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Objectives: This study aims to evaluate the diagnostic performance of

machine-learning-based contrast-enhanced CT radiomic analysis for

categorizing benign and malignant ovarian tumors.

Methods: A total of 1,329 patients with ovarian tumors were randomly divided

into a training cohort (N=930) and a validation cohort (N=399). All tumors were

resected, and pathological findings were confirmed. Radiomic features were

extracted from the portal venous phase images of contrast-enhanced CT. The

clinical predictors included age, CA-125, HE-4, ascites, and margin of tumor.

Both radiomics model (including selected radiomic features) and mixed model

(incorporating selected radiomic features and clinical predictors) were

constructed respectively. Six classifiers [k-nearest neighbor (KNN), support

vector machines (SVM), random forest (RF), logistic regression (LR), multi-

layer perceptron (MLP), and eXtreme Gradient Boosting (XGBoost)] were used

for each model. The mean relative standard deviation (RSD) and area under the

receiver operating characteristic curve (AUC) were applied to evaluate and

select the best classifiers. Then, the performances of the two models with

selected classifiers were assessed in the validation cohort.

Results: The MLP classifier with the least RSD (1.21 and 0.53, respectively) was

selected as the best classifier in both radiomics and mixed models. The two

models with MLP classifier performed well in the validation cohort, with the

AUCs of 0.91 and 0.96 and with accuracies (ACCs) of 0.83 and 0.87,

respectively. The Delong test showed that the AUC of mixed model was

statistically different from that of radiomics model (p<0.001).
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Conclusions: Machine-learning-based CT radiomic analysis could categorize

ovarian tumors with good performance preoperatively. The mixed model with

MLP classifier may be a potential tool in clinical applications.
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Introduction

Ovarian cancer (OC) remains the third most common

gynecological malignant tumor responsible for gynecological-

cancer-related deaths (1). Patients with OC are often treated

with cytoreductive surgery followed by chemotherapy or

neoadjuvant chemotherapy followed by interval debulking (2).

Conservative management can reduce unnecessary operative

costs, decrease long-term surgical complications, and keep

fertility for patients with asymptomatic benign ovarian masses

(3, 4). Nevertheless, ovarian tumors were often detected

incidentally, and most of them were addressed with surgery

and proven to be benign (4). Therefore, characterizing the

ovarian masses and assessing the possible malignant diseases

would be critical for personalized treatment and follow-up plans.

Traditional imaging techniques have been widely applied for

classifying ovarian tumors and monitoring treatment response in

patientswithOC. Specifically, ultrasound (US) is usedas thefirst-line

imagingmodality for the assessment and characterization of ovarian

tumors, andmagnetic resonance imaging (MRI) was recommended

as the problem-solving tool for the sonographically indeterminate

adnexal masses (5). In addition, CT is regarded as the optimal

selection for preoperative staging of OC according to the European

SocietyofUrogenitalRadiologyguidelines (6); however, its role in the

differentiation between benign and malignant ovarian masses is

limited. In contrast to its suboptimal diagnostic performance, CT

with its high spatial resolution and wide availability has been widely

used in the incidental initial detection in routine clinical practice. The

diagnosis of ovarian tumors mainly depended on these imaging

modalities and subjective imaging assessment. However, it is limited

inheterogeneitydetectionofovarianmasses.Therefore, it is crucial to

develop a precise, objective, and non-invasive approach to

preoperative categorization of ovarian tumors based on CT images.

Radiomics, allowing for high-dimensional quantitative data

extraction from medical images, has shown significant power for

tumor detection and classification along with objective support for

clinical treatment strategy (7, 8). In brief, radiomics can offer

additional diagnostic information that cannot be visible to the

human eyes (9), and the informationmay remedy the limitation of

lower soft tissue resolution in CT images. Recent studies have

shown that radiomics images could distinguish benign from
02
malignant masses with favorable performance using CT (10–13).

