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Abstract

Review Article

INTRODUCTION
Hereditary ocular diseases encompass a broad spectrum of rare 
conditions either isolated to the eye or present with extraocular 
manifestations such as Stargardt disease and ocular cutaneous 
albinism. In recent years, inherited retinal diseases (IRDs) and 
inherited optic neuropathies have dominated discussions due 
to rapid evolution in the therapeutic landscape in gene and cell 
replacement therapies for these disease entities.

IRDs primarily arise from mutations in nuclear genes 
found in the photoreceptors  (PRs) and/or retinal pigment 
epithelium  (RPE). Depending on the causative gene, IRDs 
can disproportionately affect the rod or cone PRs, thus 
impacting peripheral or central visual fields, night or colour 
and daytime vision to different degrees. Most IRDs progress 
slowly, though marked variability in disease onset and 
severity exists depending on the underlying mutation. Retinitis 
pigmentosa (RP) is the most common form of IRD.

In inherited optic neuropathies, mutations are predominantly 
identified in the mitochondrial genome. Painless, subacute, 
central visual loss may occur unilaterally with sequential second 
eye involvement over days/weeks/months or simultaneously in 

both eyes. Leber hereditary optic neuropathy (LHON) is one of 
the most common mitochondrial disorders with an estimated 
prevalence ranging from 1 in 31,000 to 1 in 54,000.[1‑6]

GENETICS AND INHERITANCE
More than 3 billion nucleotide base pairs residing in 23 pairs 
of chromosomes make up the human genome. Within each 
chromosome are hundreds to thousands of genes, each carrying 
specific instructions for protein synthesis. It is estimated that 
the human genome comprises up to 20,338 genes, each making 
an average of three proteins. Of these, 317 genes (281 mapped) 
are known to cause inherited retinal diseases and, to a lesser 
extent, inherited optic neuropathies  (RetNet @ http://www.
sph.uth.tmc.edu/RetNet/).[7]

Inherited ocular diseases comprise a heterogeneous group of rare and complex diseases, including inherited retinal diseases  (IRDs) 
and inherited optic neuropathies. Recent success in adeno‑associated virus‑based gene therapy, voretigene neparvovec (Luxturna®) for 
RPE65‑related IRDs, has heralded rapid evolution in gene therapy platform technologies and strategies, from gene augmentation to 
RNA editing, as well as gene agnostic approaches such as optogenetics. This review discusses the fundamentals underlying the mode of 
inheritance, natural history studies and clinical trial outcomes, as well as current and emerging therapies covering gene therapy strategies, 
cell‑based therapies and bionic vision.
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As diploid organisms, humans carry two alleles for each gene, 
one inherited from each parent. Hereditary diseases may arise 
from mutations in a single gene (monogenic) or chromosomal 
abnormalities. Common modes of Mendelian inheritance are 
autosomal dominant (AD), autosomal recessive (AR) and sex 
or X linked (XL).

AD disorders manifest from mutation in one allele of the 
disease gene. Offspring of an affected individual have a one in 
two chance of inheriting the mutant allele. Several molecular 
mechanisms underly AD disorders and these include the 
following:[8,9]

•	 Haploinsufficiency: mutation in one allele of the gene 
halves the gene dosage or expression, culminating in 
insufficient protein production to sustain physiological 
function. Aniridia (OMIM #106210) due to mutation in 
the PAX6 gene  (OMIM *607108), a regulatory paired 
box gene crucial to ocular development, is one such 
example. Haploinsufficient truncating mutations in 
the PAX6 gene account for most cases of aniridia, but 
chromosomal rearrangements from deletions in the 11p13 
region (WAGR region) are contributory.[10]

•	 Dominant negative: a mutation whereby activity of 
the wild‑type protein is interfered with by the mutant 
protein.[11] An example is AD retinitis pigmentosa (ADRP) 
due to mutation in the rhodopsin gene  (RHO, OMIM 
*180380). RHO was the first gene in which causative 
mutations were identified to cause RP.[12,13]

•	 Dominant gain‑of‑function mutation: a form of mutation 
whereby activity of the mutated protein is increased 
compared to that of the wild‑type protein.[13] An example 
is the constitutive activation of retinal guanylate cyclase 
1 in AD guanylyl cyclase-activating protein 1 (GCAP-1)-
related AD cone dystrophy.[14,15]

AR disorders arise when both alleles of a gene are mutated, 
resulting in little or no protein production. Recessive mutations 
are more often associated with loss‑of‑function  (LOF) 
mutation. Homozygotes have an identical mutation on both 
alleles, whereas compound heterozygotes have two different 
disease‑causing sequences. Parents of a child with AR disease 
are carriers or heterozygotes.

