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Abstract

Image segmentation is an indispensable process in the visualization of human tissues, par-
ticularly during clinical analysis of brain magnetic resonance (MR) images. For many
human experts, manual segmentation is a difficult and time consuming task, which makes
an automated brain MR image segmentation method desirable. In this regard, this paper
presents a new segmentation method for brain MR images, integrating judiciously the mer-
its of rough-fuzzy computing and multiresolution image analysis technique. The proposed
method assumes that the major brain tissues, namely, gray matter, white matter, and cere-
brospinal fluid from the MR images are considered to have different textural properties. The
dyadic wavelet analysis is used to extract the scale-space feature vector for each pixel,
while the rough-fuzzy clustering is used to address the uncertainty problem of brain MR
image segmentation. An unsupervised feature selection method is introduced, based on
maximum relevance-maximum significance criterion, to select relevant and significant tex-
tural features for segmentation problem, while the mathematical morphology based skull
stripping preprocessing step is proposed to remove the non-cerebral tissues like skull. The
performance of the proposed method, along with a comparison with related approaches, is
demonstrated on a set of synthetic and real brain MR images using standard

validity indices.

Introduction

Magnetic resonance imaging (MRI) is an important diagnostic imaging technique for the early
detection of abnormal changes in tissues and organs, and therefore, majority of research in
medical imaging concerns MR images [1]. Conventionally, the brain MR images are inter-
preted visually and qualitatively by radiologists. Advanced research requires quantitative infor-
mation such as the size of the brain tumor or brain ventricles after a traumatic brain injury or
the relative volume of ventricles to brain. Fully automatic methods sometimes fail, producing
incorrect results and requiring the intervention of a human operator. This is often true due to
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restrictions imposed by image acquisition, pathology and biological variation. So, it is impor-
tant to have a faithful method to measure various structures in the brain.

Image segmentation is a process of partitioning an image space into some non-overlapping
meaningful homogeneous regions. The success of an image analysis system depends on the
quality of segmentation [1-3]. In the analysis of medical images for computer-aided diagnosis
and therapy, segmentation is often required as a preliminary stage. The brain has a particularly
complicated structure and its precise segmentation is very important for detecting tumors,
edema, and necrotic tissues, in order to prescribe appropriate therapy [1-3]. Thresholding is
one of the old, simple, and popular techniques for image segmentation. A series of algorithms
for image segmentation based on histogram thresholding can be found in the literature [4-10].
However, the segmentation of brain MR image by thresholding the image intensities is difficult
due to the fact that the T1 weighted MR image with contrast enhancement is the standard mo-
dality for identifying different regions in brain. The information provided by the intensities in
this modality is not always consistent, and it is generally impossible to segment brain MR
image by thresholding the intensities in this image modality.

The major aim of any image processing or analysis research is to develop better tools that
may extract different perspectives on the same image, to understand not only its content, but
also its meaning and significance. Texture is a fundamental characteristic of an image and
plays an important role in the human visual system for recognition and interpretation of im-
ages. The analysis of image texture content is extremely important in image analysis. It requires
the understanding of how humans discriminate between different texture types and how to
model algorithms to perform image analysis task in a best possible way. Texture is an impor-
tant property of all reflective natural surfaces which helps human visual perception system to
segment and classify different objects in a digital image.

In a medical image, texture can be considered to be the visual impression of coarseness or
smoothness caused by the variability or uniformity of image tone. These textural properties of
a brain MR image are likely to provide valuable information for classification or segmentation,
where different object regions are treated as different texture classes, that is, a multitexture seg-
mentation problem. The segmentation of these images is necessary in order to identify different
meaningful regions. Also, there is a change in appearance of most textures when viewed at dif-
ferent resolutions, and during the empirical division from macro to micro textures. Texture
can also be defined as a local statistical distribution of pixel pattern (micro region) in observer’s
domain [11-15]. Psychovisual studies reveal that the human visual system processes images in
multiple scales. The visual cortex has separate cells that decomposes images into filtered images
of various band of frequencies and orientation; thus capable of preserving both local and global
information. Hence, the methods for texture analysis, based on the concept of multiscale pro-
cessing of the human visual system, are superior over the more traditional ones. Texture is es-
pecially suited for this type of multiresolution analysis, using both frequency and spatial
information due to its inherent characteristics.

Brain MR images may contain information over a large range of scales and the spatial fre-
quency structure also changes over different regions, that is, non-periodic signal. In medical
imaging perspective, the resolution of the imagery may be different in many cases, and so it is
important to understand how information changes over different scales of imagery. The wave-
let based multiresolution analysis is most effective for this purpose [16-18]. Moreover, wavelet
theory is well suited in this area of study where signals are complex and non-periodic. Further-
more, wavelets are particularly good in describing a scene in terms of the scale of the textures
in it [19, 20]. During the past two decades, wavelet analysis has become an important paradigm
for multiresolution analysis, and has found important applications in image analysis [19-21].
However, the automatic brain MR image segmentation methods reported in [22-33] have not
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used multiresolution techniques to extract features. In [34], a method is reported to segment
MR images, where discrete wavelet transform is used to extract high level details from MR
image. The fuzzy c-means [35] is applied to the wavelet transformed image and Kirch’s edge
detection mask is used to enhance the edge detail in the image. Finally, the resultant image is
combined with the original image to get a sharpened image. Barra and Boire [36] proposed an
algorithm for the segmentation of brain MR images, combining the merits of possibilistic c-
means [37] and 3D wavelet analysis. While the fuzzy logic of possibilistic c-means algorithm
models the uncertainty and imprecision inherent in brain MR images, the wavelet representa-
tion allows for both spatial and textural information.