Furthermore, machine learning, an emerging data mining

approach, has offered various useful methodologies to efficiently

and effectively construct accurate models for prediction based on a

large number of variables (14–16). Combined with machine

learning algorithms, radiomics techniques have been

implemented for various cancer diagnoses (16–18).

The study aims to apply 3D radiomic analysis to

preoperatively categorize benign and malignant ovarian

tumors using different machine learning classifiers to build the

best radiomics model and to develop and validate the mixed

model by combining the radiomic and clinical features.
Materials and methods

Patients

This retrospective study was approved by the review board

of Tianjin Medical University Cancer Hospital (approval no.

bc2022048), and informed consent was waived. All the clinical

records have been desensitized. We included patients with

ovarian tumors from January 2013 to July 2021. The inclusion

criteria were as follows: (1) availability of pretreatment contrast-

enhanced CT images and (2) definite histological diagnosis of

ovarian tumors. The exclusion criteria were as follows: (1)

patients with lesions smaller than 1 cm and (2) poor image

quality or serious artifacts. Finally, 1,329 patients were selected

and included in this study. In addition, all the patients were

randomly divided into a training cohort (N=930) and a

validation cohort (N=399) with a ratio of 7:3. A flowchart for

the recruitment of patients is shown in Figure 1.
Clinical data

The clinical data of all patients were retrospectively analyzed

from our picture archiving and communication system (PACS),

including clinical baseline and CT-reported data. CA-125 and

HE-4 are widely used to diagnose and monitor OC (19). The

presence of ill-defined margin of the masses and a large number
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of ascites is an indication of ovarian malignant tumors (20, 21).

Thus, the clinical baseline data including age, CA-125 level, and

HE-4 level were recorded. In addition, CT-reported data

including ascites and margin of tumor were recorded and

evaluated by two radiologists (with 7 years of experience, JL;

with 3 years of experience, TZ). The two radiologists were

blinded to histological results and clinical information.

Differences were resolved by consensus.
CT image acquisition

All patients underwent an abdominal-pelvic or pelvic contrast-

enhanced CT scan before treatment. Contrast-enhanced CT scans

were performed using seven different CT scanners: Discovery

CT750 HD (GE medical systems), Revolution EVO (GE medical

systems), OptimaCT680 Expert (GEmedical systems), LightSpeed

16 (GE medical systems), SOMATOM Definition AS+

(SIEMENS), SOMATOM Definition Drive (SIEMENS), and

IQon Spectral CT (Philips). The acquisition parameters were as

follows: matrix, 512×512; tube voltage, 120 kVp; auto tube current;

and thickness, 1.0–2.5 mm. The volume of contrast medium was

weight based (body weight in kg × 1.5 ml) with an upper limit of

150 ml, a concentration of 270–350 mg/ml iodine through an

antecubital vein at the rate of 2.5–2.8ml/s. The portal venous phase

of contrast-enhanced CT images was retrieved at a 55–60 s delay

after contrast medium injection.
Frontiers in Oncology 03
Tumor segmentation

In the case of bilateral ovarian tumors, only the larger tumor

was subjected to tumor segmentation and further radiomic

analysis. For each patient, the volume of interest (VOI) for

ovarian tumor was delineated manually slice by slice on the

portal venous phase of contrast-enhanced CT using 3D-slicer

software (www.slicer.org), as illustrated in Supplementary Figure

S1, by a radiologist (with 7 years of experience, JL). The inter-

and intra-observer consistency of tumor segmentation was

analyzed with 50 randomly chosen patients after 3 weeks. The

same radiologist (with 7 years of experience, JL) performed a

region of interest (ROI) drawing with the same method for intra-

observer agreement assessment, and another radiologist (with 3

years of experience, TZ) performed ROI segmentation with the

same method independently to assess inter-observer reliability.
Extraction and selection of
radiomic features

