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Abstract

Comprehensive protein interaction mapping projects are underway for many model species and 

humans. A key step in these projects is estimating the time, cost, and personnel required for 

obtaining an accurate and complete map. Here, we model the cost of interaction map completion 

across a spectrum of experimental designs. We show that current efforts may require up to 20 

independent tests covering each protein pair to approach completion. We explore designs for 

reducing this cost substantially, including prioritization of protein pairs, probability thresholding, 

and interaction prediction. The best designs lower cost by four-fold overall and >100-fold in early 

stages of mapping. We demonstrate the best strategy in an ongoing project in Drosophila, in 

which we map 450 high-confidence interactions using 47 microtiter plates, versus thousands of 

plates expected using current designs. This study provides a framework for assessing the 

feasibility of interaction mapping projects and for future efforts to increase their efficiency.

Analysis of molecular networks has exploded in recent years. A wide variety of technologies 

have been introduced for mapping networks of gene and protein interactions, including yeast 

two-hybrid assays1–8, affinity purification coupled to mass spectrometry9–11, chromatin 

immunoprecipitation measurements of transcriptional binding12–14, synthetic-lethal and 

suppressor networks15,16, expression QTLs17–20, and many others. Using these 

technologies, network mapping projects are currently underway for many model species2–

4,7–13,15, microbial21–23 and viral24,25 pathogens, and humans5,6. As an illustration of 

how pervasive networks have become, the U.S. National Institutes of Health currently funds 

3076 active research grants covering the topic “protein-protein interactions” with 794 of 

these implementing the technique of “yeast two hybrid system”26.
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AOP
Different experimental designs for protein interaction mapping were modeled to compare their efficiency in completing an 
interactome map. The strategy that minimized the final cost was tested in an ongoing Drosophila melanogastor interactome project 
where it found 450 high-confidence interactions using only 47 microtiter plates.

ISSUE
Different experimental designs for protein interaction mapping were modeled to compare their efficiency in completing an 
interactome map. The strategy that minimized the final cost was tested in an ongoing Drosophila melanogastor interactome project 
where it found 450 high-confidence interactions using only 47 microtiter plates.
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Mapping a complete gene or protein network evokes similar challenges and considerations 

as mapping a complete genome sequence. In the case of the human and model genome 

projects, large-scale sequencing efforts were accompanied by a series of feasibility 

studies27,28 which used mathematical formulations and pilot projects to explore strategies 

for genome assembly and the work required for each. In the case of interaction networks, 

similar feasibility studies are just beginning29–31. Some of the questions to be addressed 

are: What is the cost of completing an interactome map and what is the best strategy for 

minimizing that cost? Given practical cost constraints, how can the quality and coverage of 

interaction data be maximized? How many independent assay types are needed? How 

should direct pairwise tests for interaction be combined with pooled screening? What is the 

effect of the test sensitivity on the final cost? How should interaction predictions be 

incorporated, and what is their effect on the mapping cost? Which specific improvements to 

experimental and computational methods are likely to have the largest effect?

To approach these questions, we modeled several standard and alternative strategies for 

using pairwise protein interaction experiments to determine the interactome of the fruit fly 

Drosophila melanogaster. Our analysis shows that completing the interactome using 

sequential pairwise or pooled screening is probably too costly to be practical. However, this 

cost can be reduced substantially using a strategy that combines pooling with prioritized 

testing and interaction prediction. We carry out several iterations of this strategy to 

efficiently map 450 new high confidence interactions in Drosophila.

RESULTS

Interactome mapping—problem definition

In contrast to a genome, the interactome has been more difficult to define. Some authors 

have argued32 that the “True Interactome” should be defined as all possible interactions 

encoded by a genome— i.e., the set of all pairwise protein interactions that occur in at least 

one biological condition or cell type. The assumption is that every true interaction will be 

detectable by some assay, and that given enough independent measurements, most of the 

interactome could be detected. Many assay types have been described for detecting protein-

protein interactions, a few of which have been adapted to large-scale screening1,32–34. On 

the other hand, some interactions may be immeasurable by any available assay, or will not 

arise in the conditions surveyed. Therefore, we use the term “Mappable Interactome” for the 

subset of true pairwise interactions that are reproducibly detectable by any given assay 

method or combination of methods.

