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We introduce relativistic multi-party biased die-
rolling protocols, generalizing coin flipping to M ≥ 2
parties and to N ≥ 2 outcomes for any chosen outcome
biases and show them unconditionally secure. Our
results prove that the most general random secure
multi-party computation, where all parties receive the
output and there is no secret input by any party,
can be implemented with unconditional security. Our
protocols extend Kent’s (Kent A. 1999 Phys. Rev. Lett.
83, 5382) two-party unbiased coin-flipping protocol,
do not require any quantum communication, are
practical to implement with current technology and
to our knowledge are the first multi-party relativistic
cryptographic protocols.

1. Introduction
M mistrustful parties at different locations roll a N-
faced die via some agreed protocol R in such a way
that if the kth party follows R honestly and the other
parties deviate arbitrarily from R then the outcome o
is obtained with a probability P(o) satisfying |P(o) −
Po| ≤ δ, for all o ∈ ZN = {0, 1, . . . , N − 1}, for all k ∈ [M] =
{1, 2, . . . , M}, for agreed integers M, N ≥ 2 and for an
agreed probability distribution P = {Po}N−1

o=0 . This task
is called M-party-biased N-faced die rolling, or simply die
rolling, and is the most general type of random secure
multi-party computation where all parties receive the
output of the computation and there is no secret input
by any party [1]. Unbiased die rolling corresponds to the
case Po = 1/N, for all o ∈ ZN . A die-rolling protocol R
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is secure if δ = 0 or if δ tends to zero by increasing some security parameter. In the former case, R
is called ideal, while in the latter case is called arbitrarily secure.

Blum [2] invented coin flipping (also called coin tossing) in 1981, which corresponds to die
rolling with M = N = 2 and P0 = P1 = 1

2 , and which is more precisely called two-party unbiased
coin flipping, and showed that it can be implemented securely with classical (non-relativistic)
protocols based on computational assumptions, like the absence of efficient protocols to factor
large integers.

There exists a weak version of coin flipping and die rolling, where each party must only be
guaranteed that specific outcomes o are obtained with probabilities close to Po. In weak die rolling
(also called leader election [3]), there are M = N mistrustful parties at different locations rolling a
N-faced die. For all k ∈ [M], the kth party wins if the outcome is o = k − 1. Thus, the kth party must
be guaranteed that if he follows the agreed protocol honestly then |P(o = k − 1) − Pk−1| ≤ δ, for
δ = 0 or δ tending to zero by increasing some security parameter. Weak coin flipping corresponds to
the case M = N = 2. We note that a protocol implementing secure unbiased die rolling for M = N
also implements weak die rolling. But, the converse is not in general true.

To emphasize the difference between die rolling (coin flipping) and weak die rolling (weak
coin flipping), the former task is sometimes called strong die rolling (strong coin flipping). In this
paper, we focus on strong die rolling and strong coin flipping, but we use the simpler terms ‘die
rolling’ and ‘coin flipping’ to refer to these tasks.

Coin flipping and die rolling are important cryptographic tasks with many applications. Die
rolling can be used by M mistrustful parties in randomized consensus protocols, for example, to
gamble, to choose a leader at random or to fairly allocate resources in a network [4]. It can also be
used by M parties to authenticate to each other remotely and securely [5].

Die rolling and other cryptographic tasks are investigated in different cryptographic models,
i.e. with different rules for the agreed protocols and with different constraints on the dishonest
parties, giving rise to different security levels. The highest security level is unconditional security,
in which the dishonest parties are only constrained by the laws of physics. In particular, protocols
in relativistic quantum cryptography that are provably unconditionally secure guarantee that
dishonest parties who are only limited by quantum physics and the principle of no-superluminal
signalling cannot break the protocols’ security in close to Minkowski space–time (like near the
Earth surface) [6,7].

