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����������
�������
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Abstract: The complete understanding of the electromagnetic field characteristics in artificially
created bulk or thin media is essential to the efficient harnessing of the multitude of linear and
nonlinear effects resulting from it. Due to the fact that recently developed artificial metastructures
exhibit controllable electric and magnetic properties that are completely different from natural ones,
the spectrum of behavior resulting from subjecting such media to electromagnetic fields has to be
revisited. In this paper, we introduce a k-surface framework that offers complete information on
the dispersion properties of media with designer electric and magnetic responses with positive
and negative values, as well as for the coupling between the two. The extension from the classic
k-surface case resides in the consideration of magnetic and bianisotropic materials with positive and
negative permittivity and permeability values, as well as the introduction of the chirality coefficient.To
illustrate the applicability of our framework, we have investigated the conditions to obtain collinear
second harmonic generation in the case of artificial media with positively and negatively valued
electric and magnetic responses. As expected, the phase matching tuning curves, defined as the
intersections between the k-surfaces at both frequencies, are significantly modified with respect to
the classic ones.

Keywords: artificial crystals; metamaterials; optical materials; electromagnetic materials

1. Introduction

The control of optical effects including refraction, reflection, state of polarization
description, interference, pulse creation and manipulation, energy transfer, harmonics
generation and frequency mixing are a direct consequence of the interaction between
the electromagnetic field and material media [1]. The characterization of the interac-
tion relies on the knowledge of the phase of the wave, which in turn is determined by
the dispersion properties of the medium that the wave travels in. This information is
contained in the k(ω) function. In isotropic media, this function is independent of di-
rection, and provides a single function, whereas in anisotropic media, the k(ω) function
becomes direction-dependent, and generates an entire function set. The dispersion function
also characterizes the different propagation velocities inside the media, which are both
frequency- and direction-dependent in anisotropic media. Refraction at an interface occurs
as a result of the configuration of the k(ω) function, in such a way as to obey the phase
matching principle between the transmitted and the incident wave. The accumulated
phase differences are responsible for the determination of the state of polarization, as
well as delays between spectral components and natural broadening in the case of electro-
magnetic pulses. The dispersion function is determined by the electromagnetic response
of the medium; namely, the electric permittivity ε and the magnetic permeability µ. In
conventional optical media, the magnetic response is considered negligible, i.e., µ = µ0,
and only the electrical response determines the dispersion surface. This behavior leads
to the classic description of the electromagnetic field, with its associated set of optical
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effects. However, the boundaries imposed by such materials have been extended during
the last two decades, after the experimental realization of artificial, negative refractive
index materials (NIM-s) [2–4], based on the theoretical considerations formulated almost
half a century before [5]. In such media, the simultaneously obtained values for the electric
permittivity ε and the magnetic permeability µ lead to an inversion of the conventional
sign between the electric and magnetic field vectors E and H respectively, and therefore
lead to an inversion of the wave vector k, while not affecting the direction of the Poynting
vector S. As a cause of this inversion, the behavior of the systems in the interaction with the
electromagnetic field is also flipped, resulting in a whole set of possible applications [6–8].
The physical realization of negative-index materials has been possible with the help of
metamaterials [9] and metasurfaces [10], which are artificially-created electromagnetic field
scaterrers, in which various elements and geometries are combined in order to provide a
custom response. From a construction point of view, metastructures are assembled from
individual elements, such as conductors or dielectrics that are deposed on a substrate. The
unit cell is defined as the individual scatterer that is created by the specific combination
of elements. The response of the unit cell is dependent on the geometric shape and size
of the elements, their relative coordinates as well as the bulk properties of the materials
that come into the composition of the elements and the substrate. The spectral response
of such a unit cell differs considerably from that of the composing elements, and can
provide a relatively-large amount of customization of the electromagnetic field properties
(polarization spatial phase controllers [11,12], frequency-selective surfaces [13,14], giant
magnetoresistance-based devices [15,16], high-resolution imaging below the diffraction
limit [17,18], second harmonic generators [19–21]), including the exotic effects introduced
by a negative refractive index (e.g., generalized reflection and refraction [22,23], object
cloaking in the radio frequency and optical regimes [24,25], hyperbolic wave front genera-
tors [26,27], dispersion sign controllers [28–30], Huygens surfaces [31–34]). Regardless of
their nature, metastructures violate the principle of locality, which states that the electric
and magnetic properties of a material are the same in all directions and for all positions
of that material. The locality principle also sets the general rules for obtaining normal
dispersion of bulk materials in any direction. Contrarily, the nonlocality of metastructures
induces a new degree of freedom in designing materials with ε(ω) and µ(ω) tailored for
a certain direction. A more comprehensive discussion on the principle of locality and its
relation to metasurfaces has previously been reported [35]. A first observation is that most
NIMs have a non-negligible magnetic permeability, and therefore cannot be treated in the
same manner as bulk optics, where the magnetic response is not taken into consideration
when determining compatible propagation modes, associated wave vectors, optic axes,
and states of polarization. Moreover, the presence of a non-negligible magnetic field re-
sponse introduces couplings between the electric and magnetic field components, which
mandates that the equations describing the electromagnetic field should be revised in the
bianisotropic model [36–38]. Furthermore, these couplings introduce a certain chirality,
which exerts itself in the fact that the scattering behavior of the metastructure changes as a
function of the input polarization [39,40].