The radiomic features were extracted by PyRadiomics, and

additional details are in Supplementary Materials 1.1. A total of

1,316 radiomic features were extracted from original and filtered

images (five Laplace of Gaussian filter and eight wavelet

transform). The radiomic features included 14 shape-based
FIGURE 1

The patient selection workflow.
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features, 18 first-order statistic features, 24 gray-level co-

occurrence matrix (GLCM) features, 16 gray-level run-length

matrix (GLRLM) features, 16 gray-level size zone matrix

(GLSZM) features, 14 gray-level dependence matrix (GLDM)

features, 5 neighboring gray-tone difference matrix (NGTDM)

features, 465 Laplacian of Gaussian-filtered (LoG) features, and

744 wavelet features. The intra-class correlation coefficients

(ICCs) were calculated to evaluate inter- and intra-observer

repeatability of radiomic features extraction. The radiomic

features with the values of ICCs >0.8 were reserved.

Extracted radiomic features were standardized by a z-score

normalization, and additional details are in Supplementary

Materials 1.2. We selected radiomic features based on the

following steps in the training cohorts. First, the top 10% of best

features calculated by univariate analysis using the SelectPercentile

were selected. Then, Pearson or Spearman correlation matrices

wereutilized to assess the correlation between the radiomic features

where a correlation coefficient >0.8 was considered redundant.

Finally, a wrapper feature selection method based on RF classifier

was used to choose the best predictive features.
Construction of radiomics and
mixed model

Radiomics model based on selected radiomic features was

established. Univariate analysis and multivariate logistic

regression analysis were conducted to select independent

predictors from clinical variables. Then, wrapper feature selection

based on RF classifier was further used to select the significant

features from the selected radiomic features and independent

clinical predictors, based on which a mixed model was built.
Model validation and evaluation

Six supervised machine learning classifiers were used for the

radiomics and mixed model: k-nearest neighbor (KNN), support

vector machines (SVMs), random forest (RF), logistic regression

(LR), multi-layer perceptron (MLP), and eXtreme Gradient

Boosting (XGBoost). The fivefold cross-validation for each

classifier was applied to the training cohort, and a StratifiedKFold

iterator in scikit-learnwas used. To select the bestmachine learning

classifier, relative standard deviation (RSD) was employed to

quantify the stability of the six classifiers. RSD (22) was defined

as the ratio between the standard deviation andmeanof thefivefold

cross-validation AUC values in the training cohort:

RSD =
sdAUC

meanAUC
∗ 100

The lower the RSD value, the higher the stability of the

classifier. Similar to a previous study (23), we used the median

values of area under the receiver-operating characteristic curve
Frontiers in Oncology 04
(AUC) and RSD as thresholds to assess and select the classifiers

among six classifiers in the training cohort. The classifiers with

RSD ≤1.64 and AUC ≥0.91, and with RSD ≤0.94 and AUC ≥0.94

were considered as highly reliable and accurate in the radiomics

and mixed models, respectively. Moreover, the classifier with the

highest AUC in the validation cohort was considered as the best

classifier. In addition, confusion matrix-derived metrics,

including accuracy (ACC), sensitivity (Sens), specificity (Spec),

positive predictive value (PPV), and negative predictive value

(NPV) of two models were calculated to further assess the two

models with the best classifier. The difference in the AUC values

between the two models with the best classifier was tested using

the p-value of DeLong (D) test. The one with the higher AUC

was identified as the best model.
Human readout

All CT images from the validation cohort were evaluated by

a senior (ZZ, with 12 years of working experience) in random

order in the radiology department. The senior was blinded to the

research design, clinical information, and background.
Statistical analysis

In this study, differences in patients’ clinical predictors

between training and validation cohorts were compared by

using the Mann–Whitney U test for continuous variables and

the chi-square test for categorical variables. The Mann–Whitney

U test or chi-square test was utilized to identify independent

clinical predictors for the univariate analysis. Binary logistic

regression analysis was used for multivariate logistic regression

analysis. A two-tailed p<0.05 was considered statistically

significant. Statistical analysis was performed using MedCalc

18.2.1. The feature selection and model building were performed

using Python 3.7. The boxplot of ICCs of radiomics features and

heatmap were drawn by R software (version 4.1.2).
Results

Patients’ demographics and clinical
characteristics

Histological characteristics of ovarian tumors after surgery

are summarized in Table 1. The study consisted of 719 patients

with benign ovarian tumors and 610 patients with malignant

ovarian tumors. The clinical baseline and CT-reported data of

patients are presented in Table 2. There were no significant

differences in patient age, level of CA-125, level of HE-4, ascites,

and the margin of tumor between the training and validation

cohorts (all p>0.05).
frontiersin.org
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The results of the univariate analysis and multivariate logistic