No-superluminal signalling is a fundamental physical principle of relativity theory stating that
information cannot travel faster than the speed of light through vacuum in close to Minkowski
space–time. This principle is satisfied by quantum physics. In particular, two or more parties
sharing an arbitrary quantum entangled state cannot communicate information faster than the
speed of light by applying arbitrary quantum measurements on the quantum state.

In principle, if the dishonest parties were able to sufficiently modify the space–time geometry,
then they could communicate information faster than the speed at which light travels in close
to Minkowski space–time, making the protocols in relativistic quantum cryptography insecure.
However, we believe this is humanly impractical for the foreseeable future [6]. Thus, we consider
that security based on quantum physics and the principle of no-superluminal signalling in
approximately Minkowski space–time is the highest level of security humanly achievable in the
foreseeable future and we can then sensibly call it ‘unconditional security’.

We note that relativistic quantum cryptography can in principle also be applied in space–
time geometries that are not approximately Minkowski and unconditional security can be
guaranteed, if the parties know the space–time geometry where the protocols take place with
good approximation, and if there is a known upper bound on the speed of light among the
protocols’ locations. This requires in particular that there are no wormholes or other means
allowing signalling between spacelike separated regions [6]. However, as mentioned earlier, we
think it is sensible to assume that relativistic quantum cryptography will only be implemented
by humans near the Earth surface in the foreseeable future. Thus, we think it is reasonable,
and it will simplify our presentation, to assume in this paper that space–time is approximately
Minkowski.
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Bit commitment [8–10], oblivious transfer [11] and a class of secure two-party computations
[11,12] cannot achieve unconditional security with quantum non-relativistic protocols but can
be implemented securely with quantum non-relativistic protocols if the dishonest parties
have bounds on the performance of their quantum memories [13–16]. Bit commitment can
achieve unconditional security with classical relativistic [6,17–20] or quantum relativistic [21–26]
protocols. On the other hand, oblivious transfer and a class of two-party secure computations
cannot achieve unconditional security even with quantum relativistic protocols [1,27]. However,
a class of oblivious transfer protocols with constraints on the space–time regions where the parties
must obtain the outputs are provably unconditionally secure with quantum relativistic protocols
[28–31].

Classical non-relativistic multi-party unbiased coin-flipping protocols cannot achieve
unconditional security [32,33]. Furthermore, they cannot unconditionally guarantee δ < 1

2 if a
weak majority of the players is dishonest [32]. Thus, two-party unbiased coin-flipping protocols
cannot unconditionally guarantee δ < 1

2 , as in this case, security proofs require to assume that one
party is dishonest.

Quantum non-relativistic multi-party unbiased die-rolling protocols cannot achieve
unconditional security either [34–36]. Furthermore, they can only unconditionally guarantee
δ ≥ (1/N)1/M − 1/N [36]. This bound was first shown by Kitaev [34] for M = N = 2 and then was
generalized to N = 2 and M ≥ 2 by Ambainis et al. [35] and to N, M ≥ 2 by Aharon & Silman [36].
The non-existence of unconditionally secure ideal quantum non-relativistic protocols was shown
by Lo & Chau [10].

Moreover, quantum non-relativistic multi-party unbiased die-rolling protocols have been
shown to unconditionally guarantee δ = (1/N)1/M − 1/N + ε, for any even positive integer M and
any N = nM/2, with any positive integer n and any ε > 0 [36]. This was first shown for two-party
unbiased coin-flipping (M = N = 2) by Chailloux & Kerenidis [37]. There exist various quantum
non-relativistic protocols for two-party unbiased coin flipping that unconditionally guarantee
δ < 1

2 [37–43]. Furthermore, the optimal achievable δ that can be unconditionally guaranteed by
quantum non-relativistic multi-party unbiased coin-flipping protocols with H<M honest parties
is δ = 1

2 −Θ(H/M), i.e. satisfying 1
2 − C1(H/M) ≤ δ ≤ 1

2 − C2(H/M), for constants C1 and C2 with
0<C2 <C1 <M/2H [35].

