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Background: Long non-coding RNAs (lncRNAs) play an essential role in the

occurrence and prognosis of tumors, and it has great potential as biomarkers of

tumors. However, the roles of Necroptosis-related lncRNA (NRLs) in Head and

neck squamous cell carcinoma (HNSCC) remain elusive.

Methods: We comprehensively analyzed the gene expression and clinical

information of 964 HNSCC in four cohorts. LASSO regression was utilized to

construct a necroptosis-related lncRNA prognosis signature (NLPS). We used

univariate and multivariate regression to assess the independent prognostic

value of NLPS. Based on the optimal cut-off, patients were divided into high-

and low-risk groups. In addition, the immune profile, multi-omics alteration,

and pharmacological landscape of NLPS were further revealed.

Results: A total of 21 NRLs associated with survival were identified by univariate

regression in four cohorts. We constructed and validated a best prognostic

model (NLPS). Compared to the low-risk group, patients in the high group

demonstrated a more dismal prognosis. After adjusting for clinical features by

multivariate analysis, NLPS still displayed independent prognostic value.

Additionally, further analysis found that patients in the low-risk group

showed more abundant immune cell infiltration and immunotherapy

response. In contrast, patients in the high-risk group were more sensitive to

multiple chemotherapeutic agents.

Conclusion: As a promising tool, the establishment of NLPS provides guidance

and assistance in the clinical management and personalized treatment of

HNSCC.
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Introduction

Head and neck squamous cell carcinoma (HNSCC) accounts

for the sixth most common cancer globally, with 890,000 new

cases per year and 450,000 deaths per year (Chow, 2020). Despite

the continuous progress in the treatment of HNSCC (including

surgery, immunotherapy, radiotherapy, and chemotherapy,

et al.), its morbidity and mortality are still gradually

increasing, with the gross 5-years survival rate of only 60%

(Torre et al., 2015). In addition, because of the high risk of

recurrence and metastasis, the survival rate of advanced HNSCC

patients was only 35% (Chauhan et al., 2015). In recent years, the

tumor node metastasis (TNM) staging in the American Joint

Commission on Cancer (AJCC) grading system has become an

important basis for the clinical management and treatment of

HNSCC patients (Amin et al., 2017). However, this approach has

several problems, such as different clinical behaviors between

patients with the same TNM stage, different treatment responses,

and substantial variability in clinical outcomes (Kim et al., 2016;

Carnielli et al., 2018). Thus, clinicians are unable to provide

treatment based on clinicopathological characteristics alone. To

better stratify patients and identify high-risk patients, developing

a robust signature for predicting HNSCC patient outcomes is

necessary.

As a programmed form of cell death, necroptosis triggers an

inflammatory response by increasing the permeability of the cell

surface, leading to the release of cellular contents (Beretta and

Zaffaroni, 2022). Due to the strong proinflammatory features,

necroptosis plays an important role in inflammatory diseases and

viral defense processes, including viral myocarditis, and

Alzheimer’s disease (Zhao et al., 2022; Zhou et al., 2022).

Recently, the researchers found that necroptosis inhibited

tumor progression and metastasis by regulating programmed

tumor cell death in various solid tumors (Beretta and Zaffaroni,

2022). Necroptosis has been used as a novel biomarker to guide

the treatment of cancer patients in clinical practice (Chen et al.,

2022; Luo et al., 2022; Zhan et al., 2022). For example, Luo et al.

have precisely predicted the prognosis and treatment benefit of

colorectal cancer patients by developing necrosis-related

molecular characteristics (Chen et al., 2022). Zhang et al.

found that necrosis-related genes affect the immune status

and overall survival of breast cancer patients (Zhang et al.,

2022). However, research correlating necrotic genes with

patient outcomes in head and neck tumors is still lacking.

