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Abstract

Background: To survive, bacteria must be able to adapt to environmental stresses. Small regulatory RNAs have been
implicated as intermediates in a variety of stress-response pathways allowing dynamic gene regulation. The RNA binding
protein Hfq facilitates this process in many cases, helping sRNAs base pair with their target mRNAs and initiate gene
regulation. Although Hfq has been identified as a critical component in many RNPs, the manner by which Hfq controls these
interactions is not known.

Methodology/Principal Findings: To test the requirement of Hfq in these mRNA-sRNA complexes, the OxyS-fhlA system
was used as a model. OxyS is induced in response to oxidative stress and down regulates the translation of fhlA, a gene
encoding a transcriptional activator for formate metabolism. Biophysical characterization of this system previously used a
minimal construct of the fhlA mRNA which inadvertently removed a critical element within the leader sequence of this
mRNA that effected thermodynamics and kinetics for the interaction with Hfq.

Conclusions/Significance: Herein, we report thermodynamic, kinetic and structural mapping studies during binary and
ternary complex formation between Hfq, OxyS and fhlA mRNA. Hfq binds fhlA mRNA using both the proximal and distal
surfaces and stimulates association kinetics between the sRNA and mRNA but remains bound to fhlA forming a ternary
complex. The upstream Hfq binding element within fhlA is similar to (ARN)x elements recently identified in other mRNAs
regulated by Hfq. This work leads to a kinetic model for the dynamics of these complexes and the regulation of gene
expression by bacterial sRNAs.
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Introduction

Small non-coding RNAs (sRNA) mediate gene regulation in

both bacteria and eukaryotes [1,2,3]. Bacteria commonly employ

sRNAs during stress responses, allowing them to survive when

exposed to suboptimal growth environments [4]. Two main classes

of sRNAs exist in bacteria, cis and trans-encoded variants. Cis

RNAs derive from the same genetic locus as the regulated message

but are transcribed from the antisense strand; thus exhibiting

perfect complementarity with their target. These RNAs are known

to control regulatory pathways such as transcriptional attenuation,

RNA processing and decay, and translation initiation [5,6]. Unlike

cis-acting sRNAs, the trans-acting sRNAs are expressed from

genetic loci different than their targets and interact using imperfect

base pairing. These sRNAs often require accessory proteins such

as Hfq for activity.

Hfq is a homohexamer that belongs to the Sm/LSm family of

RNA binding proteins [7,8,9,10]. It typically varies in length

between 70 and 110 amino acids in E. coli, and is highly abundant

where an estimated 10,000 hexamers present in the cytoplasmic

fraction, often in association with ribosomes [7,11]. Hfq is mostly

conserved among the bacterial kingdom with more than 3000

homologs currently annotated in genomic databases. Mutational

studies in E. coli and other organisms have shown that strains

lacking Hfq exhibit pleiotropic effects such as decreased growth

rates, increased stress sensitivity (UV, oxidative and cold shock),

ineffective tRNA maturation and mini-cell formation [12,13,14].

In addition, it was demonstrated that reduced virulence was

observed in the absence of Hfq for a variety of bacterial pathogens

[15,16,17,18,19].

Hfq is known largely for its role in post-transcriptional gene

regulation by facilitating pairing between sRNAs and mRNAs. A

common feature in these pathways is the presence of overlapping

networks of RNA interactions where one sRNA regulates multiple

genes. For example the sRNA RybB has been shown to regulate

sodB, ftnA, bfr, acnA and sdhC and thus acts as a regulatory node

allowing a complex and integrated response to a given growth

condition, in this case low iron concentrations [20]. Although Hfq

has been identified as a critical component in these systems, a

common mechanism as to how it facilitates complex formation is

not clear.

To further understand the requirement of Hfq during

sRNA:mRNA pairing, we have studied the OxyS-fhlA system

(Fig. 1). OxyS is a regulatory RNA expressed in response to
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oxidative stress. One of the mRNAs it interacts with is fhlA, a

message encoding a transcriptional activator for formate metab-

olism [21]. Interaction at two short pairing elements, one at the

RBS and another within the coding region, are sufficient to

prevent translation of the fhlA mRNA. Previous studies in vivo

showed that, in the absence of Hfq, OxyS was unable to regulate

the expression of fhlA [22]. Most of the work on this regulatory

network used a minimal fhlA mRNA construct that was sufficient

to interact with its sRNA OxyS. A recent study by Soper et al.,

however, showed a marked difference in the rpoS-DsrA interaction

with Hfq when the leader sequence of the mRNA was extended.

This study showed that Hfq interacted with the rpoS mRNA at a

novel (ARN)X sequence element [23]. This motif was originally

called an AAYAA element by Soper et al. [23] It was subsequently

referred to as an (ARE)x element by Link and co-workers who

showed based on crystallographic and biochemical studies the site

has broader specificity than AAYAA [28]. Unfortunately, the

acronym ARE has already been used for many years to refer to A/

U-Rich Elements in eukaryotic mRNAs [24,25]. We therefore

propose calling this sequence motif by the name (ARN)x to

distinguish it from AREs while still retaining the necessary

information about the sequence specificity. To understand

whether the (ARN)x element is a commodity among regulatory

networks involving Hfq, we tested this hypothesis in the OxyS-fhlA

system.

Here we show that the extension of the fhlA leader sequence

enhances the kinetics and thermodynamics of fhlA associating to

Hfq stimulating ternary complex formation with OxyS. Structural

probing of the leader sequence confirmed Hfq-binding to the

(ARN)x element at position 276 in the upstream region of the fhlA

mRNA. Finally, we show that Hfq binds to the fhlA leader

sequence using both its proximal- and distal-RNA binding surfaces

which helps explain the kinetic and thermodynamic properties of

Hfq association with mRNAs. These data lead us to revise the

model for Hfq-dependent gene regulation to be less sRNA-centric

and providing more importance to the manner in which Hfq

interacts with a subset of bacterial messages that are subject to

regulation by sRNAs.

Results

OxyS and Hfq interacts with fhlA leader construct to form
a ternary complex

To test whether the upstream leader region of fhlA facilitates the

interaction with OxyS and Hfq as previously described for the

rpoS-DsrA system [23], the leader sequence of fhlA was extended

from the previously characterized position 253 relative to the start

codon, to 2136 and 2220 respectively. A putative upstream Hfq-

binding element was absent in the minimal fhlA53 construct but is

encoded at position 276 and thus is present in both extended

constructs. RNA transcripts are denoted according to the length of

their leader sequence: fhlA220 has 220 nt upstream of its start

codon. In its genomic context, fhlA is part of a polycistronic

message, transcribed under the control of two promoters PhypA

and PhypB [24] (Fig. 2A).