To define appropriate criteria for determining when an interactome map is “complete”, we 

distinguish between the terms saturation and coverage. Saturation measures the percentage 

of true interactions that have been experimentally observed at least once. Coverage we 

define more strictly to mean the percentage of true interactions that have been 

experimentally validated with high confidence such that the percentage of false interactions 

(i.e., the False Discovery Rate or FDR) is kept below a predetermined threshold. We treat 

“completion” as achieving 95% coverage of the Mappable Interactome at 5% FDR, which 

requires that the map include at least 95% of all true interactions with no more than 5% of 

the reported interactions being false.
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A model of interactome coverage

We simulated a series of mapping strategies implementing a variety of basic and 

sophisticated features (Fig. 1; Flowcharts of each strategy are provided in Supplementary 

Fig. 1). All strategies were evaluated using a statistical model based on naïve Bayes to 

estimate saturation and coverage of the Drosophila interactome as a function of the number 

of interaction tests. We programmed this model with the assumption that the fly interactome 

contains approximately 105 interactions overall, along with estimates for the false positive 

rate (FPR—the probability that a non-interacting protein pair is reported as interacting) and 

the false negative rate (FNR—the probability that an interacting pair is reported as non-

interacting). Although the magnitudes of these errors are still under debate, previous 

studies2,5,29,35,36 have reported Y2H error rates of FPR < 1% with FNR in the range 50–

80% (note that several of these studies erroneously refer to FDR as FPR). Here, we used 

0.2% FPR and 66% FNR.

Due to the high FNR of a particular assay, it becomes clear that multiple assay types will 

likely be needed to achieve complete coverage, and that these assays should be independent 

or at least only partially dependent. Although the precise correlations between different 

assay types have not been well studied, complementarity between assays has been widely 

assumed and occasionally demonstrated: For instance, protein interactions have been shown 

to be of substantially higher confidence if they are detected in different orientations (bait-

prey vs. prey-bait)2; in different Y2H screens3,8,35; by different types of Y2H system such 

as LexA-based vs. Gal4-based36; or by both Y2H and co-affinity purification29.

Basic mapping strategies in current use

We first simulated a “Basic serial” strategy, in which all pairs of proteins are tested for 

interaction sequentially. Under this formulation, achieving a saturation of 95% required 

eight comprehensive screens, in which each protein pair was tested by eight independent 

assays, equivalent to ~7×108 pairwise tests assuming a total of 13,600 protein-encoding 

genes in fly37 (Table 1 and Fig. 2a). Moreover, 93% of all observed interactions in this 

network were false positives (including 99% of interactions observed exactly once and 21% 

of interactions observed twice—Fig. 2b). The false-positives predominate because, although 

the 0.2% FPR seems low, the number of non-interacting protein pairs is far in excess of the 

number of true interactions.

To ensure an overall FDR < 5%, we found that every interaction must be reported by at least 

three independent assays. After eight screens 55% of the interactome was covered under 

these conditions. The coverage goal of 95% was achieved only after 21 comprehensive pair-

wise screens (Fig. 2c). This overall outcome—that the number of experiments required to 

reach full coverage is two to three times that required to reach saturation—was observed 

over a range of error parameters (Supplementary Table 1). Clearly, completing the 

interactome map under these conditions is impractical, as it would require testing 92 million 

protein pairs 21 separate times.

To reduce the number of tests, assays such as Y2H typically use pooled screens in which a 

single protein “bait” is tested for interaction against pools of protein “preys” (phase I)38. For 
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pools that test positive, pairwise tests are immediately conducted between the bait and each 

prey in the pool (phase II—this second phase can also be conducted by sequencing3,5). The 

benefit of pooling is that large numbers of potential interactions can be sampled at relatively 

low cost. This comes at the expense of FNR, as the chance a true interaction is missed in the 

pool is higher than the chance it would be missed by direct pairwise tests38. Through 

simulation, we found that basic two-phase pooling (Pooling strategy) does indeed achieve a 

four- to five-fold reduction in coverage cost over pairwise testing (~4 million plates for 

Pooling compared to ~20 million plates for Basic-serial, Table 1). However, assuming the 

rate of interaction screening of a typical laboratory (e.g., ~2400 plate-matings per person per 

year), pooled screens would still require approximately 1700 person-years to achieve 

completion of the Drosophila protein network.