The process of automatically extracting different regions of brain MR images is a challeng-
ing process due to the gradual transition between different classes of brain. This results in the
ambiguity of the structural boundaries. Hence, one of the main problems in brain MR image
segmentation is uncertainty. In this background, the rough-fuzzy computing provides a mathe-
matical framework to capture uncertainties associated with human cognition process [38]. It is
an efficient hybrid technique based on judicious integration of the principles of rough sets and
fuzzy sets. Since the rough-fuzzy approach has the capability of providing a stronger paradigm
for uncertainty handling, it has greater promise in application domains of pattern recognition
and image processing, where fuzzy sets and/or rough sets are being effectively used and proved
to be successful. The rough-fuzzy clustering algorithms such as rough-fuzzy c-means [39] and
robust rough-fuzzy c-means [40] can avoid the problems of noise sensitivity of fuzzy c-means
[35] and the coincident clusters of possibilistic c-means [37].

In this regard, the paper presents a texture-based brain MR image segmentation method, ju-
diciously integrating the merits of multiresolution image analysis and rough-fuzzy computing.
The proposed brain MR image segmentation is based on the assumption that different tissue
classes of brain MR image belong to different texture categories. The multiresolution wavelet
analysis is used to extract scale-space feature vector for each pixel of the given brain MR image.
Since the boundary between brain and skull is relatively strong on T1 scan, a skull stripping al-
gorithm is introduced to extract the brain tissues and remove non-cerebral tissues like skull.
The skull stripped feature vectors are considered for more accurate segmentation. However,
the use of wavelet decomposition may give rise to some irrelevant and insignificant features.
Hence, the selection of appropriate features using some feature selection algorithms is required.
In this background, an unsupervised feature selection method is proposed to reduce the di-
mensionality of feature space by maximizing both relevance and significance of the selected
features. The measure of energy content of features is employed to compute both the relevance
and significance. Finally, the rough-fuzzy clustering algorithm is used for segmentation of the
given brain MR image. The rough-fuzzy clustering integrates judiciously the merits of rough
sets, and probabilistic and possibilistic memberships of fuzzy sets. While the integration of
both membership functions of fuzzy sets enables efficient handling of overlapping classes in
noisy environment, the concept of lower and upper approximations of rough sets deals with
uncertainty, vagueness, and incompleteness in class definition. In effect, it groups similar tex-
tured tissue classes contained in the image. The performance of the proposed approach, along
with a comparison with related methods, is demonstrated on a set of synthetic and real brain
MR images both qualitatively and quantitatively.

Proposed Segmentation Methodology

This section presents the proposed segmentation method in detail for brain MR image segmen-
tation. It consists of mainly five steps as mentioned in Fig 1 and described below:
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Fig 1. Block diagram of the proposed brain MR image segmentation method.
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1. Generation of mask from the input MR image for identification of region of interest, that is,
brain region;

2. Decomposition of the MR image using wavelet;

3. Generation of feature vectors for region of interest using the mask;

4. Unsupervised feature selection to select relevant and significant features for clustering; and
5. Rough-fuzzy clustering to generate segmented image.

Fig 1 presents the block diagram of the proposed segmentation method considering the brain
MR image as an example. It also shows all the intermediate images obtained through the pro-
posed technique. The subbands generated using wavelet decomposition are named as to reveal
their orientation information. The approximation, horizontal, vertical, and diagonal subbands
are denoted by LL, LH, HL, and HH, respectively, while these are followed by a number indi-
cating the wavelet decomposition level.

Let the input brain MR image be I with size MxN. Hence, the total number of pixels is #o; =

MN. Let X = {%, %,

i

, %, } be the set of pixels of the input image I. To identify region
of interest, a mask is generated from input brain MR image using a new skull stripping algo-
rithm. The algorithm is based on the thresholding method and mathematical morphology.
After generating the mask, the input brain MR image is decomposed upto Ith level using dyadic
wavelets resulting into d = 3/+1 number of subbands. Hence, each pixel x, € X of the input
brain MR image is represented by d features. The mask is then applied to each of the subbands
to generate the feature vectors for only brain region. In effect, a reduced set X C X is generated
considering only brain region, where X = {xy, - - -, x;, - - -, X,,}, n < 1 is the number of pixels
within the region of interest. An unsupervised feature selection algorithm, based on maximum
relevance-maximum significance criterion, is introduced to select n number of relevant and
significant features from the whole set of d features for clustering. Finally, the rough-fuzzy clus-
tering algorithm is used to generate the segmented image. Each step of the proposed segmenta-
tion method is elaborated next one by one.

Identification of Region of Interest

The skull stripping is an important preprocessing phase in brain imaging application, which in-
volves removal of non-cerebral tissues like skull, scalp, and dura from brain MR images. It re-
duces misclassification during segmentation as well as minimizes the execution time of
segmentation algorithm by eliminating the objects for non-cerebral tissues [41].

Although many skull stripping techniques have been studied, most of them are based on ei-
ther region growing techniques [42, 43] or mathematical morphology [44-46]. The success of
skull removing methods using region growing approaches relies on the seed selection algo-
rithm, which automatically selects seeds corresponding to the brain and non-brain regions.
However, most of the brain MR image segmentation methods use morphological operations to
separate the brain tissues from the surrounding tissues without holes, although morphology re-
quires a prior binarization of the image and thresholding may be used to create binary images
from gray level ones.

Since the morphology operations need binarization of the image, selection of a threshold
value is crucial to generate the mask for brain tissues, in turns, to ensure the accurateness of the
segmented results. The thresholding method used in this work is based on the mean image in-
tensity value. On the other hand, the morphology operations use an octagonal shaped
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structuring element to produce the skull-stripped image. In the proposed brain MR image seg-
mentation methodology, the skull stripping technique includes the following steps:

1. Apply median filtering with a window of size 3x3 to the input image.
2. Compute the initial mean intensity value T; of the image.

3. Identify the top, bottom, left, and right pixel locations, from where brain skull starts in the
image, considering gray values of the skull are greater than T;.

4. Form a rectangle using the top, bottom, left, and right pixel locations.
5. Compute the final mean value Ty of the brain using the pixels located within the rectangle.