Long non-coding RNA (LncRNA) is a type of non-coding

RNA molecules and has more than 200 nucleotides. Despite the

limited coding capacity of lncRNAs, it still occupies an essential

role in regulating cancer cell behavior (differentiation, migration,

and apoptosis) and cancer progression (Huang et al., 2017). For

instance, the lncRNA molecule HOTTIP inhibited the

proliferation of HNSCC cells by up-regulating the TLR5/NF-

κB pathway (Jiang H. et al., 2022). Additionally, the interaction of

lnc-POP1-1 withMCM5 promotes the resistance of HNSCC cells

to cisplatin (Jiang Y. et al., 2022). Therefore, previous studies

have shown that lncRNAs play an important role in HNSCC

(Jiang H. et al., 2022; Jiang Y. et al., 2022). However, necrosis-

related lncRNAs are lacking to be studied in HCSSS, and the

molecular mechanisms by which they affect tumors need to be

further explored.

In our study, we comprehensively analyzed gene expression

and clinical information of HNSCC in the TCGA database and

constructed a necroptosis-driven lncRNA prognosis signature

(NLPS). Subsequently, the prognosis value of NLPS was further

evaluated in three published cohorts. According to the NLPS

score, patients were divided into different risk groups and

exhibited significantly different survival characteristics.

Overall, the establishment of NLPS promotes the development

of stratified management and personalized treatment of HNSCC

patients in clinical practices.

Methods

Data collection and processing

The gene expression and clinical information of 964 HNSCC

samples were downloaded from the Cancer Genome Atlas

(TCGA, https://portal.gdc.cancer.gov/) and Gene Expression

Omnibus (GEO, http://www.ncbi.nlm.nih.gov/geo/) databases,

which were stored in the TCGA-HNSC (n = 494), GSE41613 (n =

97), GSE42743 (n = 103), and GSE65858 (n = 270) datasets. The

inclusion and exclusion criteria of samples were as followings: 1)

primary HNSCC; 2) Completed overall survival (OS)

information; 3) Preoperative chemotherapy or

chemoradiotherapy were not utilized to patients. Additionally,

we obtained the HumanMethylation450 array and somatic

mutation data from the TCGA GDC website (https://portal.

gdc.cancer.gov/). In FireBrowse website (http://firebrowse.org/

), copy number variation (CNV) data were retrieved and

processed by the GISTIC2.0 algorithm (Reich et al., 2006). To

further explore the treatment benefit of HNSCC, the drug

sensitivity information and gene expression profile were

obtained from PRISM (https://www.theprismlab.org/), CTRP

(https://portals.broadinstitute.org/ctrp.v2.1/), and CCEL

(https://sites.broadinstitute.org/ccle/) datasets. The baseline

characteristics of patients are summarized in Supplementary

Table S1.

Necroptosis gene set

Based on the MSigDB website (https://www.gsea-msigdb.

org/gsea/index.jsp) and previous literatures in the PubMed

database (Petanidis et al., 2020; Wu et al., 2022),

117 Necroptosis-related genes were selected. The gene set was

displayed in Supplementary Table S2.
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Necroptosis-related lncRNA

Refer to previous studies of Liu et al. (Liu et al., 2021a), we

constructed a pipeline to identify the Necroptosis-related

lncRNAs (NRLs). The details of the pipeline were as

followings: 1) The correlation of necrotic-related genes with

each lncRNA was calculated. The necrotic-related genes were

ranked in descending order based on the correlation values. 2)

The ranked gene list was subjected to enrichment analysis by the

‘GSEA’ package, and the Necroptosis enrichment score of each

lncRNA was calculated. 3) The lncRNAs were identified as NRLs

according to the following two criteria: the false discovery rate

(FDR) < 0.05 and necroptosis enrichment score (NES) > 0.995.

Univariate cox regression

In order to screen NRLs with prognosis value, univariate cox

regression was applied. Due to differences in sequencing

platforms and centers, the same gene can exhibit opposite

prognostic significance in different cohorts. Although they

showed strong prognostic significance in single cohort, they

cannot be used as a biomarker for judging prognosis. Based

on the above reason, we screened genes whose absolute hazard

ratio (HR) > 1 in more than 50% of the cohort and maintained

the same orientation as stable prognostic genes.