Advanced mapping strategies

We next considered an interaction mapping strategy that, rather than treat all protein pairs 

equally, maintains a rank-ordered list of pairs according to their probabilities of interaction 

(Thresholding strategy, Table 1). All probabilities start at the background frequency of 

interaction for random protein pairs (as for Basic-serial and Pooling). Protein interactions 

are initially tested using pooled screening, and after each two-phase pooled experiment the 

probabilities increase for interactions that are observed and decrease for interactions that are 

tested but not observed. Unlike previous strategies, however, protein pairs with probability 

greater than an upper threshold (i.e., 95%) are declared to be definite “interactors” and are 

removed from subsequent testing (Fig. 1b). Likewise, interactions with probability beneath a 

lower threshold are declared to be “non-interactors” and are also removed from further 

consideration. The motivation for thresholding is to more quickly exclude the overwhelming 

number of non-interacting protein pairs. Finally, candidate interactions are defined as those 

with probabilities between the upper threshold and background. When candidates are 

available they are always tested immediately using pairwise assays, before resorting to 

pooling, until their probabilities are pushed above the upper threshold or below background. 

The motivation for prioritizing candidate interactions is to more quickly cover the 

interactions likely to be positive. Overall, Thresholding resulted in more than a two-fold cost 

reduction compared to Pooling (Table 1 and Fig. 3a).

Lastly, we considered whether computational prediction of interactions, based on prior 

knowledge and data, could hasten the time to interactome completion. A variety of 

prediction methods have been proposed based on evolutionary conservation39–41—i.e., 

transfer of interaction measurements from one species to another—or based on integrating 

conservation with additional features such as co-expression and co-annotation42–47. Such 

predictions impact the experimental design by setting the prior probabilities of interaction 

for each protein pair in lieu of background probabilities. In the Prediction strategy, we 

explored the effect of setting these prior probabilities using theoretical prediction methods 

simulated over a range of predetermined prediction accuracies (a range of different values 

for FPR, FNR, and corresponding FDR of the predictions). We found that even predictors 

with very high FDRs could have a major impact on the mapping cost (Table 1 and Fig. 3b). 

For example, a predictor with 92.2% FDR gave a four-fold reduction in cost over Pooling, 

with a >50-fold reduction in cost to achieve 50% coverage and a savings of hundreds of fold 
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in the early stages of mapping. Moreover, the 92.2% FDR means that even a predictor that 

makes 12 false predictions for every true one can lead to a major reduction in the cost of 

interactome completion. The best prediction method required approximately 385 person-

years to achieve 95% coverage of the Drosophila protein network and 12 person-years to 

achieve 50% coverage. Thus, while obtaining full coverage of an interactome map may still 

be some years away, a draft scaffold providing half coverage might be feasibly achieved by 

a team of ~12 technicians working over a period of one year.

From theory to practice: An experimental proof-of-concept

Given the high performance of the Prediction strategy in simulations, we explored an 

experimental implementation in which Drosophila protein interactions were predicted using 

the cross-species method of Sharan et al.39 (Fig. 4a). According to this method, existing 

protein interaction networks in yeast, worm, and fly are aligned based on sequence similarity 

to identify conserved interaction clusters, and these alignments are used to transfer 

interactions that have been observed in some species but not yet in others (Fig. 4b). A total 

of 1,294 interactions were predicted using this method, each of which was prioritized as a 

candidate with high prior probability (92.4%) based on the FDR reported by Sharan et al.39 

(7.6%).