6. Approximate the region of brain membrane or meninges that envelop the brain, based on
the assumption that the intensity of skull is more than Tyand that of membrane is less than
Ty

7. Set the average intensity value of membrane as the threshold value T.
8. Convert the given input image into binary image using the threshold T.

9. Apply a 13x13 opening morphological operation to the binary image in order to separate
the skull from the brain completely.

10. Find the largest connected component and consider it as brain.

11. Finally, apply a 21x21 closing morphological operation to fill the gaps within and along
the periphery of the intracranial region.

Feature Extraction Using Multiresolution Wavelet Analysis

Wavelets mean small waves, that is, short duration finite energy functions. Wavelet function
must be chosen from the space of all measurable functions that are absolutely and square inte-
grable, that is, L'(R)NL*(R). Being in this space a mother wavelet function y(f) must satisfy the
conditions of zero mean and square norm, that is,

/l,b(t)dt =0< o0 and/tp(t)zdt =1< oo (1)

Mathematically, a wavelet is defined as

bult) =0 (*57) @

where b is the location parameter and a is the scaling parameter. The continuous wavelet trans-
form is defined using mother wavelet y(t) as

wiat) = [0 v (= )ar ®)

According to (3), for every (g, b), a wavelet transform coefficient is obtained, representing

how much the scaled wavelet is similar to the function at location ¢ = (b/a). The mother wavelet
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y(t) has to satisfy the admissibility condition

LI
Chl W] dw < (4)

In (4), ¥ (w) denotes Fourier transform of y(t). The admissibility condition assures that the
function f(f) can be reconstructed with the knowledge of its wavelet transform by the following
inverse transform relationship

0= [ 5 [wanw o 5

The multiresolution analysis is designed to provide good time resolution and poor frequen-
cy resolution at high frequencies and good frequency resolution and poor time resolution at
low frequencies [16, 19, 20]. In multiresolution analysis, a scaling function is used to create a
series of approximations of a function or image, each differing by a factor of 2 from its nearest
neighboring approximation. Additional functions, called wavelets, are then used to encode the
difference in information between adjacent approximations. Scaling function ¢(f) and wavelet
function () are defined as follows:

bu(t) = 27¢(2't - k); (6)

V(1) = 27 (2't = ks (7)

for all j, k € Z. Here k determines the position along x-axis; and j determines function’s width,
that is, how broad or narrow it is along x-axis. The scaling function ¢() and wavelet function y
(t) are chosen appropriately to satisfy the orthonormality condition. The wavelet subspaces

W;s form an orthogonal decomposition of L*(R) function space and hence they are related to
nested subspaces Vjs as follows:

Vii=Viat Wy
V= Vi W = Vi W W

where V; is the function space spanned by ¢; «(f) over k and W; is the function space spanned

by l//j’ k(t).
If a function f(t) € L*(R), its wavelet transform is

W) = (06,000 =7 0,0 ®)

W, G.K) = (F(O,.(0)) = %mek(m 9)

where j, is an arbitrary starting scale and N is the number of samples taken from the signal.
The Wi(jo, k)’s are called approximation or scaling coefficients and W, (j, k)’s are referred to as
detail or wavelet coefficients. In fast wavelet transform, at scale j, the approximation and detail
coefficients, W(j, k) and W, (j, k), respectively, can be computed by convolving the scale j+1
approximation coefficients, Wy(j+1, k), with the time-reversed scaling and wavelet vectors,
hg(=n) and h,(-n), respectively, and subsampling the results.
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Like one dimensional wavelet transform, the two dimensional wavelet transform can be im-
plemented using the separable two dimensional scaling and wavelet functions. It is done by tak-
ing one dimensional wavelet transform of the rows of two dimensional function or image,
followed by one dimensional wavelet transform of the resulting columns. Hence, it generates
four subbands at each level, namely, approximation, horizontal, vertical, and diagonal sub-
bands. The approximation part is iteratively decomposed as the decomposition level is in-
creased in case of standard wavelet transform. Hence, if an input image is decomposed upto /th
level, total d = 3/+1 number of subbands are generated.

The classical wavelet transform includes downsampling operations by a factor that cause
wavelet expansions to be shift-variant. But, overcomplete representation of wavelets overcomes
the shift-varying nature of classical wavelet expansion. Additionally, the overcomplete wavelet
transform is convenient over the subsampled methods as downsampling decreases the size of
the subbands at each increasing level of decomposition and thus may bias the decomposition
at higher levels. Hence, the proposed methodology includes feature-extraction scheme that
uses multiresolution dyadic wavelet filtering without downsampling.

Generation of Skull Stripped Feature Vectors

After generating d subbands or features for a given image I, the mask is applied to each sub-
band to generate the feature vectors for the region of interest only. Hence, a reduced set
X={xy, - %+, X,} is generated from X consisting of pixels within the region of interest.
Each pixel or object x; € X is represented by d-dimensions, each dimension corresponding to
each subband generated from wavelet decomposition. Next section presents an unsupervised
feature selection algorithm, which is used to select m relevant and significant subbands or fea-
tures from the whole set of d features for efficient segmentation.

Unsupervised Feature Selection

In wavelet-based image segmentation method, a number of insignificant and irrelevant features
may be generated. The presence of such features may lead to a reduction in the valuable infor-
mation of segmentation. The objective of the feature selection is to identify a reduced feature
subset with optimum salient characteristics of the image. It not only decreases the processing
time, but also leads to more compactness and better generalization. The selected features
should have high relevance and high significance in the feature set. In effect, these features will
be able to predict the belongingness of the objects or samples in different segmented regions.
However, as the segmentation problem is unsupervised in nature, the feature selection method
should be unsupervised. Accordingly, a measure is required that can efficiently assess the effec-
tiveness of feature set in unsupervised manner.