We note that, in contrast to (strong) coin flipping and (strong) die rolling, weak coin flipping
[44,45] and weak die rolling [36] can achieve unconditional security, and arbitrarily small δ, with
quantum non-relativistic protocols.

Kent [5] showed that unconditionally secure two-party unbiased coin flipping with arbitrarily
small δ can be achieved with relativistic protocols. Colbeck & Kent [1] introduced variable bias coin
tossing, in which one of the parties secretly chooses the bias of the coin within a stipulated range,
and gave unconditionally secure quantum relativistic protocols.

Here we extend Kent’s [5] two-party unbiased coin-flipping protocol and prove that for
any integers M, N ≥ 2 and any probability distribution P , there exists a relativistic die-rolling
protocol that is unconditionally secure, with arbitrarily small δ. Furthermore, we show that if
the probabilities in the distribution P are rational numbers and the parties have access to perfect
devices and particularly to perfectly unbiased random number generators then our protocols are
ideal with unconditional security. Our results prove the claim made in Ref. [1]—without proof—
that all random secure two-party computations can be implemented with unconditional security.
Furthermore, our results prove that this holds for an arbitrary number of parties. Our protocols do
not require any quantum communication and are practical to implement with current technology.
To the best of our knowledge, our protocols are the first multi-party relativistic cryptographic
protocols.

2. Security definition
Die rolling is a task in mistrustful cryptography. In mistrustful cryptography, the parties are
assumed to agree on a protocol to implement a task in collaboration, but they are not assumed to
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follow the agreed protocol honestly. It is in this sense that we call the parties mistrustful. This is
in contrast to quantum key distribution [46], for instance, where Alice and Bob collaborate with
mutual trust to establish a shared key, while guaranteeing that the key remains secret to any third
party.

As discussed in the introduction, in a die-rolling protocol R, M ≥ 2 parties agree on the number
N ≥ 2 of possible outcomes o ∈ ZN and on the ideal probability distribution P = {Po}N−1

o=0 for the
outcomes. The protocol R must satisfy the following two properties:

Correctness. The protocol R is correct if all parties agree on the outcome o when all parties follow
R honestly and no party aborts.

Security. The protocol R is secure if for all k ∈ [M], when the kth party follows R honestly and
no party aborts, then the outcome o is obtained with a probability P(o) satisfying

|P(o) − Po| ≤ δ, (2.1)

for all o ∈ ZN , where δ = 0, or where δ tends to zero by increasing some security parameter; in the
former case R is called ideal, while in the latter case is called arbitrarily secure.

An alternative figure of merit in the security definition could be the variational distance
between the probability distribution PR = {P(o)}N−1

o=0 of the protocol R and the ideal probability
distribution P , given by

‖PR − P‖ = 1
2

N−1∑
o=0

|P(o) − Po|. (2.2)

An important property of ‖PR − P‖ is that the maximum probability to distinguish PR and P is
given by

Pmax = 1
2 + 1

2 ‖PR − P‖. (2.3)

However, we note that according to our security definition, if R is secure then it holds that

‖PR − P‖ ≤ Nδ
2

, (2.4)

with δ = 0 or with δ decreasing with some security parameter, where we used (2.1) and (2.2).

3. Space–time setting
M mistrustful parties define a reference frame F in near-Minkowski space–time, for example, near
the Earth surface. The parties agree in the following setting defined in F. We use units in which
the speed of light through vacuum is unity.

Let Bi be non-intersecting three-dimensional balls in space with radii ri, for all i ∈ [M]. Let
dij = dji be the shortest distance between any point of Bi and any point of Bj, for all j ∈ [M]\{i} and
all i ∈ [M]. The balls are defined such that 2ri < dij, for all j ∈ [M]\{i} and all i ∈ [M]. Let ti be time
coordinates satisfying

0< ti < dij, (3.1)

for all j ∈ [M]\{i} and all i ∈ [M].
For all i, k ∈ [M], at least for the whole duration of the protocol, the kth party sets a secure

laboratory Lki completely contained within Bi. The kth party does not need to trust the locations
of the other parties’ laboratories; but he must guarantee that his laboratory Lki is within Bi during
the protocol, for all i, k ∈ [M].