Since this prior was much greater than the background probability of other protein pairs 

(0.1%), we began by using the pairwise Lex-A Y2H assay48 to test all 606 predictions for 

which sequence-verified clones were available. Of these, 136 tested positive and 470 

negative. After each 96-well plate of tests (seven plates total), the interaction probabilities 

were updated resulting in an increase to >99.9% for pairs testing positive and a decrease to 

90.5% for pairs testing negative. Since the 136 positives now had probability greater than 

the upper threshold (95%), all of these could be added to the interactome map and removed 

from further testing.

Although the remaining 470 predictions had tested negative once, their high probability 

(90.5%) still prioritized them as candidate interactions. Therefore, as dictated by the 

Prediction strategy these pairs were tested again immediately using a second assay type.

For this second assay, Lex-A Y2H was run in a “reverse” orientation in which the two 

proteins cloned as bait and prey, respectively, were exchanged as prey and bait. We tested 

251 of the 470 predictions for which sequence-verified clones were available in the opposite 

orientation. This resulted in 35 positives, elevating these interactions to probability >99.9% 

and adding them to the map. The pairs that tested negative in the reverse orientation were 

downgraded to 88.1% probability. Overall, after performing Y2H in both forward and 

reverse orientations, 171 new interactions were identified out of 606 protein pairs for a 

success rate of 28%. Although we ended our experimentation at this point, the Prediction 

strategy could be continued by next testing the “double negatives” (pairs testing negative in 

both orientations of Lex-A Y2H) using a third type of assay such as Gal4-based Y2H.

A means of predicting additional protein interactions is to probabilistically integrate many 

different lines of evidence into a single classifier42–47. Along these lines, we applied a 

machine-learning-based classifier for predicting interactions that combined many relevant 
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features including gene expression, domain-domain interactions, conserved protein-protein 

interactions, genetic interactions, and shared gene annotations (Supplementary Methods). 

We used this approach to generate 24,798 high confidence predictions. We randomly 

selected 2,047 of these for testing using forward-orientation Y2H and, as above, retested the 

negative pairs using reverse-orientation Y2H (for which clones were available). In total, this 

procedure added 279 new high-confidence interactions to the map for a 13.6% success rate. 

Combined over both conservation-based and multiple-evidence-based predictions, 450 new 

protein-protein interactions were added to the Drosophila map using 47 96-well plates (Fig. 

3a,b). To establish the background rate of interaction, we also tested 2,354 randomly chosen 

pairs, 72 of which were positive yielding a 3% background rate (Fig. 4b). These results 

show that both types of prediction are highly enriched for true interactions. Note that even if 

all predicted interactions were true, the expected confirmation rate would be limited by the 

false negative rate of the Y2H assay, equal to 1–FNR =33% in our model.

Testing the conditional independence between assay types

An underlying assumption of our simulations is that different assay types are conditionally 

independent—i.e., given that a tested protein pair is known to be positive or negative, the 

result of one assay is uncorrelated with that of another. To examine the extent to which this 

assumption holds, we compared Y2H data for protein pairs tested in both forward and 

reverse orientations—the two assay types used in our study. Overall, we obtained Y2H tests 

in both orientations for 309 conservation-based predictions (including data reported above 

combined with additional tests; Supplementary Data). Of these, we observed 58 positives in 

the forward orientation and 50 positives in the reverse orientation, for an average positive 

rate of 17% [(58 + 50)/(309 * 2)]. Fifteen positives were found in both orientations, 

representing 4.9% of the tests. Assuming all predictions are true interactions, this percentage 

is very close to that predicted by conditional independence, for which 3.1% of tests are 

expected to be positive in both orientations [17% ^ 2]. If some predictions are not true as 

expected, the percentages come into even better agreement—e.g., a prediction FDR of 20% 

predicts that 4.8% positives would arise in both orientations. A similar analysis was 

performed on a set of 1,572 combined-evidence predictions that were tested in both 

orientations, leading to similar agreement with the conditional independence assumption.