LASSO regression

With the development of high-throughput sequencing

technology, researchers have developed a variety of powerful

machine learning algorithms, which were widely used in the

exploration process of bioinformatics. In the process of linear

regression analysis, the correlation between variables causes

multicollinearity, which will distort the results of the model. In

order to screen variables more strictly and further reduce or

eliminate multicollinearity, the LASSO regression algorithm was

utilized, which removes confounding variables by penalizing the

coefficients of variables (Lockhart et al., 2014). To construct a

Necroptosis-driven lncRNA prognosis signature (NLPS), ten cross-

validations were performed in the ‘glmnet’ R package and the lambda

value was selected when the partial likelihood deviation reached a

minimum. HNSCC patients were divided into high- and low-risk

groups according to the optimal cut-off point. Finally, we successfully

constructed the NLPS model in the TCGA-HNSC cohort and

validated it in the GSE41613, GSE42743, and GSE65858 cohorts.

Evaluation of the NLPS

We explored the prognosis values of the high- and low-risk

groups through the Kaplan-Meier analysis. Receiver operating

characteristic (ROC), and calibration curves were utilized to

assess the accuracy of NLPS, which were calculated by the

‘timeROC’ and ‘rms’ R packages, respectively. In addition, we

explored the independent prognosis value of NPLS after

adjusting for variables (age, gender, and AJCC et al.) by

univariate and multivariate logistic regression analysis, which

were presented by forest plot.

Gene set enrichment analysis and gene set
variation analysis

The prognostic stratification of patients in the clinic was

often due to the differences in underlying molecular mechanisms,

and it is necessary to explore the enriched functions and

pathways of gene profiles in the two subgroups. Since gene set

enrichment analysis (GSEA) was sensitive to biological processes,

it was used to explore the enrichment state of genes clustered in

different pathways (Hung et al., 2012). In order to prepare the

gene list, we performed differential analysis (count file form

TCGA-HNSC cohort) of patients in the high- and low-risk

groups by the ‘DESeq2’ R package and ranked all genes in

descending order according to log2FoldChange (log2FC).

Subsequently, the ranked gene list was performed to GO and

KEGG (Molecular Signatures Database, version: c5. go.v7.5.1.

symbols.gmt and c2. cp.kegg.v7.5. symbols.gmt) enrichment

analyses in the ‘enrichplot’ R package. In addition, we also

used gene set variation analysis (GSVA) in the ‘GSVA’ R

package to further explore the significantly changed functions

and pathways between the two groups patients.

Evaluation of immune infiltration and
immunotherapy response

Immunotherapy as a novel treatment modality was widely

used in multiple solid tumors in clinical practice (Ma et al., 2020).

Therefore, ssGSEA was utilized to calculate the abundance of

28 immune cells infiltrating of the two groups patients

(Subramanian et al., 2005). Likewise, we also compared the

expression of immune co-stimulatory and co-inhibitory

molecules between patients in the two subgroups.

Immunophenoscore (IPS) is a comprehensive score to

determine immunogenicity, including 27 immune molecules

from B7-CD28 superfamily, TNF superfamily, and other

molecules (CD27, CD28 et al.) (Charoentong et al., 2017).

The ‘deconvo_tme’ function in the ‘IOBR’ R package was used

to calculate the IPS score of each HNSCC patient (Zeng et al.,

2021). The abundance of immune cells partly reflects the effect of

patients receiving immunotherapy, so we further analyzed the

response rate of patients in different groups to multiple

immunotherapies. As an unsupervised clustering approach

algorithm, the Subclass Mapping (SubMap, https://cloud.
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genepattern.org/) revealed common subtypes between

independent cohorts (Liu et al., 2021b). In our study, we

assessed the response to CTLA-4 and PD-1 therapy by

calculating the similarity of patients in the high- and low-risk

groups to melanoma patients receiving immunotherapy. In

addition, tumor immune dysfunction and exclusion (TIDE,

http://tide.dfci.harvard.edu/) was utilized to predict the

response to immune checkpoint inhibitors (ICIs) of each patient.