XL disorders are caused by mutations in genes found on the X 
chromosome and can manifest in recessive or dominant (rare) 
forms. Male‑to‑male transmission is not possible. Affected 
males are hemizygotes and often develop more severe disease 
than females who may or may not manifest disease, the severity 
of which may also be variable due to lyonisation. Lyonisation, 
or X‑inactivation, is a process by which one X chromosome is 
‘silenced’ and rendered inactive. XL recessive IRDs include 
juvenile XL retinoschisis, XL retinitis pigmentosa (XLRP), 
choroideraemia and ocular albinism  (OA). Multimodal 
imaging, particularly fundus autofluorescence, highlights 
distinctive mosaic retinopathy signatures in carriers of XLRP, 
choroideraemia and OA.[16,17]

In contrast to nuclear genes, the mitochondrial genome is 
inherited  (almost) exclusively from the maternal lineage 
and expressed in thousands of copies in each nucleated cell. 
Mitochondria are vital, energy‑generating organelles residing 
outside the nucleus of a cell. In mitochondrial disorders, 
heteroplasmy is a state where wild‑type and mutant alleles 
coexist in varying proportions in different tissue types and may 
influence disease severity. LHON arises from missense point 
mutations in mitochondrial DNA (mtDNA) with m. 11778G>A 
in the ND4 gene being the predominant form.[18] More recently, 
certain variants in the nuclear DNAJC30 gene have been 
reported to cause autosomal recessive (ar) LHON.[19,20]

NATURAL HISTORY STUDIES AND DEFINING 
CLINICAL TRIAL OUTCOMES
The monogenic basis of most IRDs, accessibility of the retina 
for non‑invasive functional testing and multimodal structural 
imaging, coupled with relative immune privilege of the eye, 
render the organ ideal for therapeutic intervention. Tight 
blood–retinal barrier limits or prevents systemic dissemination 
of injected viral vector, while the absence of retinal cell 
division and compensatory retinal neurogenesis mechanisms 
after birth limits any compromise on transgene expression.

Recent success in adeno‑associated virus (AAV)‑based gene 
therapy voretigene neparvovec (Luxturna®; Spark Therapeutics, 
Philadelphia, PA, USA and Novartis, Basel, Switzerland) for 
RPE65‑related IRD[21] moved proof‑of‑concept gene therapies 
for IRDs from bench to bedside, opening the possibilities for 
modulating, halting or even partially reversing the degenerative 
process. With a pivot towards clinical trials for gene therapies, 
natural history studies for specific IRDs are crucial for 
detailed characterisation (both phenotyping and genotyping) 
of populations to better define eligibility criteria, optimal 
therapeutic window and appropriate primary and secondary 
efficacy endpoints for clinical trial design.

When designing a new clinical trial, the chosen efficacy 
endpoints must be meaningful and relevant for the targeted 
retinal disease. Evolution in medicine necessitates constant 
evaluation and updates on the existing standards for safety 
and efficacy outcomes for investigational therapeutic 
trials. Established endpoints from pharmacological trials 
for neovascular age‑related macular degeneration[22‑25] and 
diabetic macular oedema[26] may not be directly relevant 
to IRD. Most IRDs tend to have slow progression with 
wide range of vision ranging from 20/20 to ultra‑low 
vision. Quantitative primary outcome measures based on 
improvement in functional (e.g. best‑corrected visual acuity 
[BCVA]) and structural  (e.g.  central subfield thickness  on 
macular optical coherence tomography) measures alone 
may not accurately reflect treatment efficacy in IRDs. 
Psychophysical tools such as automated or kinetic perimetry, 
microperimetry, pupillometry and electrophysiological tests 
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including electroretinography (ERG) are valuable, provided 
their application is based on cellular target structure. The 
full‑field stimulus test (FST), although not a psychophysical 
equivalent of ERG, can be used to detect residual rod and 
cone sensitivity where ERG is undetectable.[27,28] Surrogate 
endpoints measuring the functional impact on daily activities 
may better reflect treatment efficacy in IRD.[29] An example 
is the multi‑luminance mobility test (MLMT), an orientation 
and mobility  (O&M) course evaluating the speed and 
accuracy at which a patient navigates through an obstacle 
course under various illumination levels. Pioneered in the 
voretigene neparvovec (Luxturna) trials,[21,30‑32] the MLMT as 
a functional endpoint demonstrated meaningful correlation 
with patient’s activities of daily living, which led to market 
approval of Luxturna. Since then, the MLMT has been 
adopted in various ongoing therapeutic interventional trials. 
Virtual reality (VR)‑based O&M platforms provide promising 
alternatives pending further validation,[33] and a Phase 1 study 
evaluating a new VR mobility tool (clinicaltrials.gov identifier, 
NCT04289571) in IRD patients and healthy volunteers is 
underway. Established artificial systems for naturalistic 
test approximating daily activities, such as StreetLab® and 
Homelab®, are also available.[34]