There exist many approaches to select a reduced set of relevant subbands for texture seg-
mentation [47-51]. While Coifman and Wickerhauser [47] proposed entropy for the selection
of best subbands, Saito et al. [48] used empirical probability density estimation and a local
basis library for the extraction of discriminant features. On the other hand, Huang and
Aviyente used mutual information in [50] for computing dependence among subbands to dis-
card redundant or insignificant features, while both dependence and energy measures are used
in [52] to select relevant and nonredundant subbands for texture classification. In the proposed
feature selection algorithm, the energy measure is used to identify the relevant and significant
features. The energy content of a feature set S is defined as follows:

n_ 18| 1 & IS|

n\SI ZZ R ij(xi - ) (10)
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as X is the mean of feature vectors of all objects and is given by

Is|

R
x:wggxij, (11)

where 7 is the number of objects and S is the feature set. Hence, the energy content provides
higher values for the features having high frequency components, indicating that these features
contain more information. On the other hand, the energy content measure yields low energy
values for the smoothed subbands indicating textural uniformity. Also, this measure is unsu-
pervised in nature as it does not require any class information. Hence, this measure can be
used to select potential wavelet features for image segmentation.

Let C={A}, -+ Ay - Aj - -+, Ag} be the set of d features and S is the set of selected fea-
tures. The relevance y 4 of the feature A; is defined as

74, = E{AD)- (12)

The significance ¢ Aj({.A,-, Aj}) of the feature A; with respect to the feature set {.A;, A;} defines
the extent to which the feature .4; is contributing in the energy estimation computed using
(10). The change in energy estimation when a feature is removed from the feature set, is the
measure of the significance of the feature, and is given as

GA]({ANA]'}) = V{Ai.Aj} V4 = g({AiﬂAj}) - g({Az}) (13)

The higher the change in energy estimation, the more significant the feature is. If the signifi-
cance is 0, then the feature is dispensable.

Therefore, the problem of selecting a set S of relevant and significant features from the
whole set C of d features is equivalent to maximizing both the total relevance of all selected fea-
tures and the total significance among the selected features. To solve the above problem satisfy-
ing maximum relevance-maximum significance (MRMS) criterion [53], the following greedy
algorithm can be used:

1. Initialize C « {A,,---, A; - -+, Azt and S « (.
2. Calculate the relevance y 4 of each feature A; € C.

3. Select the feature A; as the most relevant feature that has the highest relevance value y 4. In

effect, S «— SU{A;} and C — C\{A4};}.
4. Repeat the following two steps until the desired number of features m is selected.

5. Calculate the significance of each of the remaining features of C with respect to the already
selected features of S and remove it from C if it has zero significance value with respect to
any one of the selected features.

6. From the remaining features of C, select feature .A; that maximizes the following condition:

1
T RS oy (AAD: o E(AD +1g L [EHAAD —E(AD] - ()

A;eS

As aresult of that, S +— SU{Aj} and C « C\A,.

The MRMS criterion based feature selection algorithm reported above is unsupervised in
nature since it does not require any a priori knowledge about the segmented regions of brain
MR image. The algorithm runs until the desired number of features m is selected. In practice,
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we find that the following definition works well:
m= [Vd] (15)

where d represents the total number of features or subbands corresponding to the given
image.

Rough-Fuzzy Clustering for Segmentation

In the proposed method, the robust rough-fuzzy c-means (rRFCM) [40] algorithm is used for
segmentation of brain MR images. However, other clustering algorithms such as hard ¢-means
[54], fuzzy c-means [35], and rough-fuzzy c-means (RFCM) [39] can also be used for this pur-
pose. The rRFCM adds the concepts of fuzzy memberships, both probabilistic and possibilistic,
of fuzzy sets, and lower and upper approximations of rough sets into c-means algorithm.
While the integration of both probabilistic and possibilistic memberships of fuzzy sets enables
efficient handling of overlapping clusters in noisy environment, the rough sets deal with uncer-
tainty, vagueness, and incompleteness in cluster definition.

Let X = {xy, -, X}, - -, X,,} be the set of n objects and V'= {v;, - -, v;, - - -, v} be the set of ¢
centroids, where x; € R™ and v; € R™. In the rRFCM, each of the clusters f; is represented by a
cluster center v;, a possibilistic lower approximation A (f,) and a probabilistic boundary region
B(B,) = {A(B,)\A(B,)}, where A(B,) denotes the upper approximation of cluster f;. According

to the definitions of lower approximation and boundary of rough sets [55], if an object
x; € A(B,), then x¢A (B,), Vk # i, and x; ¢ B(f;), Vi. That is, the object x; is contained in j; def-

initely. Hence, the memberships of the objects in lower approximation of a cluster should be
independent of other centroids and clusters. Also, the objects in lower approximation should
have different influence on the corresponding centroid and cluster. From the standpoint of
compatibility with the cluster prototype, the membership of an object in the lower approxima-
tion of a cluster should be determined solely by how far it is from the prototype of the cluster,
and should not be coupled with its location with respect to other clusters. As the possibilistic
membership v;; given by (20) depends only on the distance of object x; from cluster ;, it allows
optimal membership solutions to lie in the entire unit hypercube rather than restricting them
to the hyperplane given by (21).

On the other hand, if x; € B(8;), then the object x; possibly belongs to cluster ; and poten-
tially belongs to other clusters. Hence, the objects in boundary regions should have different in-
fluence on the centroids and clusters, and their memberships should depend on the positions
of all cluster centroids. So, in the rRFCM, the membership values of objects in lower approxi-
mation are identical to (20) of possibilistic c-means [37], while those in boundary region are
the same as (19) of fuzzy c-means [35]. Hence, the rRFCM algorithm partitions X into ¢ clus-
ters by minimizing following objective function:

wAl + (1 - w)Bl if A(Bz) 7é 0)7 B(ﬁi) # 0
J= A, if A(ﬁz) #0, B(ﬁi) =0 (16)
B, if A(B;) =0, B(B,) #0

o

where A, = Z Z (ij)m2 ij - V,-||2 + Zni (1- vij)m2; (17)
)

i=1 x;eA(p; =1 xeA(p)
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and B, = Y > ()" — vl (18)

i=1 xeB()