regression analysis are shown in Table 3. Patients with benign

ovarian tumors were younger than those with malignant ovarian

tumors (p<0.0001). The HE-4 and CA-125 levels in patients with

malignant ovarian tumors were higher than those in patients with

benign ovarian tumors (both p<0.0001). The women with benign

ovarian tumors had fewer ascites (p<0.0001), and the margin of

tumor was better defined in those (p<0.0001). Multivariate

regression logistic analysis showed no significant differences in

age and level of CA-125 (both p>0.05). Finally, the level of HE-4,

ascites, andmarginwere selected as independent clinical predictors

related to benign and malignant ovarian tumors.
Radiomic features analysis and feature
selection

The ICCs were calculated to assess the robustness and

repeatability of radiomic features (Figure 2). The shape-based
Frontiers in Oncology
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features, first-order statistic features, GLCM features, GLRM

features, NGTDM features, LoG features, and wavelet features

held high robustness and repeatability not only in the inter-

observer measurement but also in the intra-observer

measurement. The mean ICC values of these features were all

>0.8. However, the GLSZM features (0.916 ± 0.127 vs. 0.783 ±

0.345) and GLDM features (0.883 ± 0.196 vs. 0.764 ± 0.388) had

high robustness in intra-observer measurement, whereas there

was less repeatability in inter-observer measurement.

Totally, 1,229 radiomic features with ICCs>0.8 including 14

shape-based features, 17 first-order statistic features, 21 features

of GLCM, 12 features of GLRLM, 11 features of GLSZM, 10

features of GLDM, 5 features of NGTDM, 429 LoG features, and

710 wavelet features were retained and used for further feature

selection. Then, after feature selection including univariate

analysis and rapper feature selection method, nine radiomic

features including one shape feature, four LoG features, and four

wavelet features associated with differentiation in ovarian

tumors were identified and further applied to establish models.

Detailed information about feature selection and these selected

radiomic features can be found in Supplementary Material 1.3

and Supplementary Table S1.
Model construction and comparison

A radiomics model based on the nine selected radiomic

features was developed. HE-4 level, margin, and six radiomic

features were determined by the wrapper method based on RF

classifier and selected as independent predictors to construct the

mixed model. These predictors have been detailed in

Supplementary Material 1.4 and Supplementary Table S2. The

six classifiers including KNN, SVM, RF, LG, MLP, and XGBoost

were evaluated in the radiomics and mixed model. The RSDs of

the six classifiers in the radiomics and mixed model are shown in

Table 4. The heatmap of the mean AUC values for the six

classifiers in the radiomics and mixed model is presented in

Figure 3. According to the criteria for RSD ≤1.64 and

AUC ≥0.91, and RSD ≤0.94 and AUC ≥0.94 in the radiomics

and mixed models, respectively, the classifiers (XGBoost, MLP,

and SVM) in the radiomics model and the classifiers (LR, MLP,

and SVM) in the mixed model were selected. The selected

classifiers were then applied to the validation cohort. Among

these selected classifiers, the MLP had the highest AUC in both

the radiomics and mixed models, which was chosen as the best

classifier. Therefore, MLP was chosen as the machine learning

classifier for constructing the radiomics and mixed models. The

performances (AUC, ACC, Sens, Spec, PPV, and NPV) of

radiomics and mixed model with the six classifiers are listed in

Table 5 and Figure 3. Figure 4 illustrates the confusion matrix of

the optimal classifier of MLP in the radiomics and mixed model.