In defining clinical endpoints, outcome measures from any new 
therapy must translate to meaningful change for patients. To 
this end, the Food and Drug Administration (FDA) designates 
importance on applying appropriate patient‑reported outcome 
measures  (PROM) in therapeutic trials, and PROMs are 
increasingly incorporated as outcome measures of visual 
function for gene therapy trials in IRD.[21,35‑37] Despite some 
similarities in phenotype, the experience of living with a 
specific IRD is unique to each patient. Patient‑reported 
outcomes  (PROs) are equally valuable in capturing these 
individual experiences. Until recently, no validated PROM 
questionnaire, not even the well‑established National Eye 
Institute Visual Function Questionnaire 25 (NEI VFQ-25), has 
been used as a primary endpoint for this specific purpose.[38] To 
address this need, the team at Kellogg Eye Centre (University 
of Michigan) derived psychometrically validated PROs, the 
Michigan Retinal Degeneration Questionnaire (MRDQ) and 
the Michigan Vision‑Related Anxiety Questionnaire (MVAQ), 
both available for evaluation.[39,40] Similar requirements exist 
for paediatric IRD patients as adult PROMs may not be directly 
applicable. To accurately assess the impact of IRD and the 
effect of therapy on the paediatric cohort, paediatric‑specific 
PROMs applying the appropriate language and relevant 
experience are required.[41]

THERAPEUTIC APPROACHES
Gene therapies
Gene therapy is broadly defined as the delivery of exogenous 
genetic material into target cells, leading to modification of 
gene expression in order to treat human diseases.[42] IRDs and 

inherited optic neuropathies can lead to devastating irreversible 
blindness and, up until recent times, have conventionally been 
accepted as untreatable. With the advent of gene therapy, 
patients with IRDs may now have a sustained and potentially 
curable modality of treatment.[43] Major advances in gene 
therapy technologies have generated tremendous industrial 
traction, which is a boon to IRD patients as the range of 
conditions with therapeutic trials continues to expand.

Genes can be modified at the genomic or post‑genomic level 
to produce wild‑type functional protein. Its various methods 
include gene supplementation, gene editing, RNA modulation 
using antisense oligonucleotides (ASOs) and optogenetics. To 
ensure therapeutic success, the choice of gene therapy must 
commensurate with the mode of inheritance and the stage of 
disease.

In gene therapy, a vehicle is required to deliver the transgene 
into host cells, using either viral or non‑viral vectors. 
Adeno‑associated viruses (AAVs) are the preferred method 
due to better long‑term retinal transduction, low risk of 
immunogenicity, and low inflammatory and low retinal 
toxicity.[44,45] AAVs are limited by their transgene cargo 
capacity (4.7 kB) compared to lentiviruses (8 kB).[46] Non‑viral 
vector alternatives include nanoparticles, liposomes or naked 
plasmid DNA.[47] Delivery can be approached in one of three 
ways: intravitreal, subretinal or suprachoroidal [Figure 1], each 
with its own advantages and disadvantages [Table 1].

Gene supplementation
Gene supplementation replaces the defective gene by delivering 
the wild‑type gene (transgene) into host cells using viral vectors. 
This approach is amenable to LOF mutation in AR disorders and 
dominant IRDs caused by haploinsufficiency. The therapeutic 
window is critical as this approach requires viable retinal cells.

The AAV2‑based voretigene neparvovec  (Luxturna) 
received FDA (2017) and European Medicines Agency 
(2018) approval as the first ocular gene therapy for the 

Figure 1: Diagram shows the routes of administration for retinal gene 
therapy. [Created using GNU Image Manipulation Program (GIMP)]
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treatment of RPE65‑related retinal dystrophy. A  Phase 3 
trial reported improved MLMT scores, FST values and 
Goldmann visual fields with sustained durability at year 3 and 
4 post‑treatment.[56] To better understand its long‑term safety 
and efficacy profile in the real‑word setting, the PERCEIVE 
study was conceived. To date, the interim 2‑year data showed 
similar safety and efficacy profile to those reported in the 
clinical trials.[57]