4. Unconditionally secure relativistic multi-party biased die rolling
Before implementing our protocol below, the parties agree on a positive integer n ≥ N, on N
non-intersecting subsets Ωo of Zn = {0, 1, . . . , n − 1}, for all o ∈ ZN , on a small α ≥ 0, and on
small numbers εk ≥ 0, for all k ∈ [M]. For all k ∈ [M], the kth party chooses εk such that his
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random number generator Rk can prepare a message mk ∈ Zn with probability distribution Pk(mk)
satisfying ∣∣∣∣Pk(mk) − 1

n

∣∣∣∣ ≤ εk, (4.1)

for all mk ∈ Zn, where the value of εk can correspond to the experimental uncertainty of Rk. The
parties choose n and Ωo such that ∣∣∣∣ |Ωo|

n
− Po

∣∣∣∣ ≤ α, (4.2)

for all o ∈ ZN . The parties must also guarantee that α and εk are sufficiently small to satisfy

α + εk|Ωo| ≤ 1, (4.3)

for all o ∈ ZN and all k ∈ [M]. From (4.2), the parties can choose α= 0 only if Po is a rational number,
for all o ∈ ZN . If not all probabilities Po are rational numbers then the parties must choose α > 0
arbitrarily small and n arbitrarily large so that (4.2) holds.

Our protocol comprises three stages. Stage I is a preparation stage that can take place
arbitrarily in the past of stages II and III. Stage II comprises the transmission of various classical
messages at spacelike separation. Finally, in stage III, the parties verify that the protocol was
implemented correctly and agree on the outcome o, after comparing the various messages
received in stage II.

Our die-rolling protocol R is the following (see figure 1).

Stage I: predistribution

1. For all k ∈ [M], Lkk prepares a message mk ∈ Zn securely using a random number generator
Rk sufficiently before the time t = − max{dki}i∈[M]\{k}, with probability distribution Pk(mk)
satisfying (4.1), for all mk ∈ Zn, and for some εk ≥ 0 satisfying (4.2) and (4.3).

2. For all i ∈ [M]\{k} and all k ∈ [M], Lkk sends a copy of mk to Lki through a secure and
authenticated classical channel Ckk→ki, so that Lki receives it before the time t = 0; the
channel Ckk→ki does not need to be very fast because mk can be sent arbitrarily before
t = 0.

Stage II: relativistic communication

3. For all i ∈ [M]\{k} and all k ∈ [M], Lki sends mk to Lii through a fast classical
communication channel Cki→ii within the time-interval [0, ti]; Lkk does not abort only if
it receives mi ∈ Zn not after tk.

Stage III: verification

4. For all i ∈ [M]\{k}, all j ∈ [M]\{k, i} and all k ∈ [M], Lkk and Lii use a secure and
authenticated classical channel Ckk↔ii to verify that they received the same message
mj ∈ Zn from Ljk and Lji, respectively; otherwise, they abort.

5. If L11, . . . , LMM do not abort, then they agree that the die rolling outcome is

o = i if x ∈Ωi, (4.4)

for i ∈ ZN , where

x =
M∑

k=1

mk mod n. (4.5)