Mapping of mutation landscapes

The mutational signature of each patient was extracted by

the ‘maftools’ R package, and the tumor mutational burden

(TMB) was calculated. TMB was defined as the number of

somatic, indel, coding, and base substitution mutations per

Mb of genome examined (Chalmers et al., 2017), which

includes the single nucleotide variations (SNV) and

insertion deletion (INDEL). We defined the top 30 of the

genes with mutation frequency as high-frequency mutated

genes (FMGs) by calculating the mutation frequency of each

gene. We mapped the mutational landscape of FMGs and

calculated their differences in mutation frequency between

high- and low-risk groups. As a previous study (Allgauer et al.,

2018), TMB will affect the abundance of neoantigens to some

extent. Therefore, we compared the difference in neoantigen

load between the two groups, which was downloaded from the

TCGA website. In order to further explore the prognosis value

of FMGs, univariate and multivariate logistic regression

analyses were applied to calculate the odds ratio (OR)

values of each FMG.

Copy number variation and methylation-
driven genes

In order to explore the copy number variation (CNV) of

patients in the two groups, the GISTIC 2.0 algorithm was used.

Likewise, the prognostic value of the ten chromosomal segments

with the highest CNV was explored by univariate and

multivariate analysis.

Based on previous research (Jung et al., 2019), we identified

methylation-driven genes (MDGs) in the high- and low-risk

groups by the ‘MethylMix’ R package. Finally, we also compared

the differences of the methylation abundances, expression levels,

and methylation frequencies between the two groups.

Explore potential chemotherapeutic
agents

We collected the gene expression and drug sensitivity

information from the CCLE, CTRP, and PRISM websites.

Based on a previous study pipeline (Yang et al., 2021), cell

lines were divided into high- and low-risk groups by

calculating NLPS scores. Subsequently, we determined

potential therapeutic drugs for patients in different risk

groups by comparing the area under the ROC curve (AUC)

differences of drugs between high- and low-risk cell lines.

Lower AUC indicates higher sensitivity. To evaluate the

accuracy of analysis process, we calculated the relationship

between cisplatin sensitivity and the high and low groups of

TAP1, ATM, and LCN2. Based on the previous researches

(Matassa et al., 2016; Zhang et al., 2017; Huang et al., 2019),

low expression of ATM et al. would increase the sensitivity of

tumor cells to cisplatin.

Statistical analysis

All data processing, calculation, analysis, and

visualization were performed in the R software (version

4.1.2). The comparisons between continuous variables

were calculated by the T-test and Wilcoxon rank-sum test.

The chi-square test was utilized to make comparisons

between categorical variables. KM curve with the log-rank

test was utilized to survival analysis. The FDR value was

calculated by the Benjamin–Hochberg (BH) method. p <
0.05 was regarded as statistically significant. Statistical tests

were all two sides.

Results

Construction of the NLPS model

The analysis pipeline of our study was displayed in Figure 1.

Based on the mRNA and lncRNA gene expression, a total of

184 necrose-related lncRNAs (NRLs) were identified. The

prognosis values of NRLs were analyzed by univariate COX

regression.

We found that only 21 NRLs have independent

prognostic significance in over 50% of cohorts

(Figure 2A). Subsequently, the expression information of

the 21 stable prognosis genes was analyzed using LASSO

regression algorithm in the TCGA-HNSC cohort (Figures

2B,C). We successfully constructed the optimal model when

the lambda was minimum, including 12 NRLs

(Supplementary Table S2). Through the NLPS model we

calculate the risk score for each patient and divide them

into high- (n = 142) and low-risk (n = 352) subgroups

according to the optimal cut-off point. Compared with the

low-risk group, high-risk patients showed more dismal

prognosis in the TCGA-HNSC cohort (Figure 2D).