In LHON, the RESCUE and REVERSE (GenSight Biologics, 
Paris, France) Phase 3 trials evaluated the efficacy of unilateral 
intravitreal lenadogene nolparvovec (LN; LUMEVOQ®), 
an AAV2 vector encoding the mitochondrial ND4 
protein  (rAAV2/2‑ND4), in patients with newly diagnosed 
(≤6 months, RESCUE; 6–12 months, REFLECT) ND4‑LHON. 
The primary endpoint was not achieved, as the unexpected 
outcome of sustained improvement in BCVA  in both the 
drug‑treated and contralateral sham‑treated eyes was 
observed.[58‑60] A follow‑up non‑human primate study revealed 
viral vector DNA transfer to the contralateral eye, offering a 
plausible explanation for the unexpected bilateral improvement 
despite unilateral injection.[59] The REFLECT study  (2018) 
comparing bilateral LN with bilateral LN/sham reported better 
average BCVA seen in the bilateral LN injection arm versus 
the unilateral LN arm, suggesting a dose effect.[61]

Gene editing
Gene editing is an emerging approach utilising the knockdown 
and replace method to repair dominant negative mutations. In 
certain AD IRDs such as rhodopsin (RHO)‑associated ADRP, 
the mutated allele may exert a toxic dominant negative effect, 
rendering gene supplementation ineffective. In such instances, 
a gene knockdown and replacement approach would be ideal 
for functional and structural rescue.[62]

Clustered Regularly Interspaced Short Palindromic 
Repeats (CRISPR)/Cas9 is a forefront gene editing technology 
involving a guiding RNA (gRNA) and a nuclease (genomic 

scissors) such as Cas9.[63] The CRISPR/Cas9 complex binds, 
cleaves and removes the target mutated gene, while a separate 
AAV vector simultaneously delivers the functional replacement 
gene precisely to the target site. CRISPR/Cas9‑based therapies 
have been applied successfully in mouse models, such as 
in RHO‑RP, using an ‘ablate‑and‑replace’ technique.[64] In 
post‑mitotic retina, inactivation of the cleaved genomic locus 
using non‑homologous end joining has been shown to be more 
efficient over precise corrections using homology‑directed 
repair.[65]

BRILLIANCE is an ongoing Phase 1/2a study for the treatment 
of Leber congenital amaurosis 10  (LCA10). EDIT‑101, a 
CRISPR‑based drug, is used to target the frequent mutation 
c.2991+1655A>G in intron 26 (IVS26) of the CEP290 gene 
to prevent insertion of the pseudoexon, exon X. Early efficacy 
data suggest improvement in FST, BCVA and navigation ability 
in a standardised course.[66]

In vivo base editing using adenine base editors has been 
successfully performed in LCA mouse models with Rpe65 
mutations, demonstrating increased cone survival and 
improved cone‑mediated visual function. This novel proof of 
concept offers an exciting new alternative of gene editing.[67]

Antisense oligonucleotides
ASOs consist of small RNA molecules of 15–30 nucleotides 
in length that are able to hybridise with pre‑messenger or 
messenger RNA (mRNA), thus exerting an effect on pre‑mRNA 
processing or mRNA translation. ASOs can be designed to 
prevent aberrant splicing, block cryptic splice donor sites thus 
skipping of mutated exons, as well as knock down dominant 
negative allele. The use of ASOs as RNA therapy is a growing 
area of investigation within and beyond IRDs.

LCA10 is a childhood‑onset blinding autosomal recessive 
retinal dystrophy arising from biallelic mutations in CEP290, 
and can also be associated with other syndromic ciliopathies 

Table 1. Summary of advantages and disadvantages of the gene therapy delivery approaches.[54,55]

Approach Subretinal Intravitreal Suprachoroidal[48‑51]

Description Delivered between PR and RPE Delivered into vitreous Delivered into SCS between choroid and 
sclera via catheters, needles or microneedles

Advantages Concentration of therapeutics preserved
Delivered directly into the target site of PR 
and RPE
Relative immune privilege of subretinal 
space, minimising the risk of pre‑existing 
NAbs against AAV

More accessible as it is performed in outpatient 
setting in adults
No PPV or retinotomy‑associated complications

More accessible as it is performed in 
outpatient setting using microneedle without 
sclerostomy[52]

No PPV or retinotomy‑associated 
complications
Potentially greater spread of vectors

Disadvantages Invasive procedure requiring PPV and 
retinotomy; examples of potential 
complications: macular hole, retinal 
detachment, endophthalmitis, foveal atrophy
Limited spread of vectors subretinally
Cost (e.g. OT, surgical consumables)

Dilution of therapeutics in vitreous
Poorer transduction due to physical barrier of 
ILM impeding therapeutics reaching PR and RPE
Exposure to NAbs against AAV inducing humoral 
response* and reducing treatment response[53]