In this paper, we propose the introduction of an extended framework to describe
the dispersion properties of artificial media, in which the electric, magnetic and cross-
dependent responses are considered. The framework takes into account both positively
and negatively valued ε and µ, which can easily be obtained in artificial media, such
as metal-dielectric and all-dielectric metasurfaces. The cross-dependent responses are
modeled by the chirality factor γ expressed by the bianisotropic model under rotational
symmetry. Our approach offers a more general intuitive characterization of the electric and
magnetic response through the visualization of the associated k-surfaces, and constitutes
a general recipe for the design of the electric and magnetic response in such a way as to
obtain the desired effect via the study of the associated k-surface. This approach can also be
viewed as an extension of previous studies that treat hyperbolic materials [41] by offering
information on the spatial dispersion for an extra set of configurations of permittivity and
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permeability, as well as chiral coefficient.For the linear optical regime, the study reveals new
directions for the optical axes, as well as significant modifications to the classic k-surface
sheets associated with biaxial and uniaxial crystals. The study of nonlinear properties
focuses on determining the phase matching directions in the special case of collinear
three-wave mixing, for positive and negative dispersive of artificial uniaxial media. The
existence of such special properties leads to the realization of improved nonlinear optical
media, which can combine phase matching with negative refractive index associated effects.
Related to recent experiments, in which growth methods such as colloidal self-assembly and
micelle-directed seeded growth are reported as high-yield solutions for obtaining magnetic
metasurfaces [42], mechanically tunable chiral metasurfaces [43] and gold nanorods that
exhibit chirality [44], our framework is especially suitable due to the fact that the properties
of the metasurfaces can be determined prior to experiment, by inserting the estimated ε,
µ and chirality factors, and evaluating the resulting k-surfaces. Depending on the type
of dispersion that the metasurface exhibits, these evaluations can be done with multiple
frequencies, in order to highlight the possibility of obtaining nonlinear effects by obtaining
the appropriate phase-matching condition. The frequency regime can be shifted from the
optical to the terahertz regime, where the framework can also be used in the study of newly
reported broadband all-dielectric metasurfaces [45,46], subsequent devices [47] and highly
sensitive metasurfaces [48]. Moreover, the obtained k-surface description can be useful
for determining the polarization state of the propagation mode, by solving the associated
Helmholtz equation in which the wave-vector is determined by all ε, µ and chirality factor,
rather than just the positively valued ε as is the case in classic materials. Another possible
use for the design is to help with deep-learning algorithms that enable transition from the
estimate k-surface to the one that is specific to the architecture [49]. The net advantage
of our framework is that it offers a clear, graphical solution, in the form of a modified
k-surface, which can be easily evaluated in order to easily evaluate the optical properties
of the artificial media under consideration.

2. Framework Description
2.1. Nonmagnetic Dielectrics

The classic description of the electromagnetic field is given by Maxwell’s equations,
that relate both the intra- and inter-field dependencies with respect to each other:

∇ ·D = ρ; ∇ · B = 0; (1)

∇× E = −∂B
∂t

; ∇×H = J +
∂D
∂t

; (2)

D = ε̂E; B = µ̂H (3)

where E and H are the electric and magnetic field intensities, D and B are the electric and
magnetic field inductions, ρ is the charge distribution across the volume of the region
in which the equations are applied, J is the electric current density across the surface
element of interest, ε̂ and µ̂ are the electric permittivity and magnetic permeability tensors,

respectively, and ∇ = ∑
1,2,3

(
∂

∂xj
ej

)
is the first-order differential field operator. Here, we

have denoted x1,2,3 a cartesian reference frame, which can also be the x,y,z frame. For
solid dielectrics, which are almost unanimously used in optics, the directional symmetry
implies that in the relative pertmitivitty tensor we will have εij = εji, which reduces the
number of independent variables from nine to six. Moreover, symmetric tensors are fully
diagonalizable, which means that there will always exist a reference frame {x1, x2, x3}, in
which only the diagonal components εjj are nonzero. For any symmetric tensors, we have
the relation [1]:

∑
j=1,2,3

εjjx2
j = 1 (4)
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which is geometrically described by an ellipsoid of axes εjj. For two equal εjj, the surface
becomes a revolution ellipsoid having the symmetry axis along the third component.
Moreover, positive εjj represent the construction basis of the well-known refractive index
ellipsoid. Another limiting property of common bulk dielectrics in the interaction with the
optical field is locality, in which the properties exhibited at one point in the medium are
preserved throughout the whole volume. Common dielectrics exhibit locality by preserving
the same positive (or negative) dispersion function ε(ω) throughout the material, and in
all directions. While this property is of use in most optical application, when designing
custom-response structures, locality imposes a limitation on the response.

An intuitive representation scheme of the dispersion properties is the k-surface which
offers information on the wave vector experimented by a wave at frequency ω traveling
along a certain direction in the medium. Assuming a spatial region with no charges and no
currents (i.e., ρ = 0 and J = 0), a non-magnetic material (µ̂ = µ0 − vacuum permeability),
as well as a plane wave solution of both fields, the spatial component of Equation (2) is
written as:

k× E = −ωB; k×H = ωD (5)

which transforms into:

k× E = −ωµ̂H; k×H = ωε̂E (6)

when considering the material relations between each field component. After inserting
the material relations (3) into the above relations, keeping in mind that for nonmagnetic
media, we have B = µ0H and applying the ‘k×’ operator on the first relation of the two,
we obtain:

k× (k× E) + ω2µ0ε̂E = 0 (7)

The above equation represents a three-dimensional equation system along axes
x1, x2, x3. We take a symmetric medium, which is generally the case in natural and artifi-
cial media, we denote k1, k2 and k3 as the wave numbers along these directions and we
introduce the pseudotensor associated with the vector product. For a vector A, the vector
product writes as:

k×A =

 0 k3 −k2
−k3 0 k1
k2 −k1 0

 ·
 Ax

Ay
Az

 = K̂A (8)

With the above considerations, the matrix form of Equation (7) is: µ0ω2ε11 − k2
2 − k2

3 k1k2 k1k3
k1k2 µ0ω2ε22 − k2

1 − k2
3 k2k3

k1k3 k2k3 µ0ω2ε33 − k2
1 − k2

2

 E1
E2
E3

 = 0 (9)

We can also introduce a compacted form for the above relation, by introducing the op-
erator Γ̂0 = K̂2 + ωµ0ε̂ as the non-magnetic, non-chiral operator. Combining Equations (7)
and (8), we obtain: (

K̂2 + ωµ0ε̂
)

E = 0 (10)

In order to obtain non-trivial solutions for the electric field, the determinant of the
matrix in the above equation has to equal zero. We define the vacuum wave number as
k0 = ω