To test the potential of fhlA mRNA leader constructs to undergo

post-transcriptional regulation, gel mobility shift assays were used

to detect binding to radiolabeled OxyS. Equilibrium experiments

were performed with fhlA136, but neither binary complex with

OxyS nor ternary complexes with OxyS and Hfq were observable

using EMSA. For fhlA220, on the other hand, both binary and

ternary complexes with OxyS and Hfq were stable. The

OxySNfhlA220 (ONF220) complex formed with a KD of

360660 nM (Fig. 2B and Figure S1). This affinity is ,10-fold

less than that of the OxySNfhlA53 (ONF53) complex where a KD of

3567 nM was measured (Fig. 2C). This value compares favorably

with the KD previously reported for the ONF53 complex by

Argaman et al. in a slightly different binding buffer (10 mM Tris,

60 mM KCl, 10 mM MgCl2 and 1 mM DTT (pH 8.0)) [21].

Reduced affinity between OxyS and fhlA220 was surprising, but

this phenomenon was also observed for DsrA and RprA, both of

which bound extended rpoS leader sequences 10–20-fold less

tightly than to the truncated leader [23,25].

To detect whether fhlA220 interacts with Hfq, [59-32P] fhlA220

mRNA was incubated with Hfq at concentrations of 0 nM to

1.67 mM Hfq (hexamer). The HfqNfhlA220 (HNF220) complex was

resolved on native gels to provide a KD of 1563 nM Hfq hexamer

(Figure S1 and Figure S2). The F220NH complex formed with ,5

fold tighter affinity than F53NH (KD, 70610 nM) revealing that

the extended structure may present extra Hfq binding elements or

a more favorable Hfq-binding motif (Figure S3). The Oxy-

SNfhlA220NHfq ternary complex (ONF220NH) was also resolved

using gel shift assays when pre-formed [59-32P] OxySNHfq complex

was titrated with 0.5 nM–11.2 mM fhlA220 mRNA (Fig. 2B),

yielding a KD of 2369 nM. Thus the presence of Hfq provides 15-

fold tighter binding between OxyS and fhlA, a net stabilization of

,1.6 kcal/mol.

fhlA220 mRNA interacts with both proximal and distal
RNA binding surfaces of Hfq

Hfq binds RNAs using two distinct surfaces – a proximal surface

that favors U-rich sequences like those in many Hfq-binding

sRNAs (such as DsrA and RybB) and the distal surface that binds

poly-A RNAs (Fig. 3A) [11,25,26,27]. Competitive binding studies

were used to investigate fhlA220 mRNA binding to Hfq. [59-32P]

HNF220 complex was prepared and then incubated with excess of

either a proximal surface binder (DsrA), a distal surface binder

(A18) or both simultaneously. The complexes were then visualized

by native gel electrophoresis (Fig. 3B). As shown in Fig. 3B,

F220NH was not disrupted by addition of DsrA or A18 alone. A

faster migrating species was observed on these gels with increasing

concentration of competing RNAs. These complexes may result

from conformational changes of the HNF220 complex when a

Figure 1. Regulation of fhlA by sRNA OxyS in the presence of
Hfq. Interaction between fhlA mRNA and the sRNA OxyS is shown. fhlA
encodes a transcription factor for formate metabolism. During oxidative
stress the sRNA OxyS is expressed and in the presence of Hfq was
proposed to form two kissing interactions [21] through the stem loops
present in the mRNA and the sRNA. The interaction formed within the
59 leader region of fhlA sequesters the ribosome binding site preventing
translation. The contact within the coding sequence was shown to be
important for efficient gene regulation [21].
doi:10.1371/journal.pone.0013028.g001

Hfq Complexes of fhlA and OxyS
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competitor displaces F220 from one face of Hfq. To displace

fhlA220 from Hfq entirely, both A18 and DsrA had to be present.

This experiment clearly shows that fhlA220 mRNA interacts with

Hfq using both the proximal and distal surfaces. Although such a

binding mode with Hfq has not been reported, this sort of

behavior was previously predicted based on mutagenesis data [28].

In contrast, fhlA53 is readily displaced by addition of DsrA (Data

not shown). Thus this minimal construct mimics only part of the

native interaction with Hfq.

Secondary structure analysis of fhlA220 mRNA
SHAPE [29,30] was carried out on fhlA220 mRNA to

investigate structural and functional elements that might be

important for RNP complex formation with Hfq and OxyS.

Fig. 4A, shows the experimental secondary structure for fhlA220

mRNA derived from SHAPE constraints, superimposed with the

modification intensity data. In Fig. 4B, the previously published

secondary structure for fhlA53 derived from nuclease digestion

data is shown for comparison [21]. fhlA220 exhibits highly

structured regions at both the 59-region and 39 ends of the

construct and a rather flexible region between positions 276 to +3.

It is apparent that fhlA220 has distinct functional elements beyond

the limits of the previously characterized fhlA53 construct.

The two structures differ significantly between 253 and +60.

The distinctions in this region arise mainly from bases upstream of

253 pairing with downstream sequences in fhlA220. The binding

context of fhlA53 to OxyS was through two kissing complexes at

the leader and coding regions of the mRNA. Only one of the two-

stem loop structures remains in the context of fhlA220. The

proposed stem loop within the upstream region of fhlA53 is a bulge

in fhlA220 and thus remains accessible for OxyS binding.

Furthermore the start site and the Shine Dalgano (SD) sequence

are unhindered within the flexible region of fhlA220. Although the

spatial requirement of OxyS to interact with the bulge and the

kissing loop seems to be met, complex formation may be hindered

by the tertiary structure of fhlA220. The 15-fold lower affinity

between OxyS and fhlA220 relative to fhlA53 may be attributed to

this structural complexity in the leader sequence and presumably

the need to break tertiary contacts to accommodate the

bimolecular interaction.