The ACCs were 0.83 and 0.87 for the radiomics and mixed

model with the optimal classifier. The Sens, Spec, PPV, and NPV
TABLE 1 Histopathological characteristics of ovarian tumors
included in the study.

Variable Patients of ovarian tumors
(N=1329)

Benign 719 (54.10%)

Malignant 610 (45.90%)

Histological type of benign tumors:

Serous cystoadenoma/
cystoadenofibroma

116 (16.13%)

Mucinous cystoadenoma 110 (15.30%)

Teratoma 198 (27.54%)

Fibroma/fibrothecoma 105 (14.60%)

Endometriotic cyst/endometrioid
tumor

144 (20.03%)

Seromucinous cystadenoma 13 (1.81%)

Brenner tumor 1 (0.14%)

Other benign tumors 32 (4.45%)

Histological type of malignant tumors:

High grade serous ovarian cancer 305 (50.00%)

Low grade serous ovarian cancer 23 (3.77%)

Borderline tumor 78 (12.79%)

Mucinous carcinoma 18 (2.95%)

Endometrioid ovarian cancer 60 (9.84%)

Clear cell ovarian cancer 61 (10.00%)

Carcinosarcoma 2 (0.33%)

Undifferentiated carcinoma 1 (0.16%)

Ovarian metastases from other
tumors

25 (4.10%)

Granulosa cell ovarian tumor 20 (3.28%)

Immature teratoma 11 (1.80%)

Other malignant tumors 6 (0.98%)
Results are presented as N (%).
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of MLP classifier were 0.84, 0.82, 0.86, and 0.80 in the radiomics

model, and 0.84, 0.84, 0.87, and 0.88 in the mixed model,

respectively. Moreover, we compared the diagnostic

performance of the aforementioned radiomics and mixed

models with that derived from the visual inspection of senior

radiologist. As shown in Table 5, the AUC was 0.78 for the

senior radiologist, and it was inferior to the AUCs of radiomics

and mixed models. DeLong test showed statistically significant

differences between senior radiologist’s evaluation and

radiomics model (D=5.87, p<0.001) and mixed model

(D=9.03, p<0.001) separately. The illustration of the fivefold

cross-validation receiver-operating characteristic (ROC) curve

for the training cohort and ROC curve for the validation cohort

in the radiomics and mixed model with the optimal classifier is
Frontiers in Oncology 06
presented in Figure 5. The values of the AUC of the two models

with the optimal classifier on the validation cohort were

compared by the Delong test, and the result showed a

significant difference (D=−4.36, p<0.001). The mixed model

with MLP classifier was the best.
Discussion

In this study, we developed and compared CT 3D radiomic

analysis to categorize benign and malignant ovarian tumors

preoperatively using six machine learning classifiers, and the

MLP classifier exhibited the best performance. Our results

showed that both radiomics and mixed models with MLP
TABLE 2 Patients characteristics.

Characteristics Training cohort (N=930) Validation cohort (N=399) p-value

Benign tumors, N (%) 504 (54.19%) 215 (53.88%) –

Malignant tumors, N (%) 426 (45.81%) 184 (46.12%) –

Age, median (IQR) 51.00 (40.00,59.00) 50.00 (41.00,59.00) 0.701

HE-4, median (IQR) 58.90 (46.95,133.00) 58.44 (45.39,138.78) 0.761

CA-125, median (IQR) 51.48 (16.00,253.00) 52.30 (17.53,258.05) 0.561

CT-reported margin, N (%)

Well defined 624 (67.10%) 261 (65.41%) 0.552

Ill defined 306 (32.90%) 138 (35.59%)

CT-reported ascites, N (%)

Absent 371 (39.89%) 165 (41.35%) 0.622

Present 559 (60.11%) 234 (58.65%)
fronti
Results are presented as N (%).
IQR, interquartile range.
1Mann–Whitney U test.
2Chi-square test.
TABLE 3 Results of univariate analysis and multivariate logistic regression analysis for clinical predictors in the training cohort.

