despite higher numbers of reads per batch, rejecting single-
tons and doubletons still discarded a large proportion of
data (see Supplementary Figure S6), possibly due to unex-
pectedly high RNA molecule counts. This problem may be
mitigated by the use of a different NGS platform that gen-
erates much higher read counts than the 454, such as the
Illumina MiSeq.

Our results in ‘Effects of pIDs on Amplification and Se-
quencing: Microscopic’ indicate that the occurrence of ho-
mopolymers in pIDs did not have much bearing on their
success in achieving high read depths in amplification or se-
quencing; such success appeared to be largely influenced by
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extrinsic factors, such as the RT and amplification chem-
istry and the sequencing. (This is another place where an
NGS platform generating higher read counts than the 454
should help.) Nucleotide content did not have a significant
association with sequencing success in our HIV data, but
did in our HCV data. We did find that the occurrence of
homopolymers in pIDs had a small but significant effect on
indel probability, which is likely at least partly due to the
known problems of the 454 platform in handling homopoly-
mers; we also found the G content of the pID to have a small
but significant effect. This indel probability was also af-
fected by several extrinsic factors. Note that our method of
detecting indel errors did not attempt to identify pIDs with
more than one indel error, or with indel errors of apparent
length longer than one. Such pIDs would be more likely to
resolve to multiple proper pIDs, leading us to have less con-
fidence in our resolution. Indeed, these corrections already
make an arbitrary decision about which proper length pID
to resolve to when there are multiple possibilities, which can
cause the wrong pID to be recorded as having or not having
an indel error. Moreover, our method removed pIDs which
might otherwise be resolvable to a “proper’ length 9 pID but
for substitution errors. It also ignores the possibility of er-
rors being introduced before the sequencing stage, for ex-
ample, in reverse transcription or in amplification. Another
limitation is that pIDs of length 8 or 10 that result from an
indel error in sequencing a length 9 pID cannot be identified
if the proper length 9 pID is not sequenced. Particularly in
the cases with high RNA molecule counts, this could easily
be a factor because there is a good chance that the proper
pID does not produce any other reads. Also, it is worth not-
ing that using pIDs does not address indel errors that are
systematically mishandled by the data processing pipeline.
In the future it may be revealing to consider the effects of
other intrinsic factors, such as secondary structure and the
presence of hairpins, or primer dimers, as well as other ex-
trinsic factors.

We also find in ‘Effects of pIDs on Amplification and Se-
quencing: Macroscopic’ that the choice of pID design did
not appear to greatly bias to the data, nor did the dilution
of the batch. Our visual interpretation was supported by a
multinomial logistic regression on these factors. The error
correction scheme did, however, introduce slight but signif-
icant bias to the data, with different schemes for retaining
pIDs based on read depth having significant effects on the
prevalences of top variants observed for both HIV subjects.
Changing the keep scheme also greatly reduced the num-
ber of RNA molecules observed, which may partially ex-
plain the effects on sequence diversity. Meanwhile, chang-
ing the mixture resolution scheme appeared to have only in-
significant effects for subject P1, and had a small but signif-
icant effect for the top variant observed in subject P2. Note
that the variants we considered were identified after trim-
ming our reads to a 100 bp region using automated pair-
wise alignment. This was necessary to avoid regions of RT
which are highly susceptible to sequencing error, but may
have misidentified the desired portion of the sequence in
some reads.

We believe that using pIDs can be of great value in us-
ing NGS. The problems they solve—error correction of
noisy NGS data and quantification of the RNA molecules
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sequenced—are both important technical factors that must
be addressed if we want to collect the highest quality data
possible. Our findings are reminders that, as with any new
technology, care must be taken in the implementation of
pIDs. We have focused primarily on purely theoretical lim-
itations of the method in our sections on labelling and
shallow read depths; these are hard limitations imposed by
the randomness in the procedure that cannot be worked
around, and so we must be aware of them. Other practical
problems and deviations from the assumptions we made are
bound to occur as sequencing technology moves forward,
and those issues must be found in turn; we are only scratch-
ing the surface in our examination of the effects of pIDs on
sequencing and analysis.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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