Hfq binding sites of fhlA mRNA
Two methods were used to determine the Hfq binding sites on

the leader sequences of fhlA - terbium-mediated hydrolysis (fhlA53)

and NMIA modification (fhlA220). Changes in reactivity at each

site were categorized as strong or medium and are depicted in

Fig. 4, superimposed on the experimental secondary structures

(also see Figure S3). Three main regions showed differential

activity in the presence and absence of Hfq (labeled R1, R2 and

R3 in Fig. 4A). R2 contains a canonical (ARN)x motif like the one

Figure 2. The fhlA mRNA leader constructs used in this study. (A) The fhlA locus. fhlA is transcribed by promoters that belong to the family of
hydrogenase iso-enzymes specifically by promoters PhypA and PhypB [24]. (B) Analysis of binary and ternary complexes of fhlA220 mRNA with OxyS and
Hfq (also see Figure S2). Gel shift experiments showing binary complex formation between OxyS (O*) and fhlA220 (F220) (left). Uniformly 32P-labled
OxyS (*) was titrated with varying concentrations of fhlA220 ranging from 0.5 nM-7.2 mM. Ternary complex formation between OxyS (O), Hfq (H) and
fhlA220 (F220) (right). The ONH complex was pre-formed by incubating ,1 pmol of [59-32P] labeled OxyS with 1 mM Hfq. fhlA220 (F220) was titrated
from 0.5 nM-11.2 mM. (C) fhlA mRNA leader constructs used during this study and their affinities. Three fhlA leader constructs were tested. fhlA53 was
previously characterized by Argaman et al. and comparisons were made relative to this construct. A stable OxySNfhlA136 complex was not detected in
gel shift assays due to probable mis-folding of OxyS binding elements. The fhlA220 leader sequence showed activity, forming stable binary and
ternary complexes with OxyS and Hfq.
doi:10.1371/journal.pone.0013028.g002

Hfq Complexes of fhlA and OxyS
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identified in rpoS mRNA and recently shown to bind the distal face

of Hfq [23,26]. This site was predicted based on sequence analysis

and is now a confirmed interaction site. R1 is comprised of a 7nt

loop and an adjacent bulge. R3 lies within a highly flexible region

adjacent to the upstream portion of the OxyS interaction

sequence. Since the competition gel shift assay showed that

fhlA220 interacts with both distal and proximal binding sites in

Hfq, either R1 and or R3 might interact with the proximal face of

Hfq while R2 interacts at the distal site.

Kinetics of fhlA association with Hfq
Kinetic analysis of the binding of Hfq to fhlA53 and fhlA220 was

performed using Surface Plasmon Resonance (SPR). 59-biotiny-

lated mRNAs were bound to streptavidin coated sensor chips. Hfq

was then allowed to bind under various conditions while

monitoring the interaction. fhlA220 was already shown to interact

with both the proximal and distal RNA binding surfaces of Hfq

[11,26,28]. The kinetic model that was used to fit the binding data

for HNF220 is shown in Fig. 5A, providing rate constants that

correspond to proximal and distal surface interactions. Since,

fhlA220 wraps around Hfq in order to interact with both surfaces,

one could envision more complex models than that shown in

Fig. 5A, but this minimal model was sufficient to fit the data to

obtain the magnitudes of the rates in which fhlA binds to Hfq.

An example kinetic trace fit to this model is shown in Fig. 5B.

Both open complexes (HNFD and HNFP) then converge to a single

closed HNFDP complex in which fhlA220 binds both surfaces of

Hfq. This latter step has not been included in the data fitting

shown in Fig. 5. The SPR experiment does not appear to be

particularly sensitive to this conformational change as it is an

internal rearrangement with little change in refractive index in the

interfacial zone. Rate data for Hfq interacting with fhlA220 and

fhlA53 are collected in Table 1. Thermodynamic dissociation

constants (KDs) were computed from kinetic data providing values

similar to those measured by gel shift assays for fhlA220 (Table 1).

Looking at these data, one can draw several significant

conclusions regarding the interactions between fhlA and Hfq.

Two low-nanomolar KDs result from fitting to this model and one

can also calculate an aggregate dissociation constant (KD,agg) of

1062 nM for this interaction since the observed rates are a

combination of the microscopic rate constants associated with

distal and proximal site binding. This aggregate value was in good

agreement with data obtained using gel shift assays. In contrast, for

fhlA53 binding to Hfq, only one of the binding interactions

produced a KD comparable to that observed with fhlA220. KD,agg

of 4366 nM was calculated for this interaction, once again in

agreement with gel shift data. This phenomenon likely reflects the

loss of the specific interaction with the distal surface due to the lack

of the (ARN)x motif.

OxyS binding kinetics to fhlA220 and fhlA53
Surface plasmon resonance was also used to measure OxyS

binding to fhlA220 and fhlA53 in the absence of Hfq (Figure S4).

59-Biotin labeled fhlA53 was immobilized and OxyS was titrated at

various concentrations. Data were fit to a Langmuir binding

model to obtain kinetic parameters. The association rate constant

for OxyS interacting with fhlA53 was (1.360.5)6104 M21s21

while the dissociation rate constant was (6.7560.08)61024 s21,

yielding a dissociation constant (KD) of 50620 nM. This value is

in good agreement with equilibrium data obtained using gel shift

assays. To obtain kinetic data for fhlA220, the experiment had to

be inverted such that 59-biotin labeled OxyS was immobilized into

the SPR sensor surface with subsequent addition of fhlA220. As

predicted by gel shift assays (Fig. 2B), the OxySNF220 complex

formed weakly with a KD of ,1.9660.01 mM estimated from the

SPR kinetic constants. This KD is ,5 fold weaker than that

measured using gel shift assays. The weak affinity resulted from

slow association, ((9.760.4)6103 M21s21), likely due to the need

for fhlA220 to rearrange, to make the interaction site accessible.

These data imply that in the absence of Hfq, binary complexes still

form but relatively slowly in both cases and with significantly lower

affinity.

fhlA220 interaction with proximal and distal mutants of
Hfq

To measure effects of the kinetics when one of the two RNA

binding surfaces of Hfq were abrogated, proximal and distal

mutants were used. Hfq mutants, Y25A and K56A were

previously shown to disrupt RNA interactions at distal and

proximal sites of Hfq respectively [28]. Hfq mutants were allowed

to interact with fhlA220 and kinetic parameters were measured

using SPR (Fig. 6 and Table 1). For both Y25A and K56A Hfq,

one of the two apparent affinities was dramatically altered while

the other was essentially unchanged. KD,aggs of 131660 nM and

1766100 nM were estimated from kinetic data for Y25A and

K56A Hfq mutants respectively. This destabilization can clearly

be attributed to the partial loss of activity in Hfq caused by

mutations essential for RNA binding. Also note that, the overall

association rates for fhlA220 were diminished for both Hfq mutants

compared to wt-Hfq, indicating that Hfq facilitates faster

association rates, allowing it to capture the mRNA more effectively

by using both RNA binding faces.