√
ε0µ0, and we normalize the values defining the k-surface to it. For positive values

of εjj, this condition is satisfied by a two-sheet surface in the k-space defined by axes k1, k2
and k3. The direction u = (u1, u2, u3) defined by the origin and any point on the k-surface

yields the wave vector k =
ω

c
√

ε, where ε is the permittivity perceived by the electric field
as the wave propagates parallel to it. The intersection between the two sheets defines the
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optic axis, which represents the privileged direction in which the wave attains the same
velocity regardless of polarization. When ε11 6= ε22 6= ε33, the optic axis is contained in
the Ox1x3 plane, and the configuration defines a biaxial crystal. For ε11 = ε22 6= ε33, the
optic axis is parallel to the x3 axis, defining a uniaxial crystal. When all three components
are equal, the medium is isotropic, and any direction in space can be considered an optic
axis. The property of the optic axis is that any wave that propagates parallel to it will have
its associated polarization components experiencing the same permittivity, and implicitly
the same refractive index in the case of natural dielectrics. For any other direction, the
permittivity values that are experienced by the field modes are different, and lead to a
phase difference and an overall modification of the state of polarization. A schematic
illustration is presented in Figure 1.
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Figure 1. Schematic illustration of the k-surfaces for the classic case of nonmagnetic dielectrics: (a) a
biaxial crystal with refractive indices n1, n2 and n3, in which the optic axis is the intersection of the
two k-surface sheets; (b) a uniaxial crystal with refractive indices no and ne in which the intersection
between the two sheets is a single point per hemisphere which is parallel to Oz; (c) an isotropic
medium with a refractive index n. The two sheets are overlapped on a single spherical surface, and
any direction constitutes an optic axis.

2.2. Magnetic Dielectrics

While conventional optical media exhibit little to no magnetic activity, artificially de-
signed media such as metasurfaces can be engineered to exhibit a non-negligible, designer
magnetic permeability tensor. This brings significant modifications to the solutions of
Maxwell’s Equations (2) and (3), which for harmonic solutions, now write as:

K̂E = −ωµ̂H; K̂H = ωε̂E (11)

we multiply to the left by the inverse permeability tensor µ̂−1 in the first equation of set (11),
and we obtain:

H = − 1
ω

µ̂−1K̂E (12)

We introduce into the second relation of set (11), and we obtain:(
K̂µ̂−1K̂ + ω2ε̂

)
E = 0 (13)

Just as before, we can write the above equation in a compacted form by introducing
the magnetic permeability-dependent operator Γ̂µ = K̂µ̂−1K̂ + ω2ε̂. To produce nontrivial
solutions, the determinant of Γ̂µ must be equal to zero, an equation that can be satisfied by a
certain k-surface in the (k1, k2, k3) basis. The other considerations such as the determination
of the optic axis, associated field polarizations and energy flow direction remain unchanged.

2.3. Bianisotropic Media

In the most general case, materials that are responsive to both electric and magnetic
fields also possess an extra set of coefficients, that account for the modifications induced
by the electric field to the magnetic field, and vice versa. Experimentally, due to the fact
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that typical crystals are non-magnetic, the couplings between the electric and magnetic
field that compose the wave have been introduced externally, at a much lower frequency,
in order to actively rotate the polarization plane of the electric field. The influence of the
external electric field on the wave polarization (Kerr and Pockels effects) is by default
included in the rewriting of the electric response ε, but an external magnetic field influence
of the polarization plane has to be accounted by a coupling coefficient of the material, that
relates the two fields. For Faraday rotators, which are devices that operate based on this
effect, the coupling coefficient is known as the Verdet constant. In a general framework,
the couplings between the electric and magnetic fields by means of material responses are
supplied intrinsically by means of material design, and therefore can realize the desired
influences directly. In our framework, these couplings are modeled by introducing two
tensors α̂ and β̂, which account for the electric-to-magnetic field and magnetic-to-electric
field influences, respectively. The introduction of these tensors in the Maxwell equations
picture is known as the bianisotropic model of the electromagnetic field. Due to the fact
that both fields are harmonic and even for artificial media, the designer symmetries impose
an identical response of the field couplings; it is safe to assume that α̂ = β̂, but for the sake
of completeness, we will consider them independently in the framework. The Maxwell
equations framework for harmonic solutions viewed in this new picture reads as:

K̂E = −ω
(
µ̂H + β̂E

)
; K̂H = ω(ε̂E + α̂H) (14)

In the first equation of set (14), we multiply to the left with µ̂−1 and obtain:

µ̂−1K̂E = −ω
(

µ̂−1 β̂E + H
)

(15)

which leads to:
H = − 1

ω
µ̂−1K̂E− µ̂−1 β̂E (16)

We substitute this form into the second equation of the set (14), and obtain:

− 1
ω

K̂µ̂−1K̂E− K̂µ̂−1 β̂E = ωε̂E− α̂µ̂−1K̂E−ωα̂µ̂−1 β̂E (17)

Since the electric field component is the only remaining vector to be operated on, we
can omit it as we convert the above relation to an operator form. Moreover, we forcibly
multiply by ω and obtain:

Γ̂b = ω2
(

α̂µ̂−1 β̂− ε̂
)
+ ω

(
α̂µ̂−1K̂− K̂µ̂−1 β̂

)
− K̂µ̂−1K̂ (18)

with the associated operator equation Γ̂bE = 0. Again, to produce nontrivial solutions,
the determinant of the operator has to be zero. This condition produces the associated
k-surfaces that establishes the spatial properties of the wave during propagation.