We note that in the second step, the communication channel Ckk→ki can be implemented via
secure physical transportation of the message mk from Lkk to Lki, or using one-time pads if Lkk
and Lki had been previously distributed secure keys, for all i ∈ [M]\{k} and all k ∈ [M]. Because
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Figure 1. Schematic representation of the relativistic die-rolling protocol described in the main text in 2 + 1 dimensions
in the reference frame F. The case of three parties (M= 3) is illustrated. (a) The random number generator and classical
communication channels of the first, second and third party are given in colour blue, red and green, respectively. For all
i ∈ [3]\{k} and all k ∈ [3], the random number generator Rk outputting the message mk ∈ Zn is represented by the small
box in the laboratory Lkk , the fast classical channel Cki→ii by a short solid arrow, and the slow classical channel Ckk→ki by a
long dotted arrow; the channels Ckk↔ii are not illustrated. The diagram is not at scale, as the balls’ radii satisfy 2rk < dki , for
all i ∈ [3]\{k} and all k ∈ [3]. (b) The balls Bk at the time t = 0 and their light-like separated space–time regions with time
coordinates t ∈ [0, tk] are illustrated, for all k ∈ [3]. (Online version in colour.)

this step can be made arbitrarily in advance of the following steps, there is great flexibility in the
method employed and the speed at which this is accomplished.

Similarly, the communication channels Ckk↔ii between Lkk and Lii in the fourth step can in
principle also be implemented via secure and authenticated physical transportation of messages,
for all i ∈ [M]\{k} and all k ∈ [M]. However, this method might not be very practical and could
add undesired delays in the verification stage. For this reason, it could be preferable to implement
these channels with previously distributed keys.

In principle, there could be situations where the message mk sent by the laboratory Lkk does
not reach the laboratory Lki at the required time, due to failure of the channel Ckk→ki or due to
interception of the message by a dishonest party, for some k ∈ [M] and some i ∈ [M]\{k}. However,
these situations do not arise if the channels Ckk→ki are secure and authenticated, for all i ∈ [M]\{k}
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and all k ∈ [M], as we have assumed in the second step of the protocol. Nevertheless, a way to
avoid these problems comprises the laboratory Lki to confirm to Lkk the reception of the message
mk using a secure and authenticated channel Cki→kk, and the laboratory Lkk to abort if it does not
receive such a confirmation, for all i ∈ [M]\{k} and all k ∈ [M]. The same observations apply to the
communication channels Ckk↔ii in the fourth step, for all i ∈ [M]\{k} and all k ∈ [M].

It is straightforward to see that the protocol is correct. If all parties follow the protocol honestly,
then no party aborts and all parties agree that the outcome o is given by (4.4) and (4.5).

For k ∈ [M], below we assume that the kth party follows the protocol honestly and the other
parties perform any collective quantum cheating strategy S, with no party aborting. We show that
in this case the probability P(o) that the die rolling outcome is o satisfies

|P(o) − Po| ≤ δ, (4.6)

where

δ = α + max
k∈[M],o∈ZN

{εk|Ωo|}. (4.7)

From (4.3) and (4.7), since α ≥ 0 and εk ≥ 0, we have 0 ≤ δ ≤ 1.
Thus, if δ = 0, the protocol is ideal with unconditional security. From (4.7), this holds if

α = εk = 0 for all k ∈ [M]. From (4.2), α = 0 can only hold if the probability distribution P = {Po}N−1
o=0

only has rational numbers. From (4.1), εk = 0 can only hold if Rk outputs perfectly uniform
random numbers from the set Zn, for all k ∈ [M].

Alternatively, if δ > 0 with δ decreasing exponentially by increasing some parameter then the
protocol is arbitrarily secure with unconditional security. From (4.7), this holds if α > 0 and εk > 0
decrease exponentially by increasing some security parameter, for all k ∈ [M]. From (4.2), α can be
chosen arbitrarily small by choosing n arbitrarily large. Furthermore, from the Piling up Lemma
[47], if Rk produces nbits bits with biases from the range (0, 1

2 ) then mk ∈ Zn can be obtained from
these bits with εk decreasing exponentially with nbits, for all k ∈ [M].