The parameters w and (1-w) correspond to the relative importance of lower and boundary
regions, while ni, € [1,00) and mi, € [1, 00) are the probabilistic and possibilistic fuzzifiers, re-
spectively. The probabilistic y;; and possibilistic v;; membership functions are given by

1 -1
. ij_vi”Q rhl_l
wy= |3 [ : (19)
’ ; <|Ixj vl
1 -1
2 -
X — v, m, — 1
and Vij— 1+ ||] 1|| ( 2 ) : (20)
n;
subject to Z'“fj =1V, 0< Zu,.j < n,Vi, (21)
i=1 j=1
0< Zv,.j < n,Vi; and rlnax v, > 0, Vj; (22)

j=1

where the scale parameter 7; is given by

n

p 2
Z(vij)m2||xj - Vi”
=K I— (23)

which represents the zone of influence or size of the cluster ;. Typically, K is chosen to be 1.
The centroid is calculated based on the weighting average of the possibilistic lower approxima-
tion and probabilistic boundary. The centroid calculation for the rRECM is as follows:

wcl + (1 - CO)DI if A(ﬂ,) 7é @, B(ﬂi) ?é 0
Vi = & if A(ﬁx) # 0, B(ﬁi) =0 (24)
D, if A(ﬂz) = (Z)v B(ﬂi) # 0

Z (Vij)/nzxj Z (k)™

x€A(S;) x€B(B;)
where C1 = )7,; and D, = A

S )" ()™

xE€A(;) x€B(B;)

%

The rRFCM algorithm starts by randomly choosing c objects as the centroids of the c clusters.
The possibilistic memberships v;; of all the objects are calculated using (20). The scale parameters
n; for ¢ clusters are obtained using (23). Let v; = (vi, - - -, Vi - - -5 Vi) be the fuzzy cluster §;
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associated with the centroid v;. After computing v;; for ¢ clusters and n objects, the values of v;;
for each object x; are sorted and the difference of two highest memberships of x; is compared
with a threshold value ;. Let v;; and v; be the highest and second highest memberships of x;. If
(vi—vij) > 61, then x; € A (f,). In addition, by properties of rough sets, x; € A(f,). Otherwise, x;

€ B(B;) and x; € B(By) if v;; > &,. Furthermore, x; is not part of any lower bound. After assigning
each object in lower approximations or boundary regions of different clusters based on both &;
and 6,, the memberships y;; for the objects lying in boundary regions are computed for ¢ clusters
using (19). The new centroids of different clusters are calculated as per (24). The above procedure
is repeated until no more new assignments can be made.

The performance of the rRECM depends on the values of two thresholds §; and 8,, which
determine the cluster labels of all the objects. In other word, the rRECM partitions the data set
into two classes, namely, lower approximation and boundary, based on the values of J; and J,.
The thresholds d; and 8, control the size of granules of rough-fuzzy clustering. In practice, the
following definitions work well:

1

51 = ZZ(V@' - ij) (25)

=1

where 7 is the total number of objects, v;; and v;; are the highest and second highest member-
ships of object x;. That is, the value of 6, represents the average difference of two highest possi-
bilistic memberships of all the objects in the data set. A good clustering procedure should make
the value of 6; as high as possible. On the other hand, the objects with (v;;—v;) < &; are used to
calculate the threshold &,:

1
0, = 72":‘1 (26)

where # is the number of objects that do not belong to lower approximations of any cluster
and v;; is the highest membership of object x;. That is, the value of 5, represents the average of
highest memberships of 71 objects in the data set.

Quantitative Indices

To evaluate the performance of different methods for segmentation of brain MR images, three
quantitative measures, namely, Jaccard index, sensitivity, and specificity, are used. Let A and B
be two sets representing the region of interest to be segmented in the ground truth or reference
image and segmented image, respectively. Based on the ground truth image, the false positive
(FP), false negative (FN), true positive (TP), and true negative (TN) counts can be computed
for each segmented image.

The Jaccard similarity index measures the overlap between two sets A and B. It is defined as
the size of the intersection of two sets divided by the size of their union, that is,

ANB

AB)=—— 27
a8 =507 (27)
Hence, it can also be expressed as
TP
J=— . (28)
FP + TP + FN

The Jaccard index is zero if the segment of interest in output image and the segment of cor-
responding features in ground truth image are disjoint, that is, they have no common data
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points, and is one if they are identical. Higher numbers represent better overlapping in these
two segments, indicating the significance of underlying algorithm.

The sensitivity measures the fraction of true positives that are included in a segmentation,
and is as follows:

TP

SN=— .
TP + FN

(29)
A score of one of sensitivity indicates that all the points in the ground truth region of interest
are included in the segmentation result. Since sensitivity does not include false positives or true
negatives in its calculation, it does not indicate whether the region of interest in segmented re-
sult includes more than the corresponding ground truth region. Thus, sensitivity should gener-
ally not be used by itself to measure segmentation quality, specificity measure would be
incorporated with it.

The specificity measures the fraction of pixels, that do not belong to the region of interest,
correctly detected, as determined by the equation

TN

SP=— .
TN + FP

(30)

Experimental Results and Discussions

This section presents the performance of the proposed brain MR image segmentation method,
along with a comparison with related methods. The proposed method integrates the merits of
robust rough-fuzzy c-means (rRFCM) [40], dyadic wavelets, and proposed skull stripping and
unsupervised feature selection algorithms. The source code of the proposed segmentation
method, written in C language, is available at www.isical.ac.in/~bibl/results/bms/bms.html.
The methods compared are M, M,, M3, My, Ms, Mg, M, Mg, ESL [56], and SPM [57] as
described below:

1. M;: Using proposed mask generation algorithm, gray value as feature, not using any feature
selection algorithm, clustering using rRFCM;

2. M,: Not using any mask, wavelet analysis for feature extraction, using proposed feature se-
lection algorithm, clustering using rRFCM,;

3. M3: Using mask generated by brain extraction tool (BET) [41], wavelet analysis for feature
extraction, using proposed feature selection algorithm, clustering using rRFCM;