2.4. Phase Matching

The propagation behavior of electromagnetic fields in media is directly derived from
both wave and medium properties. Following Fermat’s principle of least time, whenever
the electromagnetic properties of the medium are changed at an interface, the phase of the
transmitted wave has to match the phase of the incident wave. This condition is known
as ‘phase matching’, and it constitutes the basis of any propagation behavior at interfaces
between media. A general discussion of phase matching and its effects in general reflection
and refraction in material media can be found in references [1,22]. In the case of an interface
between isotropic media with (ε1, µ1) and (ε2, µ2), the wave numbers of the incident and
transmitted waves write as:

k1 =
ω

v1
=

ω

c
√

ε1µ1 k2 =
ω

v2
=

ω

c
√

ε2µ2 (19)
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The directions of the wave vectors that have the above sizes are configured as a result
of the phase matching condition: to ensure zero phase difference between the incident and
transmitted waves, the wave vector components that are parallel to the interface have to be
equal. This leads to Snell’s law of refraction:

k1 sin θ1 = k2 sin θ2 (20)

where θ1 and θ2 are the incident and transmission angles, respectively. The same consid-
erations can be applied for anisotropic media, where the direction of the incident wave
imposes the specific values of medium response (ε, µ) that are experienced by it. Nonlinear
phenomena such as three-wave mixing rely on the combination of two waves at frequencies
ωa and ωb which interact in a certain region of a nonlinear medium that exhibits second-
order crystalline asymmetry (second-order nonlinear medium), resulting in the generation
of a third wave at ωc. The process is time-reversed, meaning that there is also the possibility
of obtaining waves ωa and ωb from propagating wave ωc inside the second-order nonlinear
medium. Regardless of the desired nonlinear mixing, assuming ωa > ωb, the process must
obey the phase matching condition, which in this case transforms into the following:

ωc = ωa ±ωb; kc = ka + kb (21)

Of the two above relations, the first represents the energy conservation condition, and
the second one represents the phase matching condition. The second relation generates
the direction and the spatial frequencies that are allowed to be created by the nonlinear
medium. The configuration of the directions and spatial frequencies has to also take into
account the energy conservation relation, which adds another constraint to the problem.
As an example, the second harmonic generation process along a single direction (collinear
SHG) can be viewed as two waves having the same fundamental frequency ωa = ωb = ω
that interact in a second-order nonlinear medium to produce an up-converted signal
ωc = 2ω. When considering an uniaxial nonmagnetic medium (i.e., ε11 = ε22 = ε 6= ε33
and µ̂ = Î, where Î is the identity matrix), the phase matching condition becomes:√

ε(ω) =
√

ε(2ω) (22)

For an isotropic medium, this condition is impossible to realize due to the naturally
dispersive behavior enforcing that ε(2ω) > ε(ω). However, for uniaxial crystals, the
mixing can still be performed by appropriately choosing the ordinary and extraordinary
directions of propagation in such a way as to satisfy Equation (22).

At any given frequency, bulk materials exhibit either positive or negative dispersion
for both electric and magnetic properties. However, due to the fact that artificial media
can be tailored in order to obtain designer dispersion properties for each property, the
phase matching condition for nonlinear processes can be significantly altered by means
of independent conditions on the dispersion properties. Therefore, the introduction of
artificial media with controllable properties relaxes the phase matching condition by
introducing four degrees of freedom, in the form of sign control of ε and µ, as well as
control of the dispersion properties of the two properties. For example, in such an artificial
media, the collinear SHG condition given by Equation (22) is changed to:√

ε(ω)µ(ω) =
√

ε(2ω)µ(2ω) (23)

and while the dispersion behavior of each electromagnetic field property ensures that
for isotropic media there can be no situation in which ε(ω) = ε(2ω) or µ(ω) = µ(2ω),
Equation (22) can be satisfied if one of the parameters exhibits a controllable dispersion
behavior (either positive or negative) in such a way as to compensate the dispersion
behavior of the other parameter. This approach can be extended for nonlinear three-wave
mixing configurations, in which the directions of the waves are configured based on
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the compatibility with the medium properties and the phase matching condition. For
bianisotropic media, the introduction of the chirality tensor further complicates the phase
matching condition, and the wave vector matching condition is solvable by numeric and
graphic methods. Lastly, the non-local characteristic of artificially-created media imply
that the dispersion properties are not obeyed in the entire volume or even in points along
the same axis. This leads to a case-by-case study of the dispersion properties, where the
direction of the incident wave as well as the coordinates of incidence on the material can
strongly influence the dispersion characteristics.

3. Results and Discussion

The obtained k-surfaces are the nontrivial solutions of the equation set Γ̂E = 0 at a
single angular frequency ω, where the operators Γ̂ can be either Γ̂0, Γ̂µ or Γ̂b. Although it
is fundamentally established, we have also reviewed the classic model, in which all three
permittivity coefficients are positive for establishing completeness of our framework as
well as to validate the results obtained in our calculations.

3.1. Nonmagnetic Dielectrics

For non-magnetic, non-chiral materials, the dispersion properties are obtained by
solving the equation Γ̂0E = 0. When ε11 6= ε22, a biaxial medium is obtained, with an
optical axis in the k1k3 plane for ε11 < ε22 and in the k2k3 plane for ε11 > ε22. When
ε11 = ε22, the optical axis becomes parallel to the k3 axis, describing a uniaxial medium.
When all three permittivities are equal, the medium is isotropic, and any direction in space
can serve as an optical axis. The k-surfaces describing these cases are presented in Figure 2,
in which, for the purpose of maintaining generality of our method, the values of ε have
been conveniently chosen for showcasing the effect, rather than being assigned the values
of specific materials.

(a) (b) (c)

Figure 2. Classic k-surfaces for: (a): A biaxial crystal with ε11 = 3.22, ε22 = 3.84 and ε33 = 9, for which the two surfaces
intersect in one point in the Ox1x3 plane. When interchanging the values of ε11 and ε22, the k-surface does not change its
shape, rather the axes k1 and k2 are interchanged; (b): A uniaxial crystal with ε11 = ε22 = 3.22 and ε33 = 9 for which the
two surfaces intersect in one point along the x3 axis; (c): An isotropic crystal with ε11 = ε22 = ε33 = 3.22 for which the two
surfaces are identical for all points in space. For all cases, the values of the permittivity components are arbitrary, which
reinforces the general validity of the model. The optic axis is the direction defined by the origin of the coordinate system
and the intersection of the two surfaces.