Clinical predictors Univariate analysis Multivariate regression analysis

Benign tumors Malignant tumors p-value Odd ratio (95% CI) p-value

Age (IQR) 47.00 (34.00–59.00) 54.00 (47.00–60.00) <0.00011 1.00 (0.99–1.02) 0.8328

HE-4 (IQR) 49.55 (42.80–57.53) 150.55 (69.96–372.00) <0.00011 1.04 (1.03–1.05) <0.0001

CA-125 (IQR) 19.98 (11.86–51.09) 239.50 (68.50–715.00) <0.00011 1.00 (1.00–1.00) 0.4608

Margin, N (%) <0.00012 6.22 (3.92–9.86) <0.0001

Well defined 461 (91.47%) 163 (38.26%)

Ill defined 43 (8.53%) 263 (61.74%)

Ascites, N (%) <0.00012 1.73 (1.15–2.59) <0.0001

Absent 276 (54.76%) 95 (22.30%)

Present 228 (45.24%) 331 (77.70%)
Results are presented as N (%).
IQR interquartile range.
CI confidence interval.
1Mann–Whitney U test.
2chi-square test.
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classifiers can be used for OC differentiation. Additionally, the

mixed model with MLP classifier demonstrated significantly

improved discrimination performance for ovarian tumors.

Traditionally, the differentiation of benign and malignant

ovarian tumors was mainly dependent on the subjective analysis

of US and/or MRI imaging (24). Although CT may play a useful

role in differentiating ovarian masses, its performance based on

subjective analysis is often imperfect. In contrast, the mixed

model with MLP classifier showed superior diagnostic

performance in the validation cohort (AUC=0.96) in this

study. Encouragingly, the mixed model with MLP classifier

could afford good classification in patients with borderline

tumors regarded as low potential malignancies and further

demonstrated its superiority with high PPV (0.87) and NPV

(0.88) in the validation cohort. The radiomics model with MLP

classifier also showed relatively high diagnostic performance in

the validation cohort (AUC=0.91). Therefore, the combination

of machine learning classifier and radiomic features maybe the

main reason for better outperformed diagnostic performance

using CT images for differentiation of ovarian tumors, which

may make up for the deficiency of CT clinical application to a

certain extent.
Frontiers in Oncology 07
Machine learning classifiers have been extensively applied in

the field of radiomic analysis and further enhanced diagnostic

performance (15, 23, 25, 26). Different classifiers in machine

learning have different algorithms and diagnostic efficiencies. To

data, a few studies have explored radiomic analysis based on

machine learning classifiers for distinguishing ovarian tumors;

however, the diagnostic efficiencies of different machine learning

classifiers were not compared (27, 28). In our study, we explored

and compared the diagnostic values of six classifiers, namely, RF,

KNN, LG, SVM, MLP, and XGBoost. KNN is a relatively simple

classifier that directly calculates images to images distances.

XGBoost and RF are constructed by a multitude of decision

trees, and their advantages are the ease of use and ability to

calculate the importance of features (29). LR is currently the

most widely used machine learning classifier because of its

simplicity. However, it is necessary to pay attention to its

inherent limitation, such as the independence assumption to

features. SVM iteratively forms a hyperplane or a set of

hyperplanes in high-dimensional feature space that separates

the clinical problems (30). As deep-learning is now widely used

for the diagnosis of various diseases, the deep-learning or

convolutional neural network (CNN) method would assist in
TABLE 4 The RSD of classifiers for radiomics and mixed model in the training cohort.

RSD

XGBoost LR RF MLP KNN SVM

Radiomics model 1.64 1.98 1.75 1.21 1.92 1.32

Mixed model 1.51 0.75 0.95 0.53 1.28 0.64
frontiers
RSD, relative standard deviation; XGBoost, eXtreme Gradient Boosting; LR, logistic regression; RF, random forest; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support
vector machines.
BA

FIGURE 2

Boxplot of ICCs of radiomic features extracted from nine feature groups. (A) Intra-observer ICCs. (B) Inter-observer ICCs. ICCs, intra-class
correlation coefficients.
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the construction of favorable classification models. The MLP is

the simplest form of an artificial neural network; it simulates the

nervous system properties and biological learning functions

through an adaptive process (31, 32). The present study

implemented the MLP classifier and conducted the

preliminary study on CNN-based classification models.