(a) The unbiased case
It is straightforward to see that the unbiased case, i.e Po = 1/N for all o ∈ ZN , can be implemented
by setting n = N, α = 0 and Ωo = {o}, for all o ∈ ZN , in which case the die rolling outcome is o = x.

(b) Security proof
For all k ∈ [M], we assume that the kth party follows the protocol honestly and the other parties
implement an arbitrary collective quantum cheating strategy S, with no party aborting, and
show (4.6).

We have the following properties in the frame F, for all i ∈ [M]\{k} and all k ∈ [M].

— The kth party generates mk ∈ Zn securely in one of his laboratories and communicates it
to his other laboratories using secure and authenticated classical channels.

— The kth party sends mk to the ith party at a space–time region Qki with spatial coordinates
in Bi and time coordinates from the interval [0, ti].

— The kth party does not abort in step 3 only if he receives a message mi ∈ Zn within a
space–time region Qik with spatial coordinates in Bk and time coordinates not greater
than tk.

— From (3.1), the shortest distance dki between any point in Bk and any point in Bi
satisfies 0< tk < dki. Thus, the space–time regions Qki and Qik are spacelike separated (see
figure 1).

The principle of no-superluminal signalling states that information cannot travel faster than
the speed of light through vacuum in close to Minkowski space–time. Thus, from the previous
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points, the probability to obtain the set of messages m̃k = {mi | i ∈ [M]\{k}} given the message mk,
is given by

PS
k (m̃k | mk) = PS

k (m̃k), (4.8)

for all m = (m1, m2, . . . , mM) ∈ Z
M
n and all k ∈ [M]. That is, the probability distribution for m̃k is

independent of mk. We note that this holds for an arbitrary quantum cheating strategy by the
dishonest parties. In particular, in a general quantum cheating strategy, the laboratories of all the
parties (honest and dishonest) may share an arbitrary entangled quantum state |ψ〉, and each
laboratory may apply an arbitrary quantum measurement on its share of |ψ〉 in order to obtain its
input or trying to communicate received information to laboratories at other locations. However,
the principle of no-superluminal signalling, and consequently (4.8), hold in this general situation.

It follows from (4.8) that the probability distribution for the string of messages m satisfies

PkS(m) = PS
k (m̃k | mk)Pk(mk) = PS

k (m̃k)Pk(mk), (4.9)

for all m ∈ Z
M
n and all k ∈ [M], were in the second equality we used (4.8). We define

�k(y) ≡
⎧⎨
⎩m̃k ∈ Z

M−1
n

∣∣∣∣∣∣
∑
i
=k

mi = y mod n

⎫⎬
⎭ , (4.10)

for all k ∈ [M] and all y ∈ Zn.
From (4.4), (4.5), (4.9) and (4.10), the probability P(o) that the die rolling outcome is o satisfies

P(o) =
∑

x∈Ωo

∑
y∈Zn

∑
m̃k∈�k(x−y)

Pk(mk = y mod n)PS
k (m̃k), (4.11)

for all o ∈ ZN . In (4.11), we sum over all strings m̃k satisfying that the sum of their entries mi equals
x − y mod n; we also sum over all possible values y mod n for mk, and over all x ∈Ωo. From (4.11),
we have

P(o) ≤
(

1
n

+ εk

) ∑
x∈Ωo

∑
y∈Zn

∑
m̃k∈�k(x−y)

PS
k (m̃k)

=
(

1
n

+ εk

) ∑
x∈Ωo

∑
m̃k∈Z

M−1
n

PS
k (m̃k)

=
(

1
n

+ εk

)
|Ωo|

≤ Po + α + εk|Ωo|
≤ Po + δ, (4.12)

for all o ∈ ZN , where in the first line we used (4.1); in the second line we used (4.10); in the third
line we used that ∑

m̃k∈Z
M−1
n

PS
k (m̃k) = 1; (4.13)

in the fourth line we used (4.2); and in the last line we used (4.7). Similarly, it follows
straightforwardly that

P(o) ≥ Po − δ, (4.14)

for all o ∈ ZN . Thus, (4.6) follows from (4.11) and (4.14).