In terms of field properties, the sheets forming the k-surface offer information on the
velocity and phase attained by any polarization mode. For biaxial media, the k-surface is
composed of two sheets, that form two ellipsoids of revolution centered around the origin.
The propagation direction serves as the director of an oriented plane, whose intersection
with the two sheets gives the values of the refractive indices experienced by any polarization
mode. In the case of uniaxial media with positive permittivity values, one sheet of the
k-surface becomes an ellipsoid of revolution, while the other one becomes a sphere. The
sphere describes the ordinary, while the ellipsoid describes the extra-ordinary propagation
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mode. In the case of isotropic media, the two sheets are overlapped, resulting in a single
mode of propagation in which the refractive index experienced by all polarizations is the
same regardless of the propagation direction.

In the case of artificial media, the signs of ε11 and ε22 can be tailored to be either
positive or negative. In the case of simultaneously negative ε11 and ε22, we obtain the so-
called electric plasmas, which represent metals at optical frequencies [24]. The case in which
just one of the permittivity coefficients has its sign reversed does not occur naturally, but can
be obtained by using appropriate metasurface architectures. The conducted study assumes
that |ε11| = |ε22|, which for positive-valued permittivity values would describe a uniaxial
crystal. This special case was chosen for two reasons: firstly, uniaxial crystals are extensively
used in optical applications, which enables an application-oriented comparative study,
and secondly, in a biaxial crystal, the shape of the resulting k-surfaces would not change,
but would only suffer deformations along the axis, causing asymmetry. The resulting
k-surfaces for nonmagnetic, non-chiral artificial crystals in which the signs of ε11 and ε22
are either alternatively or simultaneously shifted between negative and positive values.
The cases are represented in Figure 3.

ε
22= -3.22

ε
11= 3.22

a) b) c)

ε
22= 3.22

ε
11= -3.22

ε
22= -3.22

ε
11= -3.22

Figure 3. Extended k-surface for: (a) A nonmagnetic, non-chiral uniaxial crystal with ε11 = 3.22,
ε22 = −3.22 and ε33 = 9; (b) A nonmagnetic, non-chiral uniaxial crystal with ε11 = −3.22, ε22 = 3.22
and ε33 = 9; (c) A nonmagnetic, non-chiral uniaxial crystal with ε11 = ε22 = −3.22 and ε33 = 9.

For ε11 > 0 and ε22 < 0, the k-surface obtained still comprises of two sheets, but their
point of intersection now lies in the k1k2 plane. The sheets are symmetric with respect
to this point, and suffer a certain deformation. The symmetry plane of the surface is
perpendicular to the k1k2 and k1k3 planes, and contains the point of intersection between
the two sheets. This case is presented in Figure 3a. When switching the signs between
ε11 and ε22, the surface is ’rotated’ with π/2 around the axis parallel with k1k3 which
contains the point of intersection, with the rest of the properties remaining unchanged.
This behavior is consistent with the symmetric tensor theory. This case is presented in
Figure 3b. When both ε11 and ε22 are negative, we obtain a negative-index material which
is characterized by a single k-surface describing a rotational hyperboloid instead of an
ellipsoid. Moreover, there is only one sheet composing the surface instead of two, and
depending on the values of the two permittivity coefficients, the ellipsoid may possess a
gap region, in which there are no solutions for the wave vector. This case is presented in
Figure 3c.

3.2. Magnetic, Non-Chiral Dielectrics

For determining the associated k-surfaces in this case, we have considered an electrically-
uniaxial medium with ε11 = ±3.22 and ε22 = ±3.22 independently. To model the magnetic
response, we have also imposed fixed values µ‖ = 1,±1.2 and µ⊥ = 1,±1.2, independently.
The chirality coefficient is zero for all subcases considered. Just as before, to preserve gen-
erality of our method, the values considered for the response components are conveniently
chosen, in order to showcase the modifications to the associated k-surfaces. The first
study conducted assumes positive permittivity values while cycling through the fixed
permeability values, and the results are presented in Figure 4, with the specific values of
each sub-case indicated in the insets.
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Figure 4. Extended k-surface for various configurations of non-chiral artificial media:
ε11 = ε22 = 3.22, ε33 = 9, µ⊥ and µ‖ = {1,±1.2} cycled independently, with specific values given
in the insets of the figures: (a) µ‖ = 1, µ⊥ = 1.2; (b) µ‖ = 1, µ⊥ = −1.2; (c) µ‖ = 1.2, µ⊥ = 1;
(d) µ‖ = −1.2, µ⊥ = 1.

Based on the obtained results, the non-chiral version of the artificial media considered
exhibit properties that differ significantly from the classic, non-magnetic positive-valued
ε coefficients: In the (µ⊥ = 1.2, µ‖ = 1) case, presented in Figure 4a, we note that the
magnetic property modifies the solution such that we no longer obtain a uniaxial crystal
even though ε11 = ε22. The change in the value of µ⊥ induces a deformation of the initially
spherical sheet to an ellipsoid along the k2 axis, as well as an inclination of the optic axis,
from being parallel to the k3 axis to a direction contained in the k2k3 plane, at a certain
angle α. This change of direction is due to the fact that the intersection point of the sheets
moves to a coordinate located in the k2k3 plane. When moving to the (µ‖ = 1, µ⊥ = −1.2)
case, pictured in Figure 4b, we obtain a surface that comprises of two sheets, one being a
deformed ellipsoid and the other a deformed hyperboloid, both intersecting at a point. The
surface is similar to the one presented in Figure 3b, with the difference that the coordinates
of the intersection point between the two sheets shifts from (2.2, 1.9, 0) to approximately
(1.8, 1.9, 0) in the (k1, k2, k3) set, with a shift to a smaller k1 value. For the (µ‖ = 1.2, µ⊥ = 1)
case, pictured in Figure 4c, the k-surface is similar to that of the classic biaxial media,
with the difference that the spherical surface is deformed to form a hyperboloid along the
k1 axis. The intersection of the two sheets is located in the k1k3 plane, and therefore the
direction of the optic axis is contained in the same plane, with the same angle of inclination
α with respect to the k3 axis which characterizes the optic axis of the reference uniaxial
media. In the (µ‖ = −1.2, µ⊥ = 1) case, pictured in Figure 4d, the k-surface transforms
into a single-sheet hyperboloid, which under the given parameter values covers the entire
positive octant. This behavior implies that there are no forbidden parameter values in the
calculation of the wave vectors.
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The second set of calculations were performed by setting ε11 = −3.22, while ε22
remains unchanged and the values of the permeability coefficients were selectively cycled
through the same set of fixed values. The results are presented in Figure 5.