AAV vectors need to traverse choroid to 
reach PR and RPE before potential rapid 
clearance via choriocapillaris
Potential exposure to pre‑existing NAbs as 
SCS is beyond blood‑retinal barrier

*May be mitigated by ‘directed evolution’. AAV: adeno‑associated virus, ILM: internal limiting membrane, NAbs: neutralising antibodies,  
OT: operating theatre, PPV: pars plana vitrectomy, PR: photoreceptor, RPE: retinal pigment epithelium, SCS: suprachoroidal space



Chan, et al.: Therapeutic landscape for inherited ocular diseases

Singapore Medical Journal  ¦  Volume 64  ¦  Issue 1  ¦  January 2023 21

Ta
bl

e 
2.

 S
um

m
ar

y 
of

 b
io

ni
c 

sy
st

em
s.

Pr
os

th
es

is
Ar

gu
s 

II[1
05

‑1
07

]
IR

IS
 II

OP
TO

‑E
PI

RE
T[1

08
]

Al
ph

a 
AM

S[1
09

]
PR

IM
A[1

10
]

Ph
oe

ni
x[9

9]
 

Bi
on

ic
[1

11
]

Su
pr

ac
ho

ro
id

al
 

Pr
os

th
es

is
[1

12
]

Su
pr

ac
ho

ro
id

al
 

tr
an

sr
et

in
al

 s
tim

ul
at

io
n 

de
vi

ce
[1

13
,1

14
]

Or
io

n[1
15

]

Or
ga

ni
sa

tio
n

Se
co

nd
 

Si
gh

t 
Sy

lm
ar

, 
CA

, U
SA

Pi
xi

um
 V

is
io

n,
 

Pa
ris

, F
ra

nc
e

Na
no

re
tin

a 
He

rz
liy

a,
 T

el
 A

vi
v,

 
Is

ra
el

 

Re
tin

a 
Im

pl
an

t A
G,

 
Re

ut
lin

ge
n,

 B
ad

en
-

W
ür

tte
m

be
rg

, G
er

m
an

y

Pi
xi

um
 V

is
io

n,
 

Fr
an

ce
Un

iv
er

si
ty

 o
f 

Sy
dn

ey
, U

NS
W

Bi
on

ic
 V

is
io

n,
 

Vi
ct

or
ia

, A
us

tra
lia

Os
ak

a,
 J

ap
an

Se
co

nd
 S

ig
ht

, 
US

A

Si
te

 o
f i

m
pl

an
t

Ep
ire

tin
al

Ep
ire

tin
al

Ep
ire

tin
al

Su
br

et
in

al
Su

br
et

in
al

Su
pr

ac
ho

ro
id

al
Su

pr
ac

ho
ro

id
al

Su
pr

ac
ho

ro
id

al
Co

rt
ic

al

Im
ag

e 
ac

qu
is

iti
on

VP
U

VP
U

In
tra

oc
ul

ar
 s

en
so

r 
ch

ip
s

In
tra

oc
ul

ar
 li

gh
t‑s

en
si

tiv
e 

ph
ot

od
io

de
s

VP
U

VP
U

VP
U

VP
U

VP
U

Ou
tc

om
e

Be
tte

r 
ac

cu
ra

cy
 

lo
ca

lis
in

g 
te

st
 o

bj
ec

ts

Im
pr

ov
ed

 ta
rg

et
 

an
d 

m
ot

io
n 

lo
ca

lis
at

io
n,

 
pi

ct
ur

e 
re

co
gn

iti
on

 
an

d 
vi

su
al

 fi
el

d

Go
od

 
bi

oc
om

pa
tib

ilit
y 

w
ith

 ra
bb

it 
ey

es
Pe

nd
in

g 
cl

in
ic

al
 

tri
al

s

Im
pr

ov
ed

 li
gh

t 
pe

rc
ep

tio
n,

 te
m

po
ra

l 
re

so
lu

tio
n 

an
d 

lig
ht

 
lo

ca
lis

at
io

n 
in

 s
ub

je
ct

s

Im
pr

ov
ed

 li
gh

t 
pe

rc
ep

tio
n 

in
 

at
ro

ph
ic

 z
on

e
Be

tte
r l

et
te

r 
re

co
gn

iti
on

Go
od

 
bi

oc
om

pa
tib

ilit
y 

w
ith

 s
he

ep
 e

ye
s

Pe
nd

in
g 

cl
in

ic
al

 
tri

al
s

Im
pr

ov
ed

 ta
rg

et
 

lo
ca

lis
at

io
n,

 
fu

nc
tio

n 
vi

si
on

 
an

d 
ob

se
rv

er
‑r

at
ed

 
qu

al
ity

 o
f l

ife

Su
bj

ec
ts

 a
bl

e 
to

 d
et

ec
t 

ph
os

ph
en

es
De

m
on

st
ra

te
d 

im
pr

ov
em

en
t i

n 
vi

su
al

 
ta

sk
s

On
go

in
g 

cl
in

ic
al

 
tri

al
s 

(c
lin

ic
al

tri
al

s.
go

v 
id

en
tif

ie
r, 

NC
T0

33
44

84
8)