Although the diagnostic value of RF was slightly higher than
Frontiers in Oncology 08
that of the MLP, the latter was found to be more stable than the

former in the training cohort. The stability of the machine

learning classifier is also very important for its model

construction and clinical application (22). Therefore, the MLP

was chosen to develop the radiomics and mixed model.

Moreover, the two models with the MLP classifier showed the

highest diagnostic efficiency than the other conventional
FIGURE 3

The heatmap illustrating the predictive performance (AUC) for the six classifiers. AUC, area under the receiver-operating characteristic curve;
R_model_train, radiomics model in the training cohort; M_model_train, mixed model in the training cohort; R_model_validation, radiomics
model in the validation cohort; M_model_validation, mixed model in the validation cohort; XGBoost, eXtreme Gradient Boosting; LR, logistic
regression; RF, random forest; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support vector machines.
TABLE 5 Diagnostic performances of the classifiers for radiomics and mixed model and the senior radiologist in the validation cohort.

Classifiers/Models AUC ACC Sens Spec PPV NPV

XGBoost

Radiomics model
Mixed model

0.91
0.94

0.82
0.87

0.79
0.85

0.84
0.88

0.83
0.88

0.81
0.86

LR

Radiomics model
Mixed model

0.91
0.95

0.82
0.86

0.84
0.79

0.81
0.92

0.85
0.84

0.79
0.73

RF

Radiomics model
Mixed model

0.90
0.95

0.82
0.88

0.83
0.84

0.81
0.93

0.85
0.87

0.79
0.91

MLP

Radiomics model
Mixed model

0.91
0.96

0.83
0.87

0.84
0.84

0.82
0.84

0.86
0.87

0.80
0.88

KNN

Radiomics model
Mixed model

0.88
0.93

0.82
0.85

0.73
0.81

0.90
0.89

0.80
0.85

0.86
0.86

SVM

Radiomics model
Mixed model

0.90
0.95

0.82
0.87

0.84
0.83

0.80
0.90

0.85
0.86

0.68
0.87

Senior radiologist 0.78 0.78 0.75 0.81 0.77 0.79
frontiers
AUC, area under the receiver-operating characteristic curve; ACC, accuracy; Sens: sensitivity; Spec, specificity; PPV, positive predictive value; NPV, negative predictive value; XGBoost,
eXtreme Gradient Boosting; LR, logistic regression; RF, random forest; MLP, multi-layer perceptron; KNN, k-nearest neighbor; SVM, support vector machines.
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classifiers in the validation cohort, which suggested that MLP

was the preferred classifier when differentiating benign and

malignant ovarian tumors.

A prior study constructed a model to classify ovarian tumors

using radiomic analysis based on plain CT (33). The radiomics

nomogram demonstrated the best performance in both the

training (AUC=0.95) and test (AUC=0.96) cohort. External

validation also showed high diagnostic performance

(AUC=0.95) in the previous study. In our study, a large

number of patients were used for radiomic analysis based on

CT images, and borderline tumors were included. Pan et al.

demonstrated that the nomogram model, combining CT

radiomic and semantic features, showed the best diagnostic

value to differentiate serous and mucinous ovarian

cystadenomas than the radiomics-based and semantics-based

models (34). The CT semantic feature of the margin, as an

independent predictor, was included in the mixed model in our

study. Consistent with the previous study, the mixed model

possessed a higher diagnostic value than the radiomics model in

which only radiomic features were involved in our study. This

result further validated complementarity in the radiomic and CT

semantic features. Moreover, the margin of ovarian masses was

divided into two categories, namely, well-defined margin and ill-

defined margin in this study, which was easily evaluated by

clinicians even for inexperienced clinicians in this study. This

indirectly mirrored the operability and feasibility of the mixed

model in our study. Deep learning, especially CNN, has been

attracting attention within radiology. For instance, Wang et al.