Figure 3. Competition binding experiments to determine the
Hfq binding surface that interacts with fhlA220. (A) Superposition
of two Hfq crystal structures that are crystallized in the presence of
(AU5G) RNA at the proximal site (1KQ2) and in A15 RNA bound at the
distal site (3GIB) [10,26]. Superposition of the two crystal structures
were performed using UCSF Chimera software [44]. (B) The complex
between [59-32P] fhlA220 (F220) and Hfq (H) was pre-formed and
incubated with increasing concentrations of A18 RNA (0–30 mM), DsrA
(0–30 mM) or with both RNAs (0–30 mM). DsrA and A18 have been
previously shown to specifically bind to proximal and distal RNA
binding sites of Hfq respectively [28].
doi:10.1371/journal.pone.0013028.g003

Hfq Complexes of fhlA and OxyS

PLoS ONE | www.plosone.org 4 September 2010 | Volume 5 | Issue 9 | e13028



Competing Hfq from the fhlA220NHfq complex using
distal and proximal binding RNAs

In the previous section, SPR was used to study the direct

dissociation of Hfq from fhlA220. Within a cell, a more common

scenario might be an exchange reaction where Hfq passes from

one RNA to another without ever being free in solution. To

measure exchange rates, the HNF220 complex was formed and

immediately titrated with DsrA, A18 or a mixture of DsrA and A18.

DsrA is a sRNA associated with cold shock rather than oxidative

stress, and binds to the proximal site of Hfq while A18 represents a

distal site binding RNA [28]. SPR sensorgrams for these

experiments are shown in Figure S5. In these experiments,

100 nM Hfq was injected to ,3 fmol of surface bound fhlA220.

Once the injection was complete, DsrA and A18 (500 nM and

300 nM respectively) were introduced. The dissociation data were

fit to a Langmuir dissociation model. Hfq dissociates with a rate

constant of 0.0760.01 s21 when competed with both proximal

and distal RNAs, a rate up to 50-fold faster than simple

dissociation (Table 1). Addition of A18 alone gave practically the

same dissociation rate as the mixture (0.0660.01 s21) whereas the

addition of DsrA alone competed for Hfq at a rate 3-fold slower

(0.02060.005 s21) (Figure S5). Both types of competition,

however, are faster than the direct dissociation. These results are

consistent with the wrap-around model for Hfq binding to

mRNAs presented in Fig. 5A. The data are also consistent with

an exchange mechanism when 2 RNAs compete for Hfq, but

further experiments will be required to validate that such a process

really occurs.

Discussion

Almost all trans-acting sRNAs in E. coli and Salmonella require

Hfq for their gene regulatory activity. In addition to its function of

promoting base pairing of sRNAs to their target mRNAs, Hfq is

also thought to engage ribosomes, poly A polymerase and RNase

E and other enzymes that are involved in RNA transactions [11].

Early models that investigated functional mechanisms for Hfq

were sRNA centric however, where the Hfq-sRNA complex

sought their mRNA targets within the cell. This hypothesis led

most studies to use mRNA constructs that only included structural

elements necessary for sRNA binding [21,22,31,32]. These

mRNA constructs may have lacked important upstream regulatory

sequence elements such as the recently identified (ARN)x, motifs

that are essential for effective Hfq-mediated gene regulation

[23,25,33].

One interesting consequence of extending the fhlA mRNA

leader region was the ability of the mRNA to interact

simultaneously with both RNA binding surfaces of Hfq. In the

absence of the upstream portion of the leader sequence, fhlA53

interacts only with the proximal surface of Hfq. The more

complex binding interaction of fhlA220 supports a model wherein

mRNAs interact with Hfq even in the absence of regulatory

sRNAs. This complex can essentially act as an Hfq tag. It can alter

basal translation levels alone, while also marking the mRNA as

one susceptible to regulation by an sRNA if and when the

appropriate sRNA is transcribed. Such a model would enable the

cell to respond to stress signals more readily since it streamlines the

search for appropriate messages.

Figure 4. Proposed secondary structure models for fhlA220 and fhlA53. (A) SHAPE-derived secondary structure model for fhlA220 mRNA.
The NMIA reactivities are depicted on each base position of the proposed structure. SHAPE reactivities above 0.7 are depicted by dark circles;
reactivities 0.2 - to 0.7 are shown in gray circles and reactivities below 0.2 are un-circled. Bases shown in gray text annotations were not analyzed. Hfq
footprinting data measured by SHAPE in the presence and absence of 1 mM Hfq are superimposed on the structure model for fhlA220. Closed wedges
are base positions with strong Hfq footprints, where the relative reactivity was .0.7 and open wedges represent relative reactivities between 0.3 and
0.7. OxyS binding sites, RBS and the (ARN)x elements are also shown. (B) Secondary structure for the previously characterized fhlA53. To identify Hfq
binding sites of fhlA53, terbium mediated footprinting was performed. Strong Hfq footprints at base positions are shown by closed wedges and
medium reactivities with Hfq are shown by open wedges.
doi:10.1371/journal.pone.0013028.g004

Hfq Complexes of fhlA and OxyS
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The SHAPE-derived secondary structure model proposed for

fhlA220 provides insight into functional elements in fhlA220

mRNA. A region with weak base pairing contains most of the

regulatory elements such as the OxyS binding site, RBS,

translation start site and the putative (ARN)x motif. This relatively

floppy section is flanked on both 39 and 59 ends with highly

structured regions. When these structures were inadvertently

disrupted, such as in the fhlA136 species, the ability to bind Hfq

was lost indicating the importance of these folds for presenting the

Hfq binding motif. Since both RNA binding surfaces of Hfq

interact with the fhlA leader, multiple footprints were expected.

One point of contact was the (ARN)x sequence element, which

should interact with the distal surface of Hfq [26]. This leaves

regions R1 and R3 as potential proximal binding sites. The A/U

rich nature of R3 and its proximity to the (ARN)x motif lead us to

propose that this site is more likely than R1 to be the natural

proximal binding element in fhlA220.