4. M,: Using proposed mask generation algorithm, wavelet analysis for feature extraction, not
using any feature selection algorithm, clustering using rRFCM;

5. M;: Using proposed mask generation algorithm, wavelet analysis for feature extraction,
using feature selection algorithm proposed by Huang and Aviyente [50], clustering using
rRECM,;

6. M,: Using proposed mask generation algorithm, wavelet analysis for feature extraction,
using proposed feature selection algorithm, clustering using hard c-means [54];

7. M35: Using proposed mask generation algorithm, wavelet analysis for feature extraction,
using proposed feature selection algorithm, clustering using fuzzy c-means [35];

8. Ms: Using proposed mask generation algorithm, wavelet analysis for feature extraction,
using proposed feature selection algorithm, clustering using rough-fuzzy c-means [39];
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9. FSL: a comprehensive library of analysis tools for MRI brain imaging data [56]; and
10. SPM: statistical parameter mapping (SPM) software version 8 [57].

All the methods are implemented in C language and run in LINUX environment having
machine configuration Intel(R) Core(TM) i7-2600 CPU @3.40GHzx8 and 16 GB RAM. To an-
alyze the performance of different algorithms and measures, the experimentation is done on
some benchmark simulated MR images obtained from “BrainWeb: Simulated Brain Database”
(www.bic.mni.mcgill.ca/brainweb/) and real MR images of “IBSR: Internet Brain Segmentation
Repository” (www.cma.mgh.harvard.edu/ibsr/). All the image volumes of BrainWeb and IBSR
are of size 256x256x181 and 256x128x256, respectively. The middle slice of each volume is
considered for both qualitative and quantitative analysis. Figs 2 and 3 depict some of the origi-
nal images of BrainWeb and IBSR data sets, respectively, while Figs 4, 5, 6, and 7 present the
segmented images obtained using different methods, along with the ground truth images. The
first and second columns of Figs 4, 5, 6, and 7 show the ground truth images and output images
obtained using the proposed method, while remaining columns present the segmented images
produced by different methods.

Fig 2. Original images of BrainWeb for subject no. 4, 5, 6, 43, 45, 47, 48, 49, 50, and 51.
doi:10.1371/journal.pone.0123677.9002

Fig 3. Original images of IBSR for volume no. 1,2, 3,4,5,11,12,13,14,and 17.
doi:10.1371/journal.pone.0123677.g003
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Fig 4. Ground truth (GT) and segmented images obtained using different methods on subject no. 4, 5, 6, 43, 45, 47, 48, 49, 50, and 51 of BrainWeb.
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In this regard, it should be noted that all the experiments are performed with no a priori
knowledge about the input image. The comparative performance analysis is studied with re-
spect to various segmentation metrics, namely, Jaccard index, sensitivity, and specificity. The
metrics are calculated for individual tissue class and then averaged over all classes, that is, the
identification of all tissue classes is given equal importance towards calculation of segmentation
accuracy. Daubechies 6-tap filter is used to extract features using wavelet decomposition,
where the filter coefficients are as follows:
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Number of Taps (t) Scaling Function ¢(t) Wavelet Function y(t)
0 0.3326705530 -0.0352262919

1 0.8068915093 -0.0854412739

2 0.4598775021 0.1350110200

3 -0.1350110200 0.4598775021

4 -0.0854412739 -0.8068915093

B 0.0352262919 0.3326705530

doi:10.1371/journal.pone.0123677.1001

The values of fuzzifiers ni, = n, = 2 - 00, while that of weight parameter w for rough-fuzzy
clustering algorithms is set to 0.99. The final cluster prototypes of hard c-means are used as the
initial centroids of other clustering algorithms.

Optimum Value of Wavelet Decomposition Level

The wavelet transform, at each level, generates four subbands, namely, approximation, hori-
zontal, vertical, and diagonal. The approximation part is iteratively decomposed as the decom-
position level is increased. Hence, if an input image is decomposed upto Ith level, total (3/+1)
number of subbands are generated. To find out the optimum value of decomposition level I, ex-
tensive experiments are carried out by varying / = 1 to 4 on several brain MR images.

Fig 8 reports the heat maps for comparative performance analysis of different decomposi-
tion levels with respect to Jaccard index, sensitivity, and specificity on both BrainWeb and
IBSR data sets. From the results reported in Fig 8, it can be seen that the segmentation quality
increases with the increase of decomposition level upto 2 irrespective of the segmentation met-
rics and data sets used. However, the performance of the proposed method detoriates for I > 3.
The proposed brain MR image segmentation method for [ = 2 performs better than that of
other levels in 24, 19, and 20 cases, out of 25 cases each, with respect to Jaccard index, sensitivi-
ty, and specificity, respectively. Out of total 75 cases, the proposed segmentation method with
I =2 provides better results in 63 cases, while that with / = 1 and ] = 3 attains in only 10 and 2
cases, respectively. Hence, each image is decomposed upto second level without degrading the
segmentation quality.

Importance of Wavelet Based Feature Extraction Method

The proposed brain MR image segmentation method uses wavelet for feature extraction. The
features are extracted using Daubechies 6-tap wavelet decomposing upto second level, which
yields seven subbands as features. However, the proposed unsupervised feature selection algo-
rithm reduces this dimension to three. To establish the importance of wavelet based analysis
over gray level, that is, the performance of the proposed method over the method M, exten-
sive experimentation is done on several brain MR images. The rRFCM algorithm is used as the
clustering algorithm for both methods.