Ad
va

nt
ag

es
Ab

le
 to

 
ov

er
co

m
e 

co
rn

ea
/le

ns
 

op
ac

iti
es

Ab
le

 to
 o

ve
rc

om
e 

co
rn

ea
/le

ns
 

op
ac

iti
es

Si
m

ul
at

es
 n

at
ur

al
 

vi
si

on
 w

ith
 e

ye
 

m
ov

em
en

ts
 

an
d 

pr
es

er
ve

d 
m

ic
ro

sa
cc

ad
es

Do
es

 n
ot

 re
qu

ire
 

ex
te

rn
al

 p
ar

ts

Si
m

ul
at

es
 n

at
ur

al
 v

is
io

n 
w

ith
 e

ye
 m

ov
em

en
ts

 
an

d 
pr

es
er

ve
d 

m
ic

ro
sa

cc
ad

es

W
ire

le
ss

 a
nd

 
sm

al
l‑s

ize
 

im
pl

an
t a

llo
w

s 
fo

r s
ho

rt
er

 a
nd

 
le

ss
‑in

va
si

ve
 

su
rg

er
y

Do
es

 n
ot

 re
qu

ire
 

vi
tre

ct
om

y
Do

es
 n

ot
 re

qu
ire

 
vi

tre
ct

om
y

Do
es

 n
ot

 re
qu

ire
 

vi
tre

ct
om

y
Di

re
ct

ly
 s

tim
ul

at
es

 
vi

su
al

 c
or

te
x,

 
an

d 
th

us
 a

bl
e 

to
 

ov
er

co
m

e 
op

tic
 

ne
ur

op
at

hy

Di
sa

dv
an

ta
ge

s
Re

qu
ire

s 
vi

tre
ct

om
y

Re
qu

ire
s 

vi
tre

ct
om

y
Sh

or
te

ne
d 

lif
es

pa
n 

po
ss

ib
ly

 fr
om

 
m

ic
ro

fra
ct

ur
es

Li
m

ite
d 

by
 c

or
ne

a/
le

ns
 o

pa
ci

tie
s

Bi
g 

ar
ra

y 
is

 d
iff

ic
ul

t 
to

 im
pl

an
t, 

le
ad

in
g 

to
 ri

sk
 o

f v
itr

eo
us

 
ha

em
or

rh
ag

e 
an

d 
re

tin
al

 te
ar

s

Li
m

ite
d 

by
 c

or
ne

a/
le

ns
 

op
ac

iti
es

Re
qu

ire
s 

vi
tre

ct
om

y

Re
qu

ire
s 

vi
tre

ct
om

y
M

ay
 re

qu
ire

 
hi

gh
er

 v
ol

ta
ge

 
du

e 
to

 in
cr

ea
se

d 
di

st
an

ce
 

be
tw

ee
n 

th
e 

im
pl

an
t a

nd
 

RG
Cs

M
ay

 re
qu

ire
 h

ig
he

r 
vo

lta
ge

 d
ue

 to
 

in
cr

ea
se

d 
di

st
an

ce
 

be
tw

ee
n 

th
e 

im
pl

an
t a

nd
 R

GC
s

M
ay

 re
qu

ire
 h

ig
he

r v
ol

ta
ge

 
du

e 
to

 in
cr

ea
se

d 
di

st
an

ce
 

be
tw

ee
n 

th
e 

im
pl

an
t a

nd
 

RG
Cs

Re
qu

ire
s 

ph
os

ph
en

e 
m

ap
pi

ng
 to

 
tra

ns
la

te
 p

er
ce

iv
ed

 
ph

os
ph

en
es

 to
 

fu
nc

tio
na

l v
is

io
n

R
G

C
: r

et
in

al
 g

an
gl

io
n 

ce
ll,

 U
N

SW
: U

ni
ve

rs
ity

 o
f N

ew
 S

ou
th

 W
al

es
, V

PU
: e

xt
er

na
l v

id
eo

 c
am

er
a 

an
d 

pr
oc

es
si

ng
 u

ni
t



Chan, et al.: Therapeutic landscape for inherited ocular diseases

Singapore Medical Journal  ¦  Volume 64  ¦  Issue 1  ¦  January 202322

such as Senior–Loken syndrome, Joubert syndrome, 
nephronophthisis, Bardet–Biedl syndrome and Meckel–
Gruber syndrome.[68] The Illuminate trial evaluated the use of 
QR‑110 or sepofarsen (ProQR Therapeutics NV, Leiden, The 
Netherlands), a 17‑mer 2′‑O‑methyl modified phosphorothioate 
RNA aimed at restoring pre‑mRNA splicing and ciliogenesis 
in CEP290  c.2991+1655A>G by binding to the target 
pseudoexon region (between exons 26 and 27) and blocking 
the active cryptic splicing site. Despite statistically significant 
improvements in visual acuity and retinal sensitivity in the 
Phase 1/2 study, topline results from Phase 2/3 study did 
not meet the primary and secondary endpoints.[69] However, 
post hoc analyses of treatment effect demonstrated benefit in 
vision and retinal sensitivity, which was not observed in the 
sham‑treated group and substantiated by PROs.[70]

Mutations in the USH2A gene can give rise to non‑syndromic 
RP  (nsRP) or syndromic RP associated with hearing 