ε μ
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Figure 5. Extended k−surface for various configurations of non-chiral artificial media in which
ε11 = −3.22, ε22 = 3.22, ε33 = 9, µ⊥ and µ‖ = {1,±1.2} are cycled independently, with specific
values given in the insets of the figures: (a) µ‖ = 1, µ⊥ = 1.2; (b) µ‖ = 1, µ⊥ = −1.2; (c) µ‖ = 1.2,
µ⊥ = 1; (d) µ‖ = −1.2, µ⊥ = 1.

In the (µ‖ = 1, µ⊥ = 1.2) case, depicted in Figure 5a, we obtained a two-sheet surface
with an intersection between them in the k1k3 plane. The two surfaces are mirrored with
respect each other by means of the axis parallel to k3 that contains the intersection point.
For the (µ‖ = 1, µ⊥ = −1.2), presented in Figure 5b the k-surface contains two sheets
that do not intersect in any point. Also, the two sheets intersect the k1 axis in k1 = 1 and
k1 ' 1.8, which in combination with the hyperbolic shape of both surfaces allows the
existence of forbidden propagation directions, where no solutions for k are obtained. In the
(µ‖ = 1.2, µ⊥ = 1) case, shown in Figure 5c, the two-sheet surface is similar to the one in
Figure 5a, but the intersection point of the sheets lies in the k1k2 plane and the mirroring
axis is parallel to k2 and contains the intersection point. For the (µ‖ = −1.2, µ⊥ = 1) case,
shown in Figure 5d, the k-surface contains three sheets, exhibiting two intersection points,
one in the k1k2 plane and one in the k1k3 plane. The three sheets form in a manner that
allows the existence of forbidden propagation directions.

The third set of calculations were performed by setting ε11 = ε22 = −3.22, and the
values of the permeability coefficients were selectively cycled through the same set of fixed
values. The results are presented in Figure 6.

For the (µ‖ = 1, µ⊥ = 1.2) case, depicted in Figure 6a, the associated k-surface
consists of a single-sheet hyperboloid, which is conventionally obtained in non-magnetic
negative-index media. At infinity, this sheet is asymptotic to a conical lateral surface,
which implies that all the directions contained within the volume of the conical surface do
not support propagation modes. For the (µ‖ = 1, µ⊥ = −1.2), depicted in Figure 6b, the
k-surface consists of two sheets which do not intersect each other, allowing for forbidden
propagation modes. Furthermore, there is no direction intersecting both surfaces; therefore,
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regardless of direction, there is at most only one compatible propagation mode. For the
(µ‖ = 1.2, µ⊥ = 1) case, depicted in Figure 6c, a hyperbolic one-sheet surface is obtained,
with the same properties as the one in Figure 6a. In the (µ‖ = −1.2, µ⊥ = 1) case, depicted
in Figure 6d, the associated k-surface consists of three sheets, two of which have only
one intersection point in the k1k3 plane, and the third being separated from the other
two. Contrary to the case depicted in Figure 6b, however, any direction will intersect at
least one of the three sheets, and therefore, there are no forbidden propagation modes.
Some directions intersect only one sheet of the k-surface, resulting in only one compatible
propagation mode.

a) b)

c) d)

�

� �

�= -3.2211
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= 1
= 1.2
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Figure 6. Extended k-surface for various configurations of non-chiral artificial media in which
ε11 = ε22 = −3.22, ε33 = 9, µ⊥ and µ‖ = {1,±1.2} are cycled independently, with specific values
given in the insets of the figures: (a) µ‖ = 1, µ⊥ = 1.2; (b) µ‖ = 1, µ⊥ = −1.2; (c) µ‖ = 1.2, µ⊥ = 1;
(d) µ‖ = −1.2, µ⊥ = 1.

3.3. Chiral, Magnetic Media

When introducing the bianisotropic components in the equations, the k-surfaces suffer
a certain deformation from the shapes attained by their non-chiral counterparts. The
deformations induced are strongly dependent on the values of the bianisotropic coefficients
α̂ and β̂. In the calculations, we assumed that the reciprocal influences were equal, due to
the symmetry of the medium, and equal to the chirality tensor defined as:

n̂ =

 0 0 0
0 0 −γ
0 γ 0

 (24)

where γ is the chirality coefficent. Based on this condition, the bianisotropic operator given
by Equation (18) becomes:

Γ̂b = ω2
(

n̂µ̂−1n̂− ε̂
)
+ ω

(
n̂µ̂−1K̂− K̂µ̂−1n̂

)
− K̂µ̂−1K̂ (25)
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The nontrivial propagation mode solutions are obtained by imposing the determinant
of the operator to equal zero. Due to the fact that the chirality coefficient appears only
in the case where the behavior of the magnetic field component is no longer negligible,
nonmagnetic media automatically have no chirality coefficient. For magnetic media, the
results are presented in a comparative manner in Figure 7, by overlapping the k-surfaces
of the same medium in a chiral and non-chiral configuration.
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Figure 7. Extended k-surfaces for chiral magnetic media under various permittivity configurations
referenced to the same non-chiral configuration, with the values of the electric and magnetic response
components being specified in the insets: ε11 = ε22 = 3.22, ε33 = 9 and: (a) µ‖ = 1.2, µ⊥ = 1;
(b) µ‖ = 1, µ⊥ = 1.2 ; (c) µ‖ = −1.2, µ⊥ = 1, (d) µ‖ = 1, µ⊥ = −1.2.