(c) Composability
An important security property in cryptography is that of composable security. Broadly speaking,
for a cryptographic protocol to have composable security, not only must it be secure when
implemented on its own, but it must also be composed as a secure subroutine for more general
cryptographic tasks.
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According to Ref. [48], coin flipping (and bit commitment) cannot achieve composable security
even with the most general type of protocols in relativistic quantum cryptography. The argument
of Ref. [48] is that a condition for a coin-flipping protocol to have composable security is that
the outcome o of the protocol must be independent of the outcome o′ of another arbitrary coin-
flipping protocol that may take place in parallel, and that this condition cannot be guaranteed
because a dishonest party may apply a man-in-the-middle attack and correlate the outcomes o
and o′ of both protocols. We discuss below how this argument applies to our die-rolling protocols.

Consider the case of two parties (M = 2). Alice and Bob implement a die-rolling protocol R
giving outcome o. Bob and Charlie implement another die-rolling protocol R′ in parallel, with
the same parameters of R, giving outcome o′. Let Alice and Charlie be honest and let Bob be
dishonest. Bob implements the following man-in-the-middle attack with the effect that o = o′
[48,49].

The protocols R and R′ are implemented in the space balls B1 and B2 in parallel with arbitrarily
small time delays. Bob plays the role of the second party in R and the role of the first party in R′,
whereas Alice plays the role of the first party in R, and Charlie plays the role of the second party
in R′. In B2, Alice sends the message m1 to Bob in the protocol R; Bob then sends the message
m′

1 = m1 to Charlie in the protocol R′. In B1, Charlie sends the message m′
2 to Bob in the protocol

R′; Bob then sends the message m2 = m′
2 to Alice in the protocol R. Thus, from (4.5), we obtain

that the value of x in R and its corresponding value x′ in R′, given by

x = m1 + m2 mod n and x′ = m′
1 + m′

2 mod n (4.15)

satisfy x′ = x. Thus, from (4.4), we have o = o′.
However, the previous man-in-the-middle attack does not apply if Alice and Charlie both play

the roles of the first (second) party and they are guaranteed to be honest. Alternatively, we may
consider Alice and Charlie to be the same party, playing the role of the first (second) party in both
R and R′ and performing the protocols honestly. In this case, if Alice and Charlie play the roles
of say the first party then their messages m1 and m′

1 given to Bob in B2 are independent. Thus,
because Bob must give messages m2 and m′

2 to Alice and Charlie in B1 at spacelike separation
from Alice and Charlie giving Bob the messages m1 and m′

1 in B2, it follows that the messages m2
and m′

2 are independent of m1 and m′
1. Thus, from (4.5) and (4.15), x and x′ are independent. It

follows from (4.4) that the die rolling outcomes o and o′ are also independent.
The previous arguments can be extended straightforwardly to the case of M> 2 parties. In this

case, if we assume that the kth party is honest in the protocol R and the jth party is honest in the
protocol R′, with k 
= j, and all other parties are dishonest and collaborate as a single party in both
protocols R and R′, then a simple extension of the previous man-in-the-middle attack implies
that the die rolling outcomes of R and R′ satisfy o = o′.

However, if the kth party is honest in both protocols R and R′ then the previous attack does
not apply, and the kth party can be guaranteed that the outcomes o and o′ are independent. This
is because in this case, in the protocol R (R′), the kth party gives the ith party a message mk (m′

k)
in the space ball Bi at spacelike separation from the kth party receiving a message mi (m′

i) from the
ith party in the space ball Bk, for all i ∈ [M]\{k}. Thus, the messages mi and m′

i are independent of
mk and m′

k, for all i ∈ [M]\{k}. Furthermore, since the kth party is honest in R and R′, the messages
mk and m′

k are independent. It follows from (4.5) that the respective values of x and x′ in R and
R′ are independent, which implies from (4.4) that the respective outcomes o and o′ of R and R′
are also independent.