The presence of the Hfq binding motif (ARN)x in the leader

sequence was interesting. These A-rich stretches are now widely

accepted as being present in mRNA leader sequences that are

regulated by Hfq [23,34]. In a recent study in Salmonella, it was

projected that Hfq modulated the synthesis of ,20% of all

proteins either directly or indirectly [19]. A similar number was

predicted by a brief bioinformatic survey of potential Hfq binding

regions (AAYAA and ARN tracts) in upstream sequences within E.

coli mRNAs [26]. These sequence elements are quite degenerate

and thus will appear with a high frequency by chance. Whether all

of these AAYAA and (ARN)x elements represent Hfq binding sites

requires further investigations as it is possible that an additional

structural context is required to define an Hfq-dependent

regulatory element within an mRNA.

Elongation of the fhlA leader from 253 to 2220 significantly

alters both the kinetics and thermodynamics of its interactions with

Hfq and OxyS. Complex formation with OxyS was much weaker

for fhlA220 relative to fhlA53 in the absence of Hfq. Addition of

Hfq, however reversed this trend and restored OxyS affinity for

the HfqNfhlA220 complex. This finding implies the requirement of

Hfq to facilitate regulatory RNP complex formation as observed in

in vivo assays for this system [35]. Similar observations were made

by Soper et al. in the rpoS leader interaction with Hfq. Hfq binds

more tightly to fhlA220 than to fhlA53. This extra stabilization

results from the upstream binding element that enables fhlA220

mRNA to interact Hfq through both the proximal and distal

surfaces simultaneously.

The kinetic model used to characterize fhlA binding to Hfq

measured two compound rate constants. By using distal (Y25A)

and proximal (K56A) face mutants, a large overall destabilization

in affinities were observed for fhlA binding to Hfq. This result

indicated that both binding surfaces of Hfq were in use and

validated the competition gel shift experiments. Association of

fhlA220 to Hfq was rapid, with similar magnitudes observed for

both rate constants. The shorter fhlA53 construct on the other

hand showed very different binding behavior with a 50-fold

Figure 5. Kinetics of fhlA association to Hfq measured using
Surface plasmon resonance. (A) The interacting model of Hfq to fhlA
mRNA. Hfq interaction with fhlA220 was viewed as a parallel binding
model since Hfq presents two distinct RNA binding surfaces (distal and
proximal). The SPR data was fitted into a model that identifies two
complex formations through 2-independent pathways reflecting RNA
association to distal and proximal sites (line arrows). Formation of the
closed complex (dashed arrows) leads to no significant change in the
SPR response and was not used in data fitting. (B) Sensorgram for
fhlA220 interacting with Hfq. Here varying concentrations of Hfq (5–
15 nM) were titrated to surface immobilized fhlA mRNA. At the end of
each injection (Hfq), the dissociation was monitored by flowing buffer
over the sensor surface, allowing spontaneous dissociation in the
absence of competitors. Solid lines represent the above-mentioned
fitting models applied to the data sets (materials and methods).
doi:10.1371/journal.pone.0013028.g005

Table 1. Kinetics and affinities for fhlA constructs associating to wt-Hfq, Y25A Hfq and K56A Hfq measured using the kinetic model
shown in Fig. 5A.

ka1 (M21 s21) kd1 (s21) KD1 (nM) ka2 (M21 s21) kd2 (s21) KD2 (nM) KD,agg (nM)

Hfq-fhlA220 (1.6060.06)6106 (1.4060.02)61023 0.8360.04 (461)6106 (5.660.8)61022 1364 1062

Hfq-fhlA53 (2.060.2)6106 (1.060.1)61021 50610 (3.760.7)6105 (1.960.2)61023 561 4366

K56A
Hfq-fhlA220

(262)6105 (6.660.3)61024 362 (261)6105 (761)61022 4006300 131660

Y25A
Hfq-fhlA220

(261)6106 (3.060.1)61021 160690 (2.960.8)6105 (1.060.2)61023 461 1766100

KD,agg is the equilibrium constant based on the compound association and dissociation rate constants defined in eq. 6.
doi:10.1371/journal.pone.0013028.t001
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difference in the dissociation rates between the two apparent rates,

explaining the propensity for fhlA53 to binding to a single site

(proximal).

Simple dissociation may not represent the natural behavior of

Hfq in the cell however. With so much Hfq and so many Hfq-

binding RNAs, an exchange from one RNA to another may be a

more common behavior. We therefore exposed the HfqNfhlA220

complex to other RNAs to determine their ability to induce

exchange. This experiment showed faster exchange rates than

were observed for simple dissociation with the most pronounced

effect occurring when a distal binding RNA was introduced. The

competing RNA essentially traps one of the two Hfq binding sites

facilitating complete dissociation of fhlA220 from Hfq. This finding

has functional importance since most sRNAs bind through the

proximal site. Thus, if Hfq is bound to both proximal and distal

sites of an mRNA in a closed complex, exposure to a sRNA will

lead to formation of a ternary complex that retains Hfq contact

with the mRNA through the (ARN)x motif and Hfq’s distal

surface. If complementarity between the RNAs is found within the

lifetime of the ternary complex, the conformational changes

responsible for gene regulation will ensue. Otherwise, the sRNA

will simply dissociate leaving the Hfq-mRNA complex intact and

unchanged. Hfq-RNA complexes challenged with the distal-

binding A18 RNA, showed a three-fold kinetic advantage over

dissociation with proximal binding DsrA. These findings imply

that the Hfq-mRNA complex will be more resistant to a non-

cognate sRNA than to an A-rich RNA that resembles an

alternative mRNA. Whether these findings are consistent with

other Hfq binding mRNAs besides fhlA remains to be validated.

In conclusion the data presented here supports the notion that

Hfq-mRNA complexes are essential elements in sRNA mediated

gene regulation. This work supports recent findings by the

Woodson lab that sequence elements in upstream regions of

mRNAs are important for Hfq binding and gene regulation in vivo

[33]. These (ARN)x motifs are widely dispersed in bacterial

mRNAs and we are only now learning about the importance of

such signals in bacterial genes. A recent report suggested an Hfq

interaction with the RNA polymerase b-subunit [36] and might

imply the potential to handoff of Hfq to nascent transcript marking

them for subsequent regulation by an sRNA if necessary in

response to an environmental signal. This would be an efficient

way for Hfq to locate target mRNAs and ensure that they are

positioned properly to support sRNA-mediated gene regulation if

required.