Initially, we have considered ε11 = ε22 = 3.22, and we have cycled µ‖ and µ⊥ between
the values±1.2 for a chirality coefficient γ = 6× 10−9. The value of the chirality factor was
selected in such a way as to represent clear deformations of the k-surfaces. In the (µ‖ = 1.2,
µ⊥ = 1) case, presented in Figure 7a, the two-sheet k-surface is modified in such a way
that both sheets are ellipsoids, and the chirality coefficient changes the direction of the
optic axis from the k2k3 plane to the k1k3 plane. The chirality coefficient also introduces
significant growth in the ellipsoid semiaxes values. In the (µ‖ = 1, µ⊥ = 1.2) case, depicted
in Figure 7b, the two-sheet k-surface yields an optic axis in the k1k3 plane for both chiral
and non-chiral configurations, as well as the associated modifications to the ellipsoid
semiaxes. This implies that the introduction of the chirality coefficient offers reduced
sensitivity to the changes in the permeability coefficients, keeping the optical axis in the
k1k3 plane, regardless of the switch between the values of the permeability components.
For the (µ‖ = −1.2, µ⊥ = 1) case, presented in Figure 7c, the one-sheet hyperboloid is
scaled and deformed at lower k-values. For the (µ‖ = 1, µ⊥ = −1.2) case, presented in
Figure 7d), the two-sheet surface maintains the intersection point in the k1k0 plane, but the
chirality coefficient shifts it towards a lower k1/k0 coordinate. The induced deformations
in this case are negligible.
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3.4. Phase Matching

Regarding phase matching, we limited our study to the collinear generation of the
second harmonic (SHG) in the same uniaxial media, in which the dispersion properties
of the electric and magnetic components were independently switched from positive to
negative as a function of the direction. The condition of obtaining collinear fundamental
and second harmonic signals is by default incompatible with chiral media, in which the
chirality tensor does not permit Equation (23) to be valid. While not discussed here, non-
collinear configurations permit the use of chiral media for obtaining second harmonics in
desired directions. The directions allowing collinear SHG are defined on one end by the
origin of the k1k2k3 representation set and on the other end by the geometric locus defined
by the intersection of the sheet at the fundamental frequency ω and at the harmonic 2ω.
For the case in which no such intersection exists, there is no possibility of directly achieving
collinear SHG. The results for a nonmagnetic medium in which the permittivity values are
set in order to highlight both positive and negative dispersion are presented in Figure 8.
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Figure 8. Extended k−surfaces for nonmagnetic artificial media in which the permittivity values
are cycled between fixed values in such a way as to highlight positive dispersion. In all cases,
ε33(ω) = 9 and ε2ω = 10.5. The directions corresponding to collinear phase matching are given
by the intersections between a sheet at ω (red) and one at 2ω (blue). The cases are: (a) ε11(ω) =

ε22(ω) = 3.22, ε11(2ω) = ε22(2ω) = 5.76; (b) ε11 = −ε22(ω) = −3.22, ε11(2ω) = −ε(2ω) = −5.76;
(c) ε11(ω) = ε22(ω) = −3.22, ε11(2ω) = ε22(2ω) = −5.76.

Based on the obtained results, we can formulate the following discussion: In the
classical, positive-valued ε and µ materials, the intersection between two sheets at ω
and 2ω represents a circle between either the ellipsoid sheet of the ω-surface and the
spherical sheet of the 2ω-surface, or the intersection between the spherical sheet of the ω-
surface and the ellipsoid sheet of the 2ω-surface, depending on the positivity of dispersion.
The first case presented in Figure 8a, in which ε(2ω) > ε(ω) corresponds to a positive
uniaxial crystal, that allows the so-called ‘ee-o’ mixing, in which two waves at frequency ω
propagating on the extraordinary mode will mix in order to produce a 2ω wave propagating
on the ordinary mode. The phase matching angle is calculated as the angle between a
line, which contains both the origin and the intersection point between the sheets at ω and
2ω, and its projection on the k1k2 plane. The circle is parallel to the k1k2 plane and has k3
passing through its center, making it a symmetry axis. Any plane containing k3 sectioning
the k-surface will result in a circle-ellipse configuration, with the point of intersection at the
same angle of deviation with respect to the axis defined in the k1k2 plane by the sectioning
plane. When changing the sign of the permittivity along one axis, say ε11, the associated
k-surfaces are modified accordingly, as we have previously seen. As presented in Figure 8b,
when increasing the value of ε11 and ε22, the intersection point between the two sheets at
a given frequency shifts to a greater value as ω increases. Moreover, the geometric locus
of the intersection between the sheets at ω and 2ω is defined by two curves: One curve is
determined close to the intersection points of each individual k-surface, while the second
is located further away, at greater permittivity values. In the case of negative dispersion,
the k-surface at 2ω appears ‘displaced’ to lower values with respect to the one at ω: the
intersection point of the two sheets at 2ω is closer to the origin than the one taken at ω.
The curves describing the geometric locus of the intersections between the sheets at ω and
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2ω retain their shape, but have their coordinate values decreased. In both cases, it is clear
that there is no possible way of intersecting both curves with a single line coming from
the origin, meaning that the obtained phase matching solutions are not degenerated. It
is important to state that for this particular case, obtaining two phase matching curves
instead of just one doubles the angular resolution of natural phase matching. Lastly, in the
case of both ε values being negative, the single-sheet hyperboloids at ω and 2ω described
in Figure 8c intersect each other, the intersection being a circle which is parallel to the k1k2
plane. The intersection circle also has k3 as a symmetry axis, which implies that no matter
the sectioning plane, the phase matching angle defined as before will have the same value,
regardless of the direction of the cut.