Notably, our findings were similarly demonstrated in three

validation cohorts (Figures 2E–G).
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Highly prognosis value of NLPS

To assess the robustness of the NLPS model, we calculated the

area under the ROC curve (AUC)withOS at 1/3/5 years, whichwere

respectively 0.681/0.716/0.698 (TCGA-HNSC, Figure 3A), 0.733/

0.749/0.745 (GSE41613, Figure 3B), 0.728/0.685/0.654 (GSE65858,

Figure 3C), and 0.650/0.681/0.655 (GSE42743, Supplementary

Figure S1). Likewise, the calibration curve further proved the

high accuracy of the NLPS model in the four cohorts (Figures

3D–F and Supplementary Figure S2). In addition, NLPS had higher

C-index in all cohort, and respectively were 0.667 (95% confidence

interval (CI): 0.629–0.705, TCGA-HNSC), 0.695 (95% CI:

0.621–0.770, GSE41613), 0.651 (95% CI: 0.564–0.738, GSE42743),

and 0.653 (95% CI: 0.586–0.721, GSE65858). As we know, clinical

characteristics occupy an important role in the clinical management

of patients, and whether the model can be independent of clinical

characteristics is the key to evaluating its efficacy. As illustrated in

(Figures 3G–J), multivariate regression analysis indicated that NLPS

remained an independent prognostic factor after adjusting for

clinical characteristics (AJCC stage, T, N, M, HPV, smoke et al.)

Abundance of immune infiltrates was
higher in the low-risk group patients

By the ssGSEA method, we calculated the infiltration

abundance of 28 immune cells. As detailed in Figure 4A,

patients in the low-risk groups exhibited more abundant

immune infiltration than the high-risk group, especially

activated CD4 T cell, activated CD8 T cell, central

memory CD8 T cell, and effector memory CD8 T cell. To

more accurately assess the abundance of immune molecules,

FIGURE 1
Flowchart of analysis procedure.
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FIGURE 2
Integrative construction of a robust signature. (A) Discovery of 21 consensus prognosis genes from four independent multi-center cohorts.
(B,C) Least absolute shrinkage and selection operator (LASSO) logistic regression algorithm to screen of gene associated with prognostic. (D–G)
Kaplan–Meier curves of OS according to the NLPS in TCGA-HNSC (D), GSE41613 (E), GSE42743 (F), GSE65858 (G).
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we further compared the expression abundance of immune

co-stimulatory and immune co-inhibitory molecules

between the two groups patients. As expected, patients in

the low-risk group exhibited higher immune co-stimulatory

molecules (CD226, CD27, CD28, TNFSF8, SLAMF1 et al.,

Figure 4B) and lower levels of immune co-inhibitory

molecules (BTLA, BTN2A2, CD274, VTCN1 et al.,

Figure 4C). In addition, the SubMap algorithm was

utilized to compare the response of immunotherapy

between the two groups, and the low-risk group patients

were more sensitive to PD-1 treatment than the high-risk

group (Figure 4D). TIDE and IPS analysis found that patients

in the low-risk group had higher response rates to ICIs and

IPS scores (Figures 5A,B), which further proved that the low-

risk group patients had more abundant immune infiltration

and could benefit more from immunotherapy.

FIGURE 3
The evaluation of NLPS. (A–C) Kaplan-Meier curves of OS between the two groups in TCGA-HNSC (A), GSE41613 (B), and GSE65858 (C). (D–F)
Calibration plots were used to compare the actual probabilities and the predicted probabilities of OS in the three cohorts. (G–J) Multivariate COX
regression analysis of the risk score.
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FIGURE 4
Immune infiltration analysis and prediction of immunotherapy response in the two groups. (A) The abundance of 28 immune cells between the
two groups. (B,C) Comparison of immune co-stimulatory (B) factor and immune co-inhibitory (C) between the two groups. (D) SubMap algorithm
evaluated the expression similarity between the two phenotypes and the patients with different immunotherapy responses. *p < 0.05, **p < 0.01,
***p < 0.001, ****p < 0.0001.
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Patients in the high-risk group had
stronger invasive characteristics