Materials and Methods

Plasmid construction for fhlA53 and OxyS
pNS10901 carries the fhlA 59-end fragment from 253 upstream

of the AUG initiation codon to +60. The construct was prepared

by positioning the dsDNA of the FhlA fragment behind a T7

promoter sequence flanked by a EcoR I and a BamH I site using

the following two primers 59-ACGTACGAATTCTAATAC-

GACTCACTATAGGCAGTTAGTCAATGACCTTTTGCAC-

CGCTTTGCGGTGCTTTCCTGGAAGAAC-39 and 59-CGA-

GCTGGATCCAATATTTGTTGTCCGAGTGATGTCGAA-

CAACCCTTGTTGTCCGAGA TCACTCATCGGTGCATA-

TGACATTTTGTTCTTCCAGGAAAGCACCGC-39. The pri-

mer extension assay was performed using a standard procedure

described previously [37]. The resulting DNA was cloned into

pUC19 and used to transform into XL-10 supercompetent E. coli

cells. The resulting plasmid (pNS10901) was verified by sequencing.

The plasmids (pNS10901) were isolated using a Giga-prep kit

(Qiagen). Plasmid DNA were further purified using phenol-

chloroform-isoamyl extraction and ethanol precipitated. The

plasmid was prepared for runoff transcription by digesting with

Ssp I. The OxyS fragment was amplified in XL-10 E. coli cells using

primers OxyS F- 59-GGAACAAGCTTTAATACGACTCACTA-

TACCTTCGCCTAGGACCTCTAGG-39 and OxyS-R- 59-CC-

GAGCGAATTCTTTAAAGCCTCGCCGTGGAG-39.

The primers were designed with a T7 RNA promoter in the

OxyS-F primer with a flaking EcoR I and Hind III restriction sites.

The dsDNA fragments were inserted into pUC19 and transformed

into XL-10 E. coli cells (pNS10092). The plasmids were verified

using sequencing. The plasmid was prepared for runoff transcrip-

tion by digesting using Dra I.

Figure 6. Kinetics of fhlA220 mRNA interaction with Y25A and K56A Hfq mutants. (A) Sensorgram for fhlA220 binding to Y25A Hfq. It was
shown that Y25A mutation abrogated RNA binding at the distal site of Hfq [28]. As described previously ,3 fmol of mRNA was immobilized in the
SPR sensor surface and titrated with mutant Hfq at varying concentrations of 33 nM - to 67 nM hexamer. (B) Sensorgram for fhlA220 binding to K56A
Hfq. K56A Hfq mutant has been shown to destabilized RNA binding at the proximal surface of Hfq. Hfq was titrated at concentrations of 17 nM - to
50 nM K56A Hfq hexamer. For both (A) and (B), the above-mentioned two-site parallel binding model was applied.
doi:10.1371/journal.pone.0013028.g006
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RNA preparation for SHAPE, in vitro binding and kinetic
analysis

A18 RNA was purchased from Dharmacon Technologies and

deprotected following the manufacturer’s protocol. RNA quality

was assessed using denaturing PAGE and gel purified. For in vitro

binding and kinetic analysis, fhlA220 mRNA were transcribed using

a DNA fragment that amplifies the FhlA gene from 2220 to +60 in

E. coli XL-10 cells using primers 59-GGAACCGAATTCTAA-

TACGACTCACTATAGCAGCGTTACATTCCCATCCACT-

GG-39 and 59-CCGAGCGGATCCAATATTTGTCCGAGT-

GATGTCGAACAACCC-39 and digested with Ssp I before

transcribing. For SHAPE analysis, fhlA220 mRNA was in vitro

transcribed using a DNA template that was amplified in XL-10 cells

using primers 59-GGAACCGAATTCTAATACGACTCACTA-

TAGGCCTTCGGGCCAAGCAGCGTTACATTCCCATCCA-

CTG-39 and 59-CCGAGCGGATCCAATATTGAACCGGACC-

GAAGCCCGATTTGGATC CGGCGAACCGGATCGATGT-

CCGAGTGATGTCGAACAACCC-39 that includes a structure

cassette in the 59 and 39 regions as previously described [29]. In vitro

transcription was performed after digesting the amplified product

with Ssp I. DsrA was obtained by runoff transcription of

pBAU10301 that was digested by Ssp I [38].

Biotinylation of RNA
mRNAs fhlA220 and fhlA53 was 59-labled with biotin to be used

in surface plasmon resonance experiments. RNAs were first

treated with Calf Intestinal Phosphatase (CIP) and phosphorylated

using ATP-c-S using the Ambion Kinase Max kit (Ambion, Inc).

In brief, 1 nmol of RNA was treated with CIP (in 106
dephosphorylation buffer, 0.5 units of CIP at 37uC for 2 h). The

reaction mixture was purified using the Phosphatase Removal

Reagent as described by the product manual. Purified RNAs were

phosphorylated with ATP-c-S using T4 Polynucleotide kinase.

Phosphorylated RNAs were purified using a G-25 spin column

(GE Healthcare) and speed vacuumed to dryness. RNAs were then

dissolved in 45 ml of 100 mM KHPO4, pH 8.0, 5 ml of 20 mM N-

iodoacetyl-N-biotinylhexylenediamine dissolved in DMF (EZ-Link

Iodoacetyl-LC-Biotin, Thermo Scientific). The reaction was

incubated at 45uC for 1 h while shaking under dark conditions.

The reaction was then ethanol precipitated and analyzed using

PAGE.

Hfq expression and purification
Expression and purification of Hfq and its mutants Y25A and

K56A was performed as previously described [28].

Electrophoretic mobility shift assays
All binding reactions were performed in 50 mM Tris-HCl

pH 7.5,100 mM KCl and 10 mM MgCl2 at room temperature.