When considering magnetically-dispersive media, the k-surfaces change their shapes
and relative position as a function of either µ‖ or µ⊥. In order to trace out the modification
to the k-surface imparted by the positive-dispersion materials, the values of the electric
permittivity were kept constant, with only the signs being cycled between positive and
negative, for both the fundamental and the second harmonic. The artificial medium
under consideration exhibits positive dispersion for both positive and negative-valued
permeability components. For positive values of the electric permittivity, the obtained
results are presented in Figure 9, while for negative values, the results are presented in
Figure 10.
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Figure 9. Extended k−surfaces for positive-valued permittivity artificial media exhibiting positive
magnetic dispersion, for both positive− and negative−valued µ‖ and µ⊥. The permittivity values
are ε11 = ε22 = 3.22, ε33 = 9, and the medium is considered electrically non−dispersive, in order to
highlight the modifications induced only by the magnetic response. The cases are: (a) µ‖(ω) = 1.2,
µ‖(2ω) = 1.8, µ⊥(ω) = µ⊥(2ω) = 1; (b) µ⊥(ω) = 1.2, µ⊥(2ω) = 1.8, µ‖(ω) = µ‖(2ω) = 1;
(c) µ‖(ω) = −1.2, µ‖(2ω) = −1.8, µ⊥(ω) = µ⊥(2ω) = 1; (d) µ⊥(ω) = −1.2, µ⊥(2ω) = −1.8,
µ‖(ω) = µ‖(2ω) = 1.
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In the case of positive-valued ε and µ, we first assume that the magnetic response
is exhibited only by µ‖, together with an associated positive dispersion. Apart from a
modification of the direction of the optical axis for the two individual frequencies, which is
to be expected, the two k-surfaces intersect each other in two points, corresponding to the
optical axis of each k-surface. This case is presented in Figure 9a. When keeping µ‖ = 1
and attributing a response to the µ⊥ component, as well as a positive dispersion, the result
mirrors the one above with respect to the x3 axis. Just as before, phase matching is obtained
at the optical axis of each surface. This case is depicted in Figure 9b. When changing
the sign of the µ components, we obtain significant modification of the two surfaces: For
negative-valued, positive-dispersion µ‖, the intersection of the single-sheet hyperbolas is a
curve in the k2k3 plane, as presented in Figure 9c. For negative-valued, positive-dispersion
µ⊥, the intersection of the two-sheet is created by displacing the 2ω surface with respect
to the fundamental. The displacement increases with the dispersion coefficient, but is
negligible for reasonably-small modification of µ⊥. From a phase-matching point of view,
this behavior results in a relatively-low angular sensitivity across a broad spectrum, making
such media appropriate for broadband mixing techniques. This configuration is presented
in Figure 9d.
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Figure 10. Extended k-surfaces for negative-valued permittivity artificial media exhibiting positive
magnetic dispersion, for both positive− and negative−valued µ‖ and µ⊥. The permittivity values
are ε11 = ε22 = −3.22, ε33 = 9, and the medium is considered electrically non−dispersive, in order
to highlight the modifications induced only by the magnetic response. The cases are: (a) µ‖(ω) = 1.2,
µ‖(2ω) = 1.8, µ⊥(ω) = µ⊥(2ω) = 1; (b) µ⊥(ω) = 1.2, µ⊥(2ω) = 1.8, µ‖(ω) = µ‖(2ω) = 1;
(c) µ‖(ω) = −1.2, µ‖(2ω) = −1.8, µ⊥(ω) = µ⊥(2ω) = 1; (d) µ⊥(ω) = −1.2, µ⊥(2ω) = −1.8,
µ‖(ω) = µ‖(2ω) = 1.

In the case of negative-valued ε, the magnetic property configurations are discussed
as follows: For a positive-valued µ‖, the two hyperbolas are not intersecting each other
in any point, meaning that collinear phase matching is not possible in this configuration.
The associated k-surfaces are presented in Figure 10a. For a positive-valued µ⊥, the two
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k-surfaces are mirrored to the ones shown in configuration (a) with respect to the x3 axis,
and do not intersect each other. For negative-valued µ‖, the intersections of the two-sheet
k-surfaces are two curves, one obtained from the intersection of the relatively-flat surfaces
obtained at highter values of k2/k0, and the other obtained by the displacement of the
inflection point belonging to each surface. As the frequency increases, this inflection
point moves significantly towards higher-values of k1, which indicates a higher angular
sensitivity to broadband mixing. This configuration is presented in Figure 10c. For negative-
valued µ⊥, the intersection of the two sheets is obtained only for the surfaces localized
at low values of k3, with the other sheets being displaced with respect to each other as
µ⊥ increases. This configuration is presented in Figure 10d. Lastly regardless of the
configuration used, introducing the chirality factor γ only introduces slight modifications
in the behavior of the two sheets, and only if the chirality factor exhibits dispersion. As a
result, the tuning curves that act as support for phase mixing in the collinear configuration
are not modified in a significant way with the introduction of the chirality factor.

4. Conclusions

In this paper, we have theoretically characterized the set of possible behaviors exhib-
ited by artificial media by means of extending the k-surface framework to negative-valued
electromagnetic properties, as well as chiral media. Our framework finds a virtually-
endless set of applications due to the possibility of creating artificial media with designer
properties with individual sign and dispersion control of all the ε and µ components across
each direction, as well as the possibility of artificially-introducing chirality in the desired
medium. This remarkable control of every property was recently offered by metamaterials
and metasurfaces. Apart from characterization of the properties at a given frequency, the
study offers some insight into the nonlinear properties of the artificial media having the
above electric and magnetic properties. Due to the fact that experimentally, the nonlinear
efficiency is expressed by means of the collinearly-generated second harmonic generation,
we have characterized the collinear phase matching condition for all the possible configu-
rations, in the absence of a chirality factor. The importance of our work resides in the fact
that our extended framework is able to provide easily-readable, direct information on the
optical properties of the desired medium by providing the necessary estimates of ε̂, µ̂ and
n̂ components. Specifically, our framework is able to offer a graphic solution that is able
to detect the presence of an optical axis under certain configurations or the presence of
a phase matching tuning curve under specific conditions, given a set of input estimates.
The framework is able to operate with positive and negative dispersion materials, and can
account for the dispersion on each direction independently, offering a direct assessment of
the optical properties under any possible combination of input components. The study can
find applications in virtually any aspect of optical characterization of an artificial medium,
either single-frequency or broadband, due to the fact that the framework presented here
offers valuable predictions on the behavior of the artificial medium once it is designed.
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