We explored significant differences in the GO terms and KEGG

pathways between the two groups by the GSEA algorithm. As

displayed in Figures 5D,E, patients in the high-risk group were

significantly enriched in invasive- and developmental-related

pathways, such as cartilage development, muscle cell

differentiation, regulation of cartilage development, basal cell

carcinoma, calcium signaling pathway et al. In contrast, patients

FIGURE 5
Exploring the potential mechanisms of NLPS. (A) TIDE was utilized to predict the response of immune checkpoint inhibitors in high- and low-
risk groups. (B) The difference of IPS score between the high- and low-risk. (C) GSVA enrichment analysis. (D–G) The top five GO terms and KEGG
pathways in the two groups. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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FIGURE 6
Genomic landscape of NLPS. (A,B)Mutational landscape (A) and frequency (B) of the top 30 FMGs between two groups. (C) The amount of TMB,
SNP, and INDEL between two groups. (D) The difference of NAL between the high- and low-risk. (E,F)Correlation between themutation status of top
30 FMGs and NLPS. *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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in the high-risk group were significantly enriched in repair- and

inflammatory-related pathways, such as IL-17 signaling pathway,

rheumatoid arthritis, recombinational repair, meiotic cell cycle

process et al. (Figures 5F,G). Notably, GSVA enrichment analysis

showed that patients in the two subgroups were significantly

enriched in different functions and pathways (Figure 5C). The

high-risk group patients were significantly enriched in metabolic-

and developmental-related pathways, such as xenobiotic

metabolism, oxidative phosphorylation, spermatogenesis, heme

metabolism et al. The high-risk group patients were significantly

enriched in inflammatory-related pathways, such as TGF-β
signaling, IL-2 STAT signaling, IL-6 JAK STAT signaling, mitotic

FIGURE 7
Copy number variation and methylation-driven genes. (A) Distributions of a fraction of genome alteration, gain and lost between two groups.
(B) Distributions of arm gain, arm loss, focal gain, and focal loss. (E,H) Correlation between gene expression and methylation of SVIP (E) and
PHYHD1 (H). (F,G) The differences of SVIP methylation (F) and mRNA expression (G). (I,J) The differences of SVIP methylation (I) and mRNA
expression (J). *p < 0.05, **p < 0.01, ***p < 0.001, ****p < 0.0001.
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spindle et al. Based on the above results, we found that theGSEA and

GSVA analyses exhibited the same trend.

Higher mutation frequencies exhibited in
the high-risk group

Initially, we calculated the mutation frequency of each

gene and defined the genes with the top 30 mutation

frequencies as high-frequency mutation genes (FMGs),

which was displayed in waterfall (Figure 6A). To further

analyze the mutation status of the two groups of patients,

we compared the mutation differences of FMGs between high-

and low-risk group patients. As showcased in Figure 6B,

patients in the low-risk group had higher mutation

frequencies than high-risk patients, especially TP53 and

FAT1. Subsequently, we compared the TMB of the two

groups by boxplots. Patients in the low-risk group had

higher TMB, either SNP or IMDEL (Figure 6C). TMB is

the key to tumor neoantigen production. Unsurprisingly,

patients in the low-risk group also had higher neoantigen

loads (Figure 6D). Additionally, we further explore the

prognostic value of the mutation status of FMGs. By

univariate and multivariate regression analysis, we found

that TP53 and FAT1 were independent prognostic factors

even after adjustment for common clinical variables

(Figures 6E,F).

Differences in copy number variation and
methylation-driven gene between the two
groups

We further explored the copy number variation (CNV)

and found that FGA, FGG, FGL, and arm loss in the high-risk

group were significantly higher (Figure 7A). Although there

was no significant difference in arm gain, focal gain, and focal

loss between the two groups, the high-risk group still showed a

higher trend (Figure 7B). Subsequently, we identified the top

10 chromosomal segments with the highest CNV and assessed

their prognostic value by univariate and multivariate

regression. As displayed in Figures 7C,D, the CNV status of

most chromosomal segments was risk factor, but only 9p21.3-

Del segments had independent prognostic significance. As one

of the most well-known epigenetic mechanisms in tumor

epigenetics, DNA methylation plays an important role in

the progression of various solid tumors. Therefore, we

further performed an association analysis of the

methylation profiles and gene expression profiles in

HNSCC patients. The methylation levels and transcriptome

levels of SVIY and PHYHD1 were significantly negatively

correlated, which were identified as MDGs (Figures 7E,H).