Prior to any interaction all RNAs in buffer were annealed at 90uC
for 3 min, cooled to room temperature for 30 min. For all

reactions 8 ml aliquots were loaded after diluting with loading

buffer (10% (w/v) sucrose, xylene cyanol, bromophenol blue)

under a power of 5 W on native 5–8% polyacrylamide (37:1) gel in

16 TBE. Dried gels were visualized by phosphorimaging

(Molecular Dynamics) using a Typhoon 9210 imaging system

(Amersham). Quantification was done using ImageQuant 5.1

(Molecular Dynamics) and Kaleidagraph 3.0 (Synergy). Data were

fit using nonlinear least-square analysis to a cooperative binding

model shown below (eq. 1). Here, L is the ligand concentration

and the cooperatively is indicated by n. Typical values for n

ranged from 1.1 to 2.7.

QFraction~
(L)n

KDzLn
ð1Þ

In the case of A18, DsrA competition assays, the fhlA220NHfq

complex was pre-formed and A18 and DsrA was titrated at varying

concentrations from 0 to 30 mM.

Chemical SHAPE analysis
The secondary structure of fhlA220 was mapped using SHAPE

chemistry as described previously [29,39]. In brief 1 pmol of RNA

was folded in buffer (50 mM Tris-HCl pH 7.5, 100 mM KCl,

10 mM MgCl2) by heating to 95uC and cooled to room

temperature for 15 min. Then added N-methylisatoic anhydride

(NMIA) in anhydrous DMSO to a final concentration of 3 mM.

The reactions were incubated at 37uC for 45 min. A control

experiment without NMIA was performed for 1 pmol of RNA

where instead of NMIA, DMSO was added. The reaction was

then ethanol precipitated in the presence of a co-precipitant

(20 mg, Glycogen).

The 29-O-adducts were analyzed using primer extension. The

modified/unmodified RNAs (1 pmol, 10 ml, in 0.56 TE) were

heated to 95uC for 3 min in a thin PCR tube and cooled in ice for

1 min. Fluorescently labeled primer (59-F-GAACCGGACC-

GAAGCCCG) (3 ml) was added to (+NMIA) (0.3 mM WellRED

D4) and (2NMIA) (0.4 mM WellRED D3) reactions respectively.

The primer template solutions were then incubated at 65uC for

5 min and 37uC for 15 min. Primer extension was initiated by

adding enzyme mix (4 ml of Superscript III FS buffer, 1 ml 0.1 M

DTT, 1 ml 10 mM dNTP mix) and incubating at 52uC for 1 min.

Then added Superscript III (1 ml) and incubated at 52uC for

15 min. In addition to these two reactions two sequencing

reactions were performed to identify corresponding peaks. The

sequencing reactions were assembled as mentioned above (RNA,

1 pmol), 3 ml primer (ddCTP, 1.2 mM LICOR IR 800) and

(ddATP, 2 mM WellRED D2), 6 ml enzyme mix, ddNTP (1 ml,

0.25 mM) and Superscript IIII (1 ml) and performed RT. The four

reactions (+NMIA), (2NMIA) and sequencing reactions were

combined and ethanol precipitated in the presence of glycogen.

The pellets were washed twice with 70% ethanol and dried under

vacuum. The pellets were re-suspended in SLS loading solution

(Beckman). cDNA samples were separated on a Beckman CEQ

8000 DNA sequencer. The separation was performed using the

following parameters (capillary temp: 60uC, denature temp: 90uC,

time 150 s, injection voltage: 2 kV, time 7 s, separation voltage

3 kV and separation time 100 min).

The raw fluorescence intensities were analyzed using the

software ShapeFinder [40]. The quantitative shape data were

normalized to a scale that falls between 0 for un-reactive sites and

reactive bases would attain an average reactivity of 1. This method

of normalizing was extensively described elsewhere [41]. SHAPE

reactivities were then imported to RNAstructure software where

the intensities were converted to pseudo-free energy changes [42].

Chemical footprinting
To identify Hfq binding sites in fhlA220, SHAPE chemistry was

performed in the presence and absence of Hfq as described above.

2 pmol of RNA was reacted with 1 mM Hfq for 30 min. The RNA

was then modified using NMIA (3 mM) at 37uC for 45 min, and

treated with Proteinase K (1 ml, 20 mg/mL) at 37uC for 30 min.

The reaction was then phenol-chloroform-isoamyl alcohol ex-

tracted followed by ethanol precipitation. The primer extensions
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were performed as previously described and the (+Hfq) base

reactivities were compared to (2Hfq) reactions.

Tb(III) mediated footprinting was performed as previously

described [14]. In brief, 250K cpm of 59 32P-end labeled RNA was

incubated in probing buffer (50 mM Tris-HCl at pH 8.0, 100 mM

NaCl, 10 mM MgCl2) containing 0 and 1 mM Hfq hexamer for

30 min at room temperature. TbCl3 was added to a concentration

of 100 mM and incubated for 2h. The reaction was quenched by

adding EDTA (50 mM) and SDS (0,1%). Samples were then

treated with Proteinase K and incubated at 37uC for 30 min. The

mixture was then resolved on a 8% denaturing PAGE. The data

was then analyzed using SAFA software to normalize, align and

measure reactivities of base positions with reference to a ladder

[43].

Surface Plasmon resonance
Kinetic experiments were performed on a Biacore 2000

instrument. Experiments were done on either a streptavidin-

coated chip (SA chip, Biacore) or CM5 chip where 3000 RUs

(response units) of streptavidin was coated using amine coupling.

Streptavidin coating the CM5 chip involved, activating the

carboxymethylated dextran (CM) sensor chip with 35 ml of

0.2 M EDC and 0.05 M NHS. A 35 ml solution of streptavidin

(200 mg/mL in 10 mM sodium acetate, pH 4.8) was injected

repeatedly to achieve the expected 3000 RUs of surface coverage.

This was then followed by the injection of 35 ml of 1 M

ethanolamine to quench residual NHS esters. The Immobilization

was carried out at 25uC at a flow rate of 5 ml/min.

All experiments were performed in the same reaction buffer

(50 mM Tris-HCl, pH 7.5, 100 mM KCl and 10 mM MgCl2).

During all experiments ,3 fmol of 59 biotin labeled RNAs were

immobilized on the sensor chip. Immobilizations of RNAs were

performed at a flow rate of 3 ml/min to make sure homogeneous

surface coverage is attained. Experiments were carried out at 25uC
and at a flow rate of 30 ml/min.