DISCUSSION

The interactions predicted by cross-species conservation were at least as accurate as we had 

assumed in our simulations. On the other hand, their power to prioritize interactions is 

dependent on the network coverage in other species, and the long-term viability of this 

approach will depend on obtaining greater numbers of predictions than the 1,294 that are 

currently available. As interactome maps progress across an ever-widening array of species, 

these maps might be dynamically cross-compared to continually generate sufficient numbers 

of candidate interactions for testing. The second set of predictions, made by integrating 

various lines of evidence, had a lower success rate than the predictions based solely on 

conservation. Their potential utility is higher, however, since the number of available 

predictions is nearly 20 times that of the conservation-based predictions and could be 

increased further by including lower confidence predictions. Even with a lower success rate, 
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the performance of the integrated classifier was superior to the best theoretical predictor we 

simulated.

Predictions lead to a lower interactome mapping cost for two reasons. First, predicted 

protein pairs are much more likely than arbitrary pairs to be true. Second, protein pairs with 

high prior probabilities do not require repeated positive measurements to confirm them as 

true interactions. Both effects underlie the finding that 450 new predicted interactions could 

be added to the interaction map using just 47 microtiter plates. In contrast, the Pooling 

strategy would require nearly 105 plates to add this number of interactions to the map.

One might intuitively object that, rather than test predicted interactions, a better strategy 

would focus on the “novel” areas of the interactome that have never before been suggested 

by any species or data set. The problem with such an approach is that it would very quickly 

produce an interactome map with a very high error rate. Conversely, the rationale behind the 

Thresholding and Prediction strategies is that one should first clean up the map by validating 

predicted interactions using real experiments, and only then resort to testing random protein 

pairs in pools.

A second objection might be that prioritizing candidate interactions requires the 

corresponding Y2H baits and preys to be rearrayed in microtiter plates in different orders 

over the course of an interaction mapping project. While the cost of rearraying was not 

included in our analysis, in our lab (Finley) these costs are greatly alleviated through robotic 

transfer systems. Certainly, failure to rearray leads to a ~4-fold increase in cost and a ~10-

fold increase in the early stages of mapping (compare Pooling versus Prediction in Table 1).

Regardless, mapping the Interactome remains a daunting task. Our study makes it clear that 

achieving 95% coverage of an interactome requires many more screens than one pass 

through all pools or over all protein pairs. If complete coverage is to be obtained in the near 

future, it will be necessary to invoke better strategies for experimental design, technologies 

reporting fewer false negatives, or both. In terms of experimental design, we have shown 

that the cost of completion is reduced substantially by careful ordering of pooled screens. In 

terms of technology, our study underscores the importance of decreasing the FNR or of 

different assays that provide independent samples of a protein pair. Even if the error rates 

are lower than assumed here, advanced mapping strategies are still likely to be worthwhile 

(Suppl. Table 1). Here we have used two types of Y2H assay, forward and reverse 

orientations, to obtain multiple samples which appear largely independent. If the assays 

were partially dependent, multiple tests might still be worth the cost as long as they were not 

perfectly correlated (and the dependence could be handled quantitatively using a statistical 

model). In the present study, the conditional independence assumption leads to a “best-case 

scenario” or lower-bound on the number of interaction tests that will likely be required to 

achieve full coverage of an interactome. Further work will be needed to better characterize 

the relative dependencies among the wide range of other interaction assays that are currently 

available— if the current assays are highly dependent, then the required number of tests will 

be greater than was estimated here.
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METHODS

Simulation procedure

“True” reference interactomes for fly and human were generated by random sampling of 

interactions from the set of all possible pairs of proteins using the interaction probabilities in 

the String database46. Protein pairs not included in the String database were sampled using a 

low background probability, such that the total number of interactions in the sampled 

interactomes agreed with current estimates of interactome sizes30 (~100,000 fly interactions 

and ~260,000 human interactions). The detectability of each protein pair was independently 

sampled for each new assay type (representing a new type of measurement technology or 

new bait/prey orientation) using a 66% FNR for true interactions and 0.2% FPR for false 

interactions (corresponding to 82% FDR). Once an interaction was defined as “Detectable/

Undetectable”, direct pairwise experiments were assumed to be 100% reproducible for a 

given protein pair and assay. For pooled assays, each detectable interaction in the sample 

space of a pool was assumed to be observed in the pool with probability equal to the pooling 

sensitivity (Table 1). Pools with at least one observed interaction were declared positive. For 

each strategy, after every 1000 experiments the mapped interactomes were compared to the 

“true” interactomes and the coverage and FDR were recorded.

