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Brain-inspired global-local learning incorporated
with neuromorphic computing
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There are two principle approaches for learning in artificial intelligence: error-driven global
learning and neuroscience-oriented local learning. Integrating them into one network may
provide complementary learning capabilities for versatile learning scenarios. At the same
time, neuromorphic computing holds great promise, but still needs plenty of useful algo-
rithms and algorithm-hardware co-designs to fully exploit its advantages. Here, we present a
neuromorphic global-local synergic learning model by introducing a brain-inspired meta-
learning paradigm and a differentiable spiking model incorporating neuronal dynamics and
synaptic plasticity. It can meta-learn local plasticity and receive top-down supervision
information for multiscale learning. We demonstrate the advantages of this model in multiple
different tasks, including few-shot learning, continual learning, and fault-tolerance learning in
neuromorphic vision sensors. It achieves significantly higher performance than single-
learning methods. We further implement the model in the Tianjic neuromorphic platform by
exploiting algorithm-hardware co-designs and prove that the model can fully utilize neuro-
morphic many-core architecture to develop hybrid computation paradigm.
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he majority of neuromorphic models are established by

single backpropagation or single neuroscience-oriented

local plasticity (LP), exhibiting radicals with different
learning features and advantages. In general, backpropagation is
global error-driven learning with two alternative information
circuits (top-down and bottom-up). The learning process is
implemented via layer-by-layer allocation of global supervised
errors. Benefitting from the recent progress on deep learning,
backpropagation and its many variants have been applied for
training neuromorphic models represented by spiking neural
networks (SNNs) and demonstrated good accuracy in certain
specific tasks, such as image classification and reinforcement
learning (RL)!-8. In contrast, neuroscience-oriented LP is essen-
tially correlation-driven learning, which prominently occurs
between presynaptic and postsynaptic neurons and is triggered by
asynchronous spike activity. Rooted in neuroscience, LP has been
widely used for feature abstraction and facilitates the realization
of many advanced brain-inspired learning and memory
mechanisms®~12, Despite remarkable practical advantages in low-
latency and energy-efficiency computation!®14, applications of
neuromorphic models are still limited to a small range of usages
and the overall performance is inferior to the state-of-the-art
results!>16. To fully exploit the potential still requires many
effective algorithms. At the same time, local correlation-driven
learning (called LP) and global error-driven learning (called
“global plasticity” (GP)) are the two principal learning routes for
artificial intelligence (AI). Both approaches have their unique
advantages but neither can completely outperform the other on
all learning problems. Thus, it is highly expected to integrate
them into one single neuromorphic hybrid model to explore
complementary synergic learning capabilities in multiple learning
scenarios. However, the different learning circuits and weight
update behaviors make the development of such hybrid learning
obscure and the further incorporation of complex and diverse
spiking dynamics poses a greater challenge for exploring hybrid
learning on neuromorphic models.

Recently, there has been an increasing number of studies
involving global-local hybrid models with different interests. A
related biological study was on the three-factor learning rule!”>18.
The three-factor learning rule describes a general framework of
synaptic plasticity that incorporates presynaptic activity, post-
synaptic activity, and additional third factors, such as neuromo-
dulators and neurotransmitters, representing the top-down
supervised signals. Several studies on developing spiking learning
algorithms have been inspired by the three-factor learning
rule®19-23 Adopting a biologically plausible manner, they took
supervised errors or rewards as the biological third factor to
modulate the magnitude of local weight update and successfully
applied the methods for simple image classification tasks®1%, RL
tasks20 and probabilistic inference tasks?1-23. Despite great pro-
gress in understanding biological learning, due to the different
learning goals, most of the works fail to fully exploit the advan-
tages of global gradient learning and are generally not good at
solving many complex learning problems42>.