It follows from Ref. [48] and from the previous discussion that our die-rolling protocols cannot
be composed securely in arbitrary ways. However, an honest party can participate in various
die-rolling protocols in parallel and be guaranteed not only that each protocol is secure on its
own but also that the outcomes of the protocols are independent, by choosing carefully the
space–time regions where she communicates her messages to, and where she accepts messages
from, the other parties in all the protocols where she is participating. We have discussed this
possibility above for die-rolling protocols taking place in space–time regions that are arbitrarily
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close when the honest party plays the role of the kth party in all protocols, for some k ∈ [M].
Another straightforward way to guarantee to an honest party that the outcomes of different die-
rolling protocols R and R′ are independent is that every space–time region where she receives
or communicates a message in R is spacelike separated from every space–time region where she
receives or communicates a message in R′. Given these observations, we believe that whether our
die-rolling protocols can be composed securely to implement other cryptographic tasks, perhaps
under some assumptions and/or in relativistic settings, deserves further investigation.

5. Discussion
Apart from achieving unconditional security with arbitrarily small δ, our protocols have
the following advantages over existing quantum non-relativistic coin-flipping and die-rolling
protocols.

First, our protocols do not require any quantum communication. Thus, they are free
from various experimental challenges of quantum non-relativistic coin-flipping and die-rolling
protocols, like noise and losses [50–59], and side-channel and multi-photon attacks [60].

Second, the distance among the parties can be made very large in practice in our protocols,
with laboratories spread on the Earth surface or in satellites orbiting the Earth, for instance. For
example, Ref. [23] experimentally demonstrated a relativistic protocol with laboratories separated
by 9354 km. This cannot be easily achieved with protocols involving quantum communication.
For example, Refs. [58,59] experimentally demonstrated two-party quantum non-relativistic coin-
flipping protocols achieving a security advantage over classical non-relativistic protocols at
distance separations of only a few metres and 15 km, respectively.

As already mentioned, weak coin flipping and weak die rolling can achieve unconditional
security and arbitrarily small δ with quantum non-relativistic protocols [36,44,45]. Our protocols
trivially implement these tasks with unconditional security too and have the advantages
mentioned above.

Nevertheless, implementing our protocols has some important challenges. First, some
communication steps must be very fast to achieve spacelike separation. However, this is
feasible with field programmable gate arrays if the protocol sites are sufficiently far apart, as
demonstrated by Refs. [18,20,23,24,61]. In particular, Ref. [61] experimentally demonstrated a
relativistic cryptographic protocol with locations separated by only 60 m.

Second, the laboratories must be synchronized securely to a common reference frame
with sufficient time precision. This can be achieved with GPS devices and atomic clocks
[18,20,23,24,61], for instance.

We note that a dishonest party can in principle implement attacks in the reference frame
synchronization of the other parties, for example, by spoofing their GPS signals. If these attacks
are implemented successfully without being caught, the parties under attack may believe that
the communications in the relativistic stage were implemented at spacelike separation, while in
fact they were not, in this way compromising the protocol’s security. To our knowledge, previous
experimental demonstrations of relativistic cryptography have been vulnerable to these attacks
[18,20,23,24,61]. A countermeasure against these attacks is for each party to synchronize her clocks
in a secure laboratory and then distribute them securely to her other laboratories, guaranteeing
that the clocks remain sufficiently synchronized during the relativistic stage of the protocol [20].

Our protocols are intrinsically classical but can be made quantum by using quantum random
number generators. Ideally, the parties use quantum random number generators to guarantee
that their inputs are truly random. Additionally, quantum key distribution links [46,62,63] can
be used to expand the secure keys shared among the various laboratories used to implement the
long distance communication channels. This can be suitably implemented in quantum networks
[64–67] or a quantum internet [68,69].
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