Yeast two-hybrid test of predicted interactions

We used the LexA-based yeast two-hybrid mating assay48 using sequence-verified clones as 

previously described36 (Supplementary Methods). All new protein interactions have been 

submitted to the IMEx consortium (http://imex.sf.net) through IntAct49 and assigned the 

identifier IM-9552. The data are also available at DroID (www.droidb.org).

Additional Methods

Detailed descriptions of the interaction probability model, the combined-evidence method 

for interaction prediction, the computation of thresholds, and the yeast two-hybrid test 

protocol appear in the Supplementary Methods.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Simulating an interaction mapping project
(a) At any given point in the project, every pair of proteins is assigned an interaction 

probability based on its experimental history (initially these probabilities are set to 

background or informed by predictions). The interaction probabilities and experimental 

history are used to design a 96-well plate Y2H experiment according to one of the strategies. 

The result of this experiment is simulated based on the detectability of the tested interactions 

(given the assay type) and the pooling sensitivity. The new experimental results are recorded 

in the history and also (b) used to update the interaction probabilities of the relevant protein 

pairs. The pyramid represents the ordered list of protein pairs ranked by probability. It is 

wider at the bottom than at the top to reflect that most pairs are negative—i.e., most pairs 

will have low probability and only a few pairs will percolate to the top of the list with high 

probability. Interactions with probability above an upper threshold are added to the mapped 

interactome, which is compared to the simulated “True Network” at intervals of 1,000 plates 

for reporting coverage and FDR.

Schwartz et al. Page 11

Nat Methods. Author manuscript; available in PMC 2009 July 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 2. Analysis of the coverage and saturation of the fly interactome as a function of the 
number of independent screens
(a) The percentage of true interactions that are observed >1 (orange), >2 (purple), >3 

(green), >4 (yellow), and >5 (cyan) times as a function of the number of times they are 

tested with independent assays. Increasing the threshold of independent observations 

increases the number of independent assays needed to reach the 95% coverage target. (b) 

The false discovery rate (FDR) of interactions that are observed exactly once (orange), twice 

(purple), thrice (green), four times (yellow), and five times (cyan) as a function of the 

number of times they are tested with independent assays. To achieve FDR < 5% interactions 

should be observed at least twice when tested with < 5 independent assays, and at least three 

times when tested with 5–17 assays. (c) The effective coverage level at FDR < 5% is shown 

(red curve) by embedding the observation threshold from (b) into the curves of (a). While 

saturation is achieved after 8 screens, 21 screens are required for 95% coverage at FDR < 

5%.
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Figure 3. Fly and Human Interactome coverage costs for different experimental strategies
(a) Comparison of the Pooling strategy (numbers 2.1–2.4) with a Thresholding strategy 

(numbers 3.1–3.3) which combines pooling with direct experiments based on thresholding 

and prioritization. (a INSET) Zoomed view showing the number of plates required to add 

the first 450 interactions to the map using Pooling. (b) Performance of the Prediction 

strategy (numbers 4.1–4.4) over a range of FPR, FNR, and FDR of the predictions. (b 
INSET) Zoomed view including an experimental proof-of-principle based on predictions 

from network conservation (cFwd, cRev) or multiple types of evidence (mFwd, mRev). Fwd 

and Rev denote the series of experiments performed in the forward then reverse Y2H 

orientations, respectively. X-axis units of INSETs are absolute number of plates, not 

millions of plates as for the parent figures (a) and (b).
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Figure 4. Design and implementation of the Prediction strategy for mapping the Interactome
(a) State diagram of the Prediction strategy. This strategy combines interaction predictions 

with direct and pooled experiments to reduce the intermediate and total costs of Interactome 

mapping. (b) Application of the first steps of the Prediction strategy to the Drosophila 

interactome using conservation-based predictions from Sharan et al.39 or predictions made 

by integrating multiple evidence types (this study). Representative plates are shown for tests 

of conservation-based predictions using the X-Gal (top) or LEU2 (bottom) reporters.
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