loss  (Usher syndrome type  2A). Two recurrent mutations 
within exon 13 of USH2A, c.2299delG and c.2276G>T, are 
responsible for up to a third of RP cases in some populations.[71] 
In the Phase 1/2 Stellar trial, intravitreal administration of 
ASO QR‑421a  (ProQR Therapeutics NV) in patients with 
nsRP demonstrated improvements recorded in BCVA, retinal 
sensitivity and perimetry with no safety signals. Based on these 
findings, ProQR announced plans for initiation of two Phase 
2/3 multidose studies, Sirius and Celeste, for advanced and 
early to moderate USH2 populations, respectively.

Optogenetics
Optogenetic approaches offer a promising alternative in the 
setting of PR death. These aim to restore vision by introducing 
light‑sensitive molecules to surviving cell types of the retina 
that enable light perception through the residual neurons.[72]

In the Phase 1/2a PIONEER study, Sahel et al.[73] described 
the use of an optogenetic vector in a patient with RP, where 
an AAV vector containing the light‑sensing channelrhodopsin 
protein fused with a red fluorescein protein was administered 
into the worse seeing eye. Partial visual recovery was reported 
with better visual orientation and improved performance in 
visuomotor tasks.

Clinical trials by Nanoscope (Nanoscope Therapeutics, Inc., 
Bedford, TX, USA) are ongoing to investigate the safety and 
efficacy of vMCO‑010, a virally carried multi‑characteristic 
opsin, in RP  (RESTORE trial, clinicaltrials.gov identifier, 
NCT04945772) and Stargardt disease  (STARLIGHT 
trial, clinicaltrials.gov identifier, NCT05417126). Bionic 
Sight (AGTC, Alachua, FL, USA) is also conducting a Phase 1/2 
trial to evaluate the safety and efficacy of BS01 (clinicaltrials.
gov identifier, NCT04278131), a recombinant AAV vector 
expressing ChronosFP, delivered into the retinal ganglion 
cells of patients with RP. Early observations include markedly 
increased light sensitivity.[74] The safety and tolerability of 
RST‑001 (clinicaltrials.gov identifier, NCT02556736; AbbVie 

Inc., North Chicago, IL, USA), administered intravitreally in 
patients with advanced RP is currently being investigated.

While current trials mainly target the retinal ganglion cells, it 
has been theorised that delivery of optogenetic molecules into 
diseased but viable cone PRs could better utilise post‑PR retinal 
circuitry to gain higher quality vision. In a pre‑clinical study 
where Rcd1 canine models received a unilateral subretinal 
injection containing the enhanced halorhodopsin cDNA from 
Natronomonas fused to the yellow fluorescent protein reporter 
gene, partial visual restoration was observed with promising 
results showing improved ERG, visual‑evoked potential 
responses and visual navigation.[75]

Cell therapies
Irreversible PR and RPE cell death occurs in end‑stage 
retinal disease. As the retina has no intrinsic regenerative 
properties, stem cell therapy has been sought as a new means 
of regenerating the damaged retina.[76] In recent years, we have 
learned that rescue of host PR function arises from bidirectional 
cytoplasmic material exchange between the donor and host 
cells,[77‑80] instead of donor cell integration, and successful 
transfer of material requires viable host PR cells.