To measure kinetics of OxyS binding to fhlA53, OxyS was

titrated at varying concentrations of (400 nM, 200 nM and

100 nM). Kinetics of OxyS interacting with fhlA220 was measured

by immobilizing ,3 fmols of 59-Biotin labeled OxyS and titrating

fhlA220 at concentrations (1–4.5) mM. Surface regeneration was

performed by injecting 300 ml of regeneration buffer (50 mM Tris-

HCl pH 7.5, 20 mM EDTA) at a flow rate of 100 ml/min. In case

of Hfq binding to fhlA220 or fhlA53 Hfq was titrated at varying

concentrations of (15 nM, 10 nM and 5 nM) hexamer. Hfq for

this experiment was dialyzed with the reaction buffer using a Slide-

A-LyzerH mini dialysis kit (Thermo Scientific, 3500 MWCO) prior

to the experiment. The regeneration was performed by injecting

60 ml of 500 nM DsrA and A18 RNA solution. For Y25A Hfq

binding to fhlA220 Hfq hexamer concentrations at 67 nM, 50 nM

and 33 nM were used. For K56A Hfq concentrations of 50 nM,

33 nM and 17 nM were used.

To measure the exchange kinetics between Hfq and fhlA220, the

co-injection mode that was available in the Biacore 2000 control

software was used. Here 17 nM wt-Hfq was titrated and

immediately after the injection, either DsrA, A18 or both together

at concentrations of 500 nM and 300 nM was introduced.

The data were analyzed globally by fitting both the dissociation

and association (where applicable) phases simultaneously (BIA

evaluation software version 4.1). A 1:1 (Langmuir) model (two

fitting parameters) and a parallel reaction model (four fitting

parameters) were used (Fig. 5A). The binding model was

constructed in BIA evaluation software and the equation for the

model is shown below, making the assumption that RHFD
<RHFP

due to similar molecular weights for the two complexes.

Rtot~xDRHFD
zxPRHFP

zRI ð2Þ

Where,

d½HFp�
dt

~ ka1½H�½F �{kd1½HFP�ð Þ ð3Þ

d½HFD�
dt

~ ka2½H�½F �{kd2½HFD�ð Þ ð4Þ

d½F �
dt

~{ ka1½H�½F �{kd1½HFP�ð Þ{ ka2½H�½F �{kd2½HFD�ð Þ ð5Þ

d½F �
dt

~{ ka1zka2ð Þ½H�½F �z kd1zkd2ð Þ ½HFP�z½HFD�ð Þ ð6Þ

Total changes in response units for this model was due to

contributions from the distal and proximally coordinated com-

plexes (xD (RHFD
) and xP (RHFP

), respectively) and RI, which

corresponds to the bulk refractive index contribution to the overall

response (Rtot). Here species xD and xP represents the mole

fractions of the Hfq complexes formed with the distal and the

proximal sites respectively. Surface immobilized fhlA mRNA is

represented as F and Hfq is depicted as H in above equations.

Kinetic rates ka1 and ka2 define association phase parameters

whereas dissociation rates are given by kd1 and kd2 for the two

binding phases. BIA evaluation uses Marquardt-Lavenberg

algorithm to optimize parameters in fits and assigns kinetic

constants to the above described equation. The goodness of the fit

was judged by the reduced chi-square (x2) values.

Supporting Information

Figure S1 Quantitative analysis gel shift assays. (A) Analysis of

gel shift assays shown in Figure 2B. Binding of F220 to OxyS

(closed squares) and ternary complex formation between F220,

OxyS and Hfq (closed circles). (B) Quantization of thermodynamic

constants for gel shifts for Hfq binding to F53 (closed squares) and

F220 (closed circles). As described in materials and methods

thermodynamic constants were determined by nonlinear least-

square analysis fitted to a cooperative binding model.

Found at: doi:10.1371/journal.pone.0013028.s001 (0.93 MB TIF)

Figure S2 fhlA220 interaction with Hfq. Gel shift assay wherein

[59-32P]- fhlA220 mRNA was titrated with increasing concentra-

tion of Hfq in the range of 0 to 1.67 mM hexamer.

Found at: doi:10.1371/journal.pone.0013028.s002 (0.59 MB TIF)

Figure S3. fhlA53 mRNA interaction with Hfq. (A). Gel shift

assay for HfqNfhlA220 binary complex formation. (B) Poly-

acrylamide gel showing the effect of Hfq binding on Tb(III)-

mediated cleavage of 32P-fhlA53. (C) Quantitative analysis of Hfq

binding based on the gel in panel B. Data are represented as a

ratio of the intensity of each band in the absence and presence of

1 mM Hfq hexamer. Values greater than 1 represent protection.

Data between +1 and 21 were considered to be no significant

effect.

Found at: doi:10.1371/journal.pone.0013028.s003 (2.28 MB TIF)

Figure S4 Kinetic analysis of OxyS interaction with fhlA220 and

fhlA53. (A) Representative SPR sensorgram for OxySNfhlA53
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interaction is shown. 59-Biotin labeled fhlA53 mRNA was

immobilized and varying concentrations of OxyS was titrated

(400, 200 and 100 nM). (B) SPR sensorgram for OxyS binding to

fhlA220. Here the biotin label was added to OxyS sRNA and

titrated with fhlA220 to monitor the interaction (1.5, 3 and

4.5 mM). For both interactions data were fitted into a Langmuir

binding model to yield kinetic constants. The model is an over-

simplification of a complex system as it ignores unimolecular RNA

structural rearrangements that might be required prior to

association, but the model sufficient to illustrate the interactions

in the absence of Hfq and their approximate rates.

Found at: doi:10.1371/journal.pone.0013028.s004 (0.54 MB TIF)

Figure S5 Handoff kinetics of Hfq from HfqNfhlA220 complex.

(A) Overview of handoff experiment. The HfqNfhlA220 complex

was pre-formed and dissociation kinetics of Hfq were monitored

by titrating competing RNAs DsrA (proximal), A18 (distal) or both

DsrA and A18. (B) Sensorgram of Hfq dissociation from the

HfqNfhlA220 complex in the presence of 500 nM and 300 nM

DsrA and A18. (C) Sensorgram of Hfq dissociation from the

HfqNfhlA220 complex in the presence of 500 nM and 300 nM

DsrA. (D) Sensorgram of Hfq dissociation from the HfqNfhlA220

complex in the presence of 500 nM and 300 nM of A18. All

dissociation data were fitted in to Langmuir model.

Found at: doi:10.1371/journal.pone.0013028.s005 (1.02 MB TIF)
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