applied CNN on routine MRI to assess the nature of ovarian

tumors and found that CNN could assist radiologists in

improving their diagnostic performance (35). However,

manual segmentation was used for ovarian lesions

segmentation in the study. Nowadays, automatic segmentation

based on deep learning has been successfully implemented;

nevertheless, it is still challenging for ovarian lesion on CT or
Frontiers in Oncology 09
MRI because the bladder or uterus are frequently confused for

the ovary or ovarian lesion. Furthermore, because of the inherent

limitation of the sample size for medical images, training a CNN

model from scratch for one specific clinical question often does

not yield satisfactory results (36). In addition, the current study

also showed that HE-4 level was an independent predictor for

distinguishing benign and malignant ovarian tumors. Unlike

previous studies (33, 37), the level of CA-125 and HE4 were

evaluated simultaneously in our study. This study showed that

only the HE-4 level could be used as an independent predictor.

This may be because the level of CA-125 is slightly elevated in

some patients with benign ovarian tumors (38), which decreases

its specificity.

The previous studies used 2D radiomic features to

distinguish ovarian tumors (28, 33). 3D segmentation method

was utilized to segment lesions in this study. 3D segmentation is

better in capturing full information about the whole tumor and

more realistically to reflect the high heterogeneity of ovarian

tumors. Liu et al. have shown that 3D segmentation has better

performance than 2D segmentation in distinguishing ovarian

borderline tumors and epithelial cancers (39). Several previous

studies have also demonstrated that radiomic features based on

3D segmentation are preferably repeatable (40) and more

insensitive to manual segmentation variability (41).

Furthermore, our study chose the portal venous phase CT

images to extract radiomic features and demonstrated that

they had favorable predictive performance. An et al. have

determined the histological subtype classification in epithelial

ovarian carcinoma using CT texture features extracted from the

portal venous phase of contrast-enhanced CT images (42). Yu

et al. compared the diagnostic performance of radiomic features

extracted from different phases for discriminating between

serous borderline malignant ovarian tumors, and the result

indicated that the portal venous phase model showed a good

predictive performance with a relatively higher AUC (43). These
BA

FIGURE 4

Confusion matrix with MLP classifier in the validation cohort. (A) The radiomics model with MLP classifier. (B) The mixed model with MLP
classifier. MLP, multi-layer perceptron.
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findings and our results may provide an idea for conducting

extraction of radiomic features in future studies. In addition, this

study presented an excellent diagnostic performance for

categorizing ovarian tumors on seven different CT scanners,

which indicated that such a heterogeneous dataset may

compensate for the limitation of no external validation.

This study has some limitations. First, it was a retrospective

study in a single center, which may cause a selection bias.

External multi-center validation in a larger cohort is needed to

verify the generalization of our model in the future. Second, our

study was limited in sample size for some subgroups of ovarian

tumors because of the rarity of diseases. In the future study, we

will increase the sample size to validate our predictive model.

Third, different feature selection methods were not compared.
Frontiers in Oncology 10
Finally, the VOIs were drawn manually, and the influence of

subjective factors cannot be avoided completely. In the future

study, semi-automatic segmentation or automatic segmentation

will be used.
Conclusion

In conclusion, this study indicated that machine learning

based on CT radiomic analysis could be applied to classify

benign and malignant ovarian tumors. The mixed model with

MLP classifier held the best diagnostic performance, which may

be used as a convenient and accurate tool in clinical settings to

identify and distinguish benign and malignant ovarian tumors.
B

C D

A

FIGURE 5

ROC curve of the optimal classifier (MLP). (A) The fivefold cross-validation ROC curve of radiomics model with MLP classifier in the training
cohort. (B) The ROC curve of radiomics model with MLP classifier in the validation cohort. (C) The fivefold cross-validation ROC curve of mixed
model with MLP classifier in the training cohort. (D) The ROC curve of mixed model with MLP classifier in the validation cohort. ROC, receiver-
operating characteristic; MLP, multi-layer perceptron.
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