Figs 9, 10, and 11 present the heat maps for comparative performance analysis of wavelet
based feature extraction and gray level with respect to three quantitative indices, namely, Jac-
card index, sensitivity, and specificity. From the results reported in Figs 9, 10, and 11, it can be
seen that the performance of the proposed method is better than that of the M in most of the
cases, irrespective of the input images and quantitative indices used. Out of total 75 cases, the
M performs better than the proposed method in only 13 cases. The second and third columns
of Figs 4 and 5 compare qualitatively the performance of wavelet based analysis and gray level,
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Fig 6. Ground truth (GT) and segmented images obtained using different methods on subject no. 4, 5, 6, 43, 45, 47, 48, 49, 50, and 52 of BrainWeb.
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Fig 7. Ground truth (GT) and segmented images obtained using different methods on volume no. 1,2, 3,4, 5,11, 12, 13, 14, and 17 of IBSR.
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that is, the proposed and M, methods. All the results reported in second and third columns of
Figs 4 and 5, and first and eleventh columns of heat maps presented in Figs 9, 10, and 11 con-
firm that the features derived by wavelet transform produce segmented images more promising
than do the conventional gray level segmentation. The wavelet analysis provides a multiscale
representation that resembles a hierarchical framework for interpreting the image information.
At different scales, the details of an image generally characterize different physical structures of
the image. In image processing, wavelet decomposition provides information from each scale
to be analyzed separately. Hence, the feature extraction scheme based on multiscale analysis
has several potential advantages over traditional gray level segmentation.
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Fig 9. Heat maps obtained by different methods with respect to Jaccard index.

doi:10.1371/journal.pone.0123677.g009
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Effectiveness of Skull Stripping Algorithm

In the proposed segmentation method, the skull stripping algorithm is used to separate the
background from major tissues of brain. To establish the effectiveness of the proposed skull
stripping algorithm, the performance of the proposed method is compared with that of the
methods M, and M3. While second, third, and eleventh columns of heat maps presented in
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Figs 9, 10, and 11 compare the performance of the M, M3, and the proposed method for
three major tissue classes, namely, cerebrospinal fluid (CSF), gray matter, and white matter,
Fig 12 presents that of only background region. From the results reported in Figs 9, 10, and 11,
it can be seen that the proposed method with proposed skull stripping algorithm performs sig-

nificantly better than the methods M, and M for segmenting the CSF, gray matter, and
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Fig 12. Heat maps for comparative performance analysis of the proposed method (skull stripping), the method M, (without skull stripping), and
the method M; (masking using BET) for background separation (from left to right: Jaccard index, sensitivity, and specificity).
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white matter. The performance of the proposed method is better than that of M, in 25, 16,
and 22 cases with respect to Jaccard index, sensitivity, and specificity, respectively, while the
proposed skull stripping algorithm attains higher performance compared to the BET [41] of
M3 in 16, 21, and 13 cases, respectively.

The heat maps of Fig 12 compare the performance of the proposed method, M,, and M
for segmentation of background region. From the results reported in Fig 12, it can be seen that
the proposed method always attains better results than that of the M, with respect to Jaccard
index and sensitivity. However, the specificity value of the proposed method is lesser as com-
pared to that of the M, in most of the cases. Since the proposed skull stripping method adds
some boundary portion of the CSF from brain image into its background, the false positive
count is increased for the background. So, out of total 25 cases, the proposed method attains
higher specificity values in only five cases compared to that of the M,. Hence, the proposed
method performs better than the M, in 55 cases out of total 75 cases, irrespective of the quan-
titative indices used. On the other hand, the proposed method provides better results than that
of the M3 in most of the cases irrespective of the quantitative indices and data sets used. In
other words, the performance of the proposed skull stripping algorithm is better than that of
the BET [41] in 18, 15, and 17 cases with respect to Jaccard index, sensitivity, and specificity,
respectively. Considering all the results reported in Figs 9, 10, 11, and 12, out of total 150 cases,
the proposed method attains best performance in 79 cases, irrespective of the quantitative indi-
ces and images used, while both M, and M3 achieve it in only 26 and 45 cases, respectively. In
Figs 4 and 5, the qualitative performance analysis of the proposed method, M,, and M3 is re-
ported. All the results reported in second, fourth, and fifth columns of Figs 4 and 5, and Figs 9,
10, 11, and 12 establish the effectiveness of the proposed skull stripping algorithm over existing
BET [41] in the proposed brain MR image segmentation method.

Importance of Unsupervised Feature Selection

The proposed brain MR image segmentation method uses unsupervised feature selection algo-
rithm based on the MRMS criterion to reduce the dimensionality of the data sets. Using the
feature selection algorithm, the feature dimension can be reduced from d to m using (15). In
order to establish the importance of unsupervised feature selection algorithm, extensive experi-
mentation is carried out and the corresponding results are reported in Figs 9, 10, and 11. The
performance of the proposed feature selection method is also compared with that of the feature
selection algorithm proposed by Huang and Aviyente [50]. The eleventh, fourth, and fifth col-
umns of heat maps of Figs 9, 10, and 11 compare the performance of the proposed method,
My, and M, respectively.

From the results reported in fourth, fifth, and eleventh columns of heat maps of Figs 9, 10,
and 11, it is seen that the proposed method achieves better results than M, in 25, 25, and 24
cases with respect to Jaccard index, sensitivity, and specificity, respectively, while the perfor-
mance of the proposed method is better than that of M5 in 20, 15, and 18 cases, respectively.
Out of total 75 cases, the proposed method attains better results in 52 cases, while the methods
M, and M achieve it only in 1 and 22 cases, respectively. The second, sixth, and seventh col-
umns of Figs 4 and 5 depict the comparative performance analysis of three methods qualita-
tively. All the results reported in Figs 4, 5, 9, 10, and 11 confirm that the unsupervised feature
selection algorithm is effective in reducing the dimension of the feature space without losing
segmentation quality. The better performance of the proposed unsupervised method over ex-
isting feature selection algorithm of Huang and Aviyente [50] is achieved due to the fact that
the proposed method selects features based on their individual relevance as well as significance,
whereas the method of Huang and Aviyente [50] considers only redundancy or similarity
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among them without considering their relevance values. In effect, the existing method selects a
set of nonrelevant features, which degrades the quality of segmented images.