Another related vein is meta-learning. Meta-learning, also
named learning-to-learn, is ubiquitous in nature for continuously
improving the learning ability. Existing meta-learning
studies?®=28 for SNNs narrowly focus on improving a single
GP-based model without integrating LP. How to learn to opti-
mize both the LP and GP with various spiking features and
integrate their respective advantages in one neuromorphic model
remains an important open issue. Alternatively, in the early
1990s, ref. 29 proposed a framework that can optimize LP through
supervised signals. In follow-up research, several studies extended
the framework to establish large-scale non-SNNs and have
demonstrated high performance in solving few-shot learning30-31

and unsupervised learning3>33. However, due to the lack of an
effective and configurable hybrid mechanism, the potential of
global-local learning has not yet been fully explored, either in
some important learning capabilities or computational efficiency.
Furthermore, none of the works considered developing such
hybrid synergic learning in neuromorphic computing.

The previous lack of powerful hybrid learning for neuro-
morphic models also affects the use of many-core neuromorphic
hardware, which aims to provide ultralow-power hardware
solutions for Al implementations. A feasible hardware scheme
that can support online hybrid learning has yet to be reported. If
neuromorphic hybrid learning models with algorithm-hardware
co-design could be developed on neuromorphic platforms, then
the neuromorphic many-core architecture can be exploited to
explore hybrid on-chip computation schemes to obtain better
performances in practical learning scenarios.

Here, we show a spike-based hybrid plasticity (HP) model
using a brain-inspired meta-learning paradigm and a differential
spiking dynamics model with parameterized LP. The approach
provides a generic and flexible integration of these two learning
methods and facilitates high-efficiency hybrid learning on neu-
romorphic chips. By developing multiple synergic learning stra-
tegies, we demonstrate that, with slight modifications to the local
modules, the proposed model can solve three different learning
problems, including few-shot learning, continual learning, and
fault-tolerance learning. Finally, we exploit the method of the
algorithm-hardware co-designs to implement the hybrid model
on Tianjic chips and further prove that it can fully utilize neu-
romorphic architecture to develop a hybrid computation
paradigm.

Results

Hybrid synergic learning model. The proposed spike-based
hybrid model exploits two streams of neuroscience experimental
cues about synaptic modulation behaviors and a multiscale
learning mechanism (Fig. la) to model the neuromodulatory
mechanism and establish the synergic learning circuit.

First, in the hippocampus, local neural circuits can be
simultaneously controlled by multiple types of top-down
modulatory signals. These signals act on many synapses and
modulate diverse plasticity behaviors, including the learning rate,
update polarity, and plasticity consolidation!7-*43>, In particular,
some neuromodulators, such as adenosine, can affect the actions
of synaptic functioning and other modulators in a hierarchical
manner3®37. This indicates that neuromodulators can be
formulized as a special type of meta-learning parameter acting
on synaptic plasticity in a weight-sharing manner.

Second, neuromodulators can modulate synaptic plasticity on
multiple temporal scales. Neuromodulators exhibit radically
different evolution (learning) scales and individual functions
from synapses>>38. The coupling of plasticity and neuromodu-
latory mechanisms plays a vital role in building complex behavior
functions, such as muscle contraction®. It further implies a
flexible and multiscale learning mechanism in which the learning
process of neuromodulators and synapses may occur on different
spatial and temporal scales; thus, they can be formulized as two
types of variables with different learning manners in the
optimization process.

To this end, we formulize the hyperparameters of LP, such as
the learning rate and sliding threshold, as a group of meta-
parameters 0. Since these meta-parameters 6 control the weight
update behaviors, we propose modeling 6 as the upper-level
variable of weight w and transforming the learning process of
synaptic weights and neuromodulators into a bilevel optimization
problem#0. On this basis, we decouple the learning process of 6
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Fig. 1 lllustration of hybrid synergic learning model. a An illustration of biological synaptic plasticity mechanisms and neuronal dynamics. The
neuromodulators exhibit a radically different evolutionary (learning) process from synaptic plasticity and can encode top-down supervision information to
modulate versatile synaptic plasticity behaviors. b Motivated by the neural circuitry, we develop a multiscale meta-learning paradigm to integrate these two
types of learning in one neuromorphic model. It models the parameters of local learning as a type of meta-learning parameters and decouples the learning
process of weights (solid blue lines) and these local meta-parameters (dashed blue lines) by using a bilevel optimization technique, enabling flexible
multiscale learning. € Parametric biological short-term plasticity. Local weight modifications can be equivalently modeled as a parametric function related
to the initial weight value Wy, the presynaptic spike activity x{, the postsynaptic spike activity, s}, and the hyperparameters 6 of the Hebbian rule. d The HP
unit divides the weights into two branches, wgp and wip. wgp is updated based on global errors, and w; is updated based on adjacent neuron activities and
meta-parameters. In each HP unit, we use a memory gate that controls the reset or leaky integration behaviors of membrane potential u; using the spike

firing states;.