Human embryonic stem cell  (hESC)–derived RPE cell 
suspensions have been successfully transplanted subretinally 
into eyes with Stargardt disease, demonstrating survival, 
long‑term safety and improved visual outcomes in Phase 1/2a 
clinical trials.[81‑84] Despite the use of smaller gauge vitrectomy 
and cannula, epiretinal membrane formation from leaked RPE 
cells may cause macular or retinal traction, a known adverse 
event associated with the use of RPE suspension.[85‑87] An 
alternative mode of transplantation using hESCs engineered 
into a monolayer RPE patch on a coated synthetic membrane, 
which better resembled native architecture as the cells were 
differentiated and polarised with established tight junction 
barriers, was used in age‑related macular degeneration.[88]

Success in generating induced pluripotent stem cells (iPSCs) 
has offered a promising alternative to overcoming ethical 
concerns around the use of hESCs. Lingam et al.[89] described 
successful transplantation of iPSC‑derived retinal PR 
precursor cells onto non‑human primate models. At month 3 
post‑transplant, the cells had further developed into mature cone 
PRs, with optical coherence tomography showing restoration 
of the retinal ellipsoid zone.

Proof‑of‑concept studies using hESC/iPSC‑derived retinas 
in end‑stage retinal degeneration models demonstrated graft 
PR maturation, synapse formation between graft PR and 
bipolar cells, and light response in host retinal ganglion 
cells.[90‑93] A safety study using allogenic iPSC‑retinal sheets 
for patients with advanced RP is underway in Japan (trial ID: 
jRCTa050200027), with no safety concerns reported thus far for 
the first two patients. Tumourigenicity remains a major safety 
concern in stem cell-based therapy, necessitating rigorous 
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evaluation of genomic integrity for highly proliferative cells 
(such as progenitor cells) and cells of lower rate of proliferation 
(such as iPSC-derived RPE cells) that require at least in 
vivo tumourigenicity testing.[94] Human leukocyte antigens 
matching may mitigate safety concerns over tumourigenicity 
from undifferentiated iPSC and immunogenicity. Pluripotent 
stem cell-derived retinal organoid as a form of transplantation 
therapy offers exciting prospect.[95‑101] Successful integration of 
retinal organoid‑derived tissue with improved visual function 
has been demonstrated in several IRD models.[102]

Mesenchymal stem cells  (MSCs) of different sources are 
currently being investigated for stem cell therapy in ongoing 
trials. In a Phase 1 trial, intravitreal injection of bone marrow-
derived MSCs showed statistically significant improvement in 
BCVA, although this effect was not sustained and they returned 
to baseline by the 12‑month mark.[103] Subtenon implantation of 
Wharton’s jelly-derived MSCs in a Phase 3 trial demonstrated 
promising results with improvement in BCVA, visual field, 
outer retinal thickness, multifocal ERG and full‑field flicker 
ERG up to 6 months.[104] This extraocular approach potentially 
provides a safer alternative for cell delivery, in contrast to 
intravitreal or subretinal injections.

Bionic systems
Retinal implants provide an innovative method of restoring 
sight in degenerative retinal diseases. Most of these implants 
are either sited epiretinally and tacked onto the retina, inserted 
subretinally or implanted in a suprachoroidal pocket. They 
receive information either from micro‑electrode arrays 
connected to an external camera or through intraocular 
micro‑photodiode arrays. Visual information is then 
transmitted directly to the retinal ganglion cells as electrical 
impulses, bypassing dysfunctional or degenerated PRs. Basic 
form and shape perception is what has been achieved in several 
clinical trials with these devices [Table 2].

Retinal prostheses made from foreign and synthetic materials 
may induce an inflammatory host response, causing fibrosis 
to form around the implant. The thickened fibrotic capsule 
induces a widening of the electrode–retina interface and 
increases perceptual thresholds, ultimately leading to decreased 
signal transmission.[116] Another hardware limitation is the need 
to ensure longevity of the implant, given the inaccessibility 
for maintenance.

Further studies are also ongoing to improve image resolution[117] 
and widen the visual field[118] to improve functional vision. 
The advent of retinal prostheses has truly offered a new and 
promising paradigm of treatment to patients with advanced 
retinal diseases.

CONCLUSION
The therapeutic landscape for inherited eye diseases is 
promising as new clinical trials and therapies continue to 

emerge. While overcoming challenges attributed to various 
gene therapy approaches, collaborative natural history studies 
are fundamental to refine understanding on specific IRDs 
and help define therapeutic strategies. Long‑term safety 
and efficacy data will be pivotal in determining the future 
direction of gene therapy for both monogenic and polygenic 
eye diseases.
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