Notably, compared with patients in the low-risk group, the

methylation level (Figures 7F,I) and methylation frequency

(Supplementary Figure S3A,B) of MDGs in the high-risk

group were higher, while the transcriptome level was

significantly lower (Figures 7G,J).

High-risk patients more sensitive to
chemotherapy drugs

Previous studies have shown that low expression of LCN2,

ATM, and ATP1 increases the sensitivity of tumor cells to

cisplatin (Matassa et al., 2016; Zhang et al., 2017; Huang

et al., 2019). Based on the gene expression data and drug

susceptibility information of the cell lines, our analysis

reached the same conclusion, which further demonstrates the

accuracy of our analytical pipeline (Figures 8A–C). Subsequently,

seven drugs sensitive to high-risk group patients were identified

from the CTRP, including afatinib, dasatinib, fluvastain, gefitinib,

lovastatin, niclosamide, and ruxolitinib (Figures 8D,E). Likewise,

a total of 11 drugs sensitive to high-risk group patients were

identified from the PRISM database, such as XL-647,

alvespimycin, astenmizole, AVL-292 et al. (Figures 8F,G).

Discussion

Head and neck squamous cell carcinoma (HNSCC) has high

histopathological heterogeneity and molecular heterogeneity,

which poses a great obstacle to the clinical treatment and

management of patients and leads to high mortality (Fujima

et al., 2019; Chow, 2020). TNM staging alone as an indicator of

clinical management and treatment has been unable to adapt to

the personalized management and treatment of patients in the

clinic. Therefore, the development of biomarkers that can predict

the prognosis and treatment benefit of HNSCC patients is

necessary. With the advancement of high-throughput

sequencing technology and the development of bioinformatics,

researchers have more deeply decoded HNSCC and derived a

large number of biomarkers (Zhan et al., 2022; Zhang et al.,

2022). These biomarkers covered a wide range of biological

functions, including inflammation, pyroptosis, immunity, and

hypoxia et al. (Han et al., 2022; Li et al., 2022; Lu and Jia, 2022;

Zhu et al., 2022). In recent years, necroptosis played an important

role in the development and progression of tumors (Zhang et al.,

2022; Zhou et al., 2022). However, the mechanism of necroptosis-

related lncRNAs in HNSCC remains to be further explored.

In our study, 184 necrose-related lncRNAs (NRLs) were

identified through our established pipeline. Based on the

univariate and LASSO regression analysis, a necroptosis-

driven lncRNA prognosis signature (NLPS) was established

and validated in four cohorts, which demonstrating the high

accuracy of NLPS. As is well known, the ability to stratify the

prognostic and underlying biological characteristics of patients is
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a testament to the efficiency of the model (Kaseb et al., 2011). KM

and ROC curves indicate that NLPS can accurately predict the

prognosis of patients in different centers, which suggests that

NLPS has clinical generalizability. Prognostic differences

between patients were often due to their underlying molecular

mechanisms and characteristics (Guo et al., 2022). Based on the

GSEA and GSVA algorithms, we further explore the biological

characteristics of patients in the high- and low-risk groups.

Patients in the high-risk group were significantly enriched in

invasive- and developmental-related pathways, such as muscle

cell differentiation, which may be the source of the dismal

prognosis of high-risk group patients. Lei et al. reported that

the differentiation of myocytes promoted the proliferation and

invasion of tumor cells (Lei et al., 2018). In contrast, patients in

FIGURE 8
Exploration of potential therapeutic drugs. (A–C) Comparison of sensitivity to cisplatin in high and low groups of ATM (A), TAP1 (B), and
LCN2 (C). (D–G) Drugs sensitive to high-risk group cell lines were identified from CTRP and PRISM. *p < 0.05, **p < 0.01, ***p < 0.001, ****p <
0.0001.
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the low-risk group showed good prognosis due to their potent

anti-inflammatory and immune function. Immune checkpoint

inhibitors (ICIs) displayed great potential as an emerging

therapeutic modality in a variety of solid tumors (Korde et al.,

2022). Immune cell abundance underlies the response of cancer

patients to treatment with ICIs (Liu et al., 2022). Compared to the

high-risk group patients, patients in the low-risk group

demonstrated a higher abundance of immune cells. Based on

the above findings, we inferred that patients in the low-risk group

were more sensitive to immunotherapy and proved our

conjecture by TIDE and SubMap algorithms.