Importance of Robust Rough-Fuzzy C-Means

Further, the performance of the proposed method is extensively compared with that of the
methods Mg, M7, and Ms. The only difference among these methods is the clustering algo-
rithm used. While the proposed method uses robust rough-fuzzy c-means (rRFCM) [40] algo-
rithm, other methods, namely, Mg, M7, and My, use hard c-means (HCM) [54], fuzzy c-
means (FCM) [35], and rough-fuzzy c-means (RFCM) [39], respectively.

The sixth, seventh, and eleventh columns of heat maps reported in Figs 9, 10, and 11 com-
pare the performance of the proposed method with that of the methods M, M, and M
with respect to three quantitative indices on several brain MR images. The second, third,
fourth, and fifth columns of Figs 6 and 7 compare the performance of different methods quali-
tatively. All the results reported in Figs 9, 10, and 11 establish the fact that the proposed meth-
od attains better performance in 18, 10, and 17 cases compared to other methods with respect
to Jaccard index, sensitivity, and specificity, respectively, while the method M achieves it in 7,
3, and 2 cases, respectively. On the other hand, the method M, provides better performance in
12 and 3 cases with respect to sensitivity and specificity, respectively, while the method M at-
tains highest specificity in only 3 cases. Out of total 75 cases, the proposed method achieves
better performance in 45 cases, irrespective of the brain MR images and quantitative indices
used. From the segmented images reported in second, third, fourth, and fifth columns of Figs 6
and 7, it can also be seen that there is a significant improvement in the segmentation results ob-
tained using the proposed method as compared to other methods. In this regard, it should be
noted that some of the existing clustering algorithms such as possibilistic c-means [37] fail to
produce multiple segments of the input image as they generate coincident clusters even when
they are initialized with final prototypes of the hard c-means.

The best performance of the proposed method is achieved due to the fact that the probabi-
listic membership function of the rRECM handles efficiently overlapping partitions, while the
possibilistic membership function of lower approximation of a cluster helps to discover arbi-
trary shaped cluster. Moreover, the concept of possibilistic lower approximation and fuzzy
boundary of the rRFCM algorithm deals with uncertainty, vagueness, and incompleteness in
class definition. In effect, good segmented regions are obtained using the proposed brain MR
image segmentation algorithm.

Comparative Performance Analysis

Finally, the performance of the proposed method is compared with that of both FSL [56] and
SPM [57]. Results are reported in Figs 9, 10, and 11 with respect to Jaccard index, sensitivity,
and specificity on both BrainWeb and IBSR data sets, while the qualitative performance analy-
sis is reported in second, sixth, and seventh columns of Figs 6 and 7. The segmented outputs
generated by the proposed method, FSL, and SPM, establish the fact that the proposed method
generates more promising outputs than that obtained using the existing FSL and SPM. From
the results reported in ninth, tenth, and eleventh columns of heat maps reported in Figs 9, 10,
and 11, it can be seen that the proposed method provides better results than the FSL in 13, 6,
and 11 cases, out of 13 cases each, for BrainWeb data set and in 10, 4, and 6 cases, out of 12
cases each, for IBSR data set with respect to Jaccard index, sensitivity, and specificity, respec-
tively. In brief, the proposed method attains better performance than the FSL in 23, 10, and 17
cases, respectively, irrespective of the data sets used. On the other hand, the proposed method
performs better than the SPM in 16 cases with respect to Jaccard index, while the performance
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of the proposed method detoriates compared to the SPM with respect to both sensitivity and
specificity. The SPM achieves better results than the proposed method in 9, 24, and 19 cases,
out of 25 cases each, with respect to Jaccard index, sensitivity, and specificity, respectively.

The better performance of the proposed method with respect to Jaccard index and lower
sensitivity values obtained using the proposed method indicate that the proposed method at-
tains lower ratio of false positive to true positive, which leads to lower false discovery rate
(FDR), compared to both FSL and SPM in most of the cases, irrespective of the images used.
The FDR is a multiple-hypothesis testing error measure indicating the expected proportion of
false positives among the set of significant results. The FDR is particularly useful in the analysis
of high-throughput data such as MRI. Out of total 25 cases, the proposed method attains lower
FDR values in 17 and 23 cases than SPM and FSL, respectively. Moreover, the performance of
the proposed method is compared with that of both FSL and SPM with respect to likelihood
ratio positive (LR+), which is defined as the ratio of sensitivity and (1—specificity). Out of total
25 cases, the proposed method achieves higher LR+ values in 16 cases than the FSL, while SPM
attains higher LR+ values in 19 cases than the proposed method.

The comparative performance analysis is also reported in terms of p-value computed
through the sign test. The proposed method attains p-value of 9.72E-006, which is statistically
significant considering 0.05 as the level of significance, for both Jaccard index and FDR with re-
spect to the FSL. Also, it achieves lower p-value of 5.39E-02 for specificity and FDR, and that of
1.15E-01 for LR+ and Jaccard index, with respect to FSL and SPM, respectively. On the other
hand, the SPM provides significant p-values of 2.98E-08 for sensitivity and 2.04E-03 for both
specificity and LR+ with respect to the proposed method, while the FSL attains lower p-value
of 1.15E-01 for sensitivity.

Conclusion

The contribution of the paper lies in developing a methodology for brain MR image segmenta-
tion, which integrates judiciously a skull stripping method, dyadic wavelet analysis, unsuper-
vised feature selection algorithm, and rough-fuzzy clustering algorithm. This formulation is
geared towards maximizing the utility of rough-fuzzy clustering with respect to brain MR
image segmentation tasks. Several quantitative measures are used to evaluate the performance
of the proposed method. Finally, the effectiveness of the proposed method is demonstrated
both qualitatively and quantitatively, along with a comparison with other related algorithms,
on a set of synthetic as well as real life brain MR images. Although the methodology of integrat-
ing mask generation, wavelet analysis, unsupervised feature selection, and rough-fuzzy cluster-
ing has been efficiently demonstrated for brain MR images, the concept can be applied to other
segmentation problems.
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