and w in different optimization loops, and this allows to use the
hyperparameter optimization technique?! for optimizing 0 (see
Methods). In this manner, we expect to first provide an effective
flexible modeling strategy that supports the modeling of versatile
local learning rules and can learn to optimize both the underlying
weights and the local learning rules in different optimization
loops, thereby facilitating a generic integration of the two types of
learning.

Furthermore, we want to incorporate diverse spiking dynamics,
LP, and global learning into one unified temporal credit
assignment problem. To this end, we jointly derive from
membrane potential dynamics and ion-channel dynamics and
obtain a differentiable signal propagation equation of subthres-
hold dynamics. We use a memory gate (Fig. 1d) and make a
careful choice of derivative approximation®#? for handling the
discontinuous dynamics of spiking neurons (see Methods). Then,
we adopt the backpropagation through time (BPTT) algorithm as
global learning for training SNNs. Because LP has an independent
correlation-based updating manner, directly integrating the local
modules with handcrafted parameters and global learning
together is difficult to ensure convergence. To incorporate the
impact of local weight updates into the entire optimization
framework, we take a parametric modeling strategy (Fig. 1c) to
transform the local synaptic increments Aw;, into a parametric
function related to presynaptic spike activity, pre, postsynaptic
spike activity, post, and local hyperparameters 0, consisting of the
local learning rate, sliding threshold and some other hyperpara-
meters determined by specific local learning rules. By doing so,
we not only maintain the underlying weight directly optimized by
BPTT but also exclusively model local weight updated behaviors

as a temporal-based function concerning adjacent spiking
activities and local meta-parameters.

The adopted decoupling optimization strategy is also inspired
by a variant of synaptic dynamics. Specifically, derived from the
ion-channel differential dynamics, the synaptic weights w(f) have
two terms

w(t) = w(t,,)e%r + P(t, pre, post;0) £ wgp +wpp, (1)

where w(t,) denotes the phase value of the synaptic dynamics at

discrete time t,, k(t) = ¢ denotes the synaptic decay function,
and 7, denotes the synaptic constant. Here IN)(t, pre, post;0)
denotes the generic local modifications. If we further assume the
top-down signals to modify the state w(tn) at the specific time ¢,
when supervision signals are provided, and assume that
ﬁ(t, pre, post;0) represents the LP driven by neuron activities
and meta-parameters 6, then Eq. (1) can be used to accordingly
decompose the weight into two parts, wgp and wp.

Finally, we develop a global-local synergic learning model that
integrates LP and GP into one neuromorphic model by
exclusively allocating them to act on different weight parts and
time scales. Here, each HP unit has two weight branches (Fig. 1d):
Wep» being directly updated by BPTT when receiving supervision
information, and wy, being updated in an event-driven manner
by the meta-learned spiking LP. To fully utilize various learning
features of the LP and GP, we use the meta-learning circuit and
bilevel optimization technique to decouple the optimization
process of w;p, and wgp. The HP model provides a flexible and
configurable solution that allows the construction of different
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Table 1 Comparison of the state-of-the-art results of spike-based networks on several image classification tasks and sequential-
based classification tasks.

Model Dataset Method Avg. latency? Accuracy (%)
Spiking MLP® MNIST LP 350 95.00
Spiking MLP! MNIST GP - 97.55
Spiking CNN2 MNIST GP converted® 200 99.12
Spiking CNN (this work) MNIST HP 7.5 99.50 £0.04
Spiking MLP3 F-MNIST GP based 400 90.13
Spiking CNN (this work) F-MNIST HP 3.9 93.29+0.07
Spiking CNN®3 CIFAR10 GP converted® 500 91.55
Spiking CNN4 CIFAR10 GP converted® 5 91.78
Spiking CNN (this work) CIFAR10 HP 4.5 91.08 +0.09
Spiking CNN>9 CIFAR10-DVS GP 50 60.05
Spiking CNN (this work) CIFAR10-DVS GP 50 67.22+0.43
Spiking CNN (this work) CIFAR10-DVS HP 50 67.81£0.34
Spiking CNN® DVS-Gesture GP 400 ms 94.13
Spiking CNN®2 DVS-Gesture GP - 96.53
Spiking CNN® DVS-Gesture GP 400 ms 96.78
Spiking CNN (this work) DVS-Gesture GP 400 ms 96.21£0.32
Spiking CNN (this work) DVS-Gesture HP 400 ms 97.01+0.21
The results of the proposed models in this work collected from ten repeated runs and + indicates the 95% confidence interval.

@Results from the training time steps or windows reported in the published work.

bConverted from a pre-trained GP-based ANN.

learning modules, support various local learning rules, and
configures different learning strategies for solving a variety of
complex tasks. In particular, the property is quite fascinating for
low-energy and efficient execution in edge computing®> by
reusing limited memory resources and adapting different learning
strategies.

Baseline performance evaluation. We comprehensively eval-
uated the basic performance, including the accuracy, coding
efficiency, and convergence, of the HP models using image clas-
sification datasets (including MNIST, Fashion-MNIST, and
CIFAR10) and neuromorphic datasets (including CIFAR10-DVS
and DVS-gesture). The network architecture and training details
are described in Methods.

We analyzed the accuracy of the models on different types of
datasets in Table 1. Because SNNs achieve a balance between
performance and efficiency, we mainly compared the proposed
model with other advanced spike-based models. In image
classification tasks, the HP SNN achieves higher accuracies
compared with other published work. In sequential learning tasks,
the HP SNN improves the performance of a single GP SNN,
indicating that local modules are beneficial for the use of longer
learning time scales. We provide a deeper analysis in Fig. 3
thereon.

One prominent feature of our work is the modeling of synaptic
ion-channel dynamics, thereby finding an interesting relationship
between spiking information coding and an event-driven
inference capability (see Methods). Next, we show that HP SNNs
can support rate coding and temporal rank coding schemes*4
(Fig. 2a). Figure 2b, ¢ compares the results of different coding
methods on Fashion-MNIST and CIFARI10. Specifically, we
compared the training curves of the SNNs with rank order coding
and those with rate coding using the same simulation time
windows. Because of the event-driven property of rank order
coding, we computed its average time windows and further
compared the training curves of the SNN with rate coding using
the same average time windows (called rate-avg.) in Fig. 2b, c.
These figures indicate that HP SNNs are well suited for rate-based
and rank-based spiking networks. With a longer average time
window, the rate-based model obtains higher accuracy. With

more flexible and event-driven response characteristics, the rank-
based model achieves lower inference latency with a slight
accuracy loss. Furthermore, we also plot the details of the average
response time of each category for different datasets in Fig. 2d.
We found that HP SNNs use a flexible strategy for decision-
making. Using the CIFAR1O dataset as an example, for most
categories, HP SNNs can make decisions within four time
windows; however, for some complicated patterns, the model
requires more time to make decisions. This flexible decision
process significantly reduces the average inference latency and
leverages the high efficiency of neuromorphic hardware. We
instantiated our model on Tianjic chips and reported the energy
evaluation in Supplementary Table 1.

We further compared the convergence of the proposed
approach with other related learning methods. Intuitively, since
local learning and global learning have independent update
methods, directly combining them cannot ensure convergence.
Furthermore, regarding neuroscience-oriented learning models,
such as STDP-based SNNs, systematically and generally config-
uring parameters over local learning rules has yet to be resolved.
Although hand-designed or biosimulated hyperparameters can
alleviate the above problems, it is time-consuming and difficult to
ensure performance. By the parametrization of the local module,
the HP approach can automatically optimize the local hyper-
parameters and achieve a synergic learning mode. As a
demonstration, we comprehensively compared the loss curves
and accuracies of a single LP network, a single GP network, a
fine-tuning LP+GP network, and the proposed HP network in
Fig. 3. For fairness, we used the same initial weight configurations
(see Methods).

Figure 3a shows that the fine-tuning method has poor
convergence and performs worse than the other models. Through
the proposed compatible design, the HP model significantly
improves the accuracy of the LP model (Fig. 3b) and fine-tuning
hybrid model, indicating that the proposed method can efficiently
integrate the LP and GP methods. The single GP model is suitable
for optimizing the errors of common classification tasks. The HP
model inherits this advantage and achieves comparable conver-
gence on the static MNIST and Fashion-MNIST datasets.
Furthermore, the HP model demonstrates higher accuracy and
faster convergence than that of the GP model on the sequential
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Fig. 2 The hybrid plasticity spiking neural network can flexibly support different coding schemes and achieve a trade-off between performance and
efficiency. a lllustration of rate coding and temporal rank order coding. In rate coding, the network counts the number of spikes fired by the output neurons
as the output representation. In temporal rank order coding, the firing time of each neuron is regarded as an encoding of additional information, and the
network determines the output in a winner-take-all manner where the firing order of the output neurons is used to output classification results. b, €

Comparison of the training curves of the model with different coding schemes (called Rate-all or Rank-all) for the Fashion-MNIST (b) and CIFAR10 (c). The
average and standard derivations over ten repeated trials are plotted. The average firing time over ranking coding schemes is counted and rounded up, and
the rate-based model is tested with this average time window (called Rate-avg.). d Average response time for each testing category. We recorded the
average response time steps required to produce results for each testing sample when running SNNs with rank order coding in an event-driven inference

mode. After that, we counted these time steps and generated a normalized

MNIST dataset. Because the LP module provides a correlation-
driven weight matrix that stores the correlation product of the
presynaptic inputs and postsynaptic activations (i.e., spikes) in
the previous steps, as indicated in ref. 43, it can act as a type of
attention mechanism to the recent past with the strength being
determined by the scalar product between the current hidden
vector and earlier input stimulus. Combining the results of
Table 1 and Fig. 3 shows that adding LP modules could benefit
the use of longer learning time scales. Furthermore, we visualized
the activations in the first hidden layer by 2D embedding
visualization of T-distributed stochastic neighbor embedding over
the Sequential MNIST. Take the yellow cluster in Fig. 3¢ as an
example. Adding LP modules can help the HP model abstract the
points within each class more compactly and push different
classes farther. Overall, the above results indicate that the HP can
efficiently coordinate the GP and LP methods with stable
convergence for common classification tasks.

Fault-tolerance learning. Fault tolerance is essential for the real-
time information processing of neuromorphic chips to prevent
the influence of internal noise or external interference. For
example, neuromorphic vision sensors (NVSs)4® can quickly
capture per-pixel brightness changes with low latency and a high
dynamic range but suffer from the inherent noise of physical
devices and the movements of external background objects,
thereby affecting their practical performance. Next, we demon-
strate that by virtue of Hebbian-based local modules (Fig. 4a) and
the hybrid strategy, the HP model may improve the fault toler-
ance of single GP-based networks. We examined the ability of this
model to handle incomplete data using an image classification

| (2022)13:65 | https://doi.org/10.1038/s41467-021-27653-2 | www.nature.com/naturecommunications

frequency histogram.

dataset (MNIST) and a neuromorphic dataset (N-MNIST). We
used incomplete data to refer to cropping data (e.g., parts of
image information are masked, Fig. 4b) and noise-mixed data
(data mixed with salt-and-pepper noise, Fig. 4b). The models
were trained on the standard datasets and tested using incomplete
test samples. Figure 4 shows that as the cropping area increases,
the HP model exhibits stronger resistance to the cropping area on
the N-MNIST (upper) and MNIST datasets (lower). Furthermore,
the noise experiments also show that the HP model achieves good
robustness and mitigates the interference of different types of
noise. Similarly, the superiority of the