With the development of genome sequencing technology,

researchers have performed deeper decoding of tumors

(Gambera et al., 2018). A previous report suggested that

genomic mutations affect tumor patient prognosis and

immunotherapy (Witkiewicz et al., 2015). We found that

patients in the low-risk group had a higher tumor mutation

burden (TMB), especially in TP53 and FAP1. The higher TMB

of patients in the low-risk group indicated a higher response

rate to immunotherapy, which further validated our

conclusion. The higher TMB of patients in the low-risk

group indicated that they have higher response rate to

immunotherapy, which further validated our conclusion.

Subsequently, Subsequently, we found that patients in the

high-risk group had higher CNV than patients in the low-risk

group. As a variation of DNA structure, CNV is an important

cause of disease progression and phenotypic variation in

humans (Jeng et al., 2013). The higher FGA, FGG, and

FGL may be the reason why patients in the high-risk group

displayed a dismal prognosis. Additionally, an increasing

number of researches have displayed that methylation

driver genes (MDGs) occupy an important role in the

epigenetic regulation of HNSCC (Nakagawa et al., 2021).

We found a significant inverse correlation between

methylation and transcriptome levels for both SVIP and

PHYHD1, which were identified as MDGs. Compared to

the low-risk group, patients in the high-risk group had

higher methylation frequencies. We hypothesize that

methylation of SVIP and PHYHD1 may contribute to

dismal prognosis in HNSCC patients. Due to the current

lack of studies correlating the methylation status of SVIP

and PHYHD1 with the prognosis of HNSCC, our findings

may provide new ideas for the treatment of HNSCC. Overall,

the homogeneity among transcriptional, mutational, CNV,

and methylation profiles results further illustrates that NLPS

has great clinical application value as a tool to predict the

prognosis of HNSCC patients.

With the diversification of treatment modalities in the clinic,

overdiagnosis and treatment become an urgent problem, which

not only allows patients to bear expensive costs but also increases

the risk of treatment complications (Zubiri et al., 2021). Different

from the previous study focusing on the prognosis of HNSCC, we

further predicted sensitivity to chemotherapeutic drugs in the

two groups patients. Although NLPS can accurately identify

high-risk patients by stratifying patients, how to perform

beneficial treatment for high-risk patients is an urgent clinical

problem. According to previous findings, low expression of

ATM, TAP1 and LCN2 will increase the sensitivity of tumor

cells to cisplatin (Matassa et al., 2016; Zhang et al., 2017; Huang

et al., 2019), which is the same as our study conclusion and

further illustrates the accuracy of our method. Based on CTRP

and PRISM databases, we identified a total of 18 sensitive

chemotherapeutic agents for high-risk patients, including

afatinib, dasatinib, et al. These drugs were widely used in a

variety of solid tumors, but their use in HNSCC has rarely been

reported (Laviolette et al., 2017). Therefore, the establishment of

NLPS provides guidance for the identification and treatment of

high-risk patients in HNSCC. As an important finding of this

study, this has important implications for the treatment of

HNSCC patients.

Our study comprehensively evaluated the prognostic

characteristics and therapeutic benefits of HNSCC. Although

our study needs to be validated in subsequent clinical trials,

studies with large samples and multiple centers fully illustrate the

high precision and clinical generalizability of NLPS.

Conclusion

In conclusion, we comprehensively analyzed the genetic

and clinical information of HNSCC and established a stable

model (NLPS), which can accurately predict the prognosis

and clinical benefit of HNSCC patients and displayed robust

efficacy in different cohorts. In addition, we further revealed

the immune profile, multi-omics alteration, and

pharmacological landscape of NLPS, which has

significantly meaningful in predicting the benefit of

immunotherapy and chemotherapy. Overall, the

establishment of NLPS provides guidance and assistance in

the clinical management and personalized treatment of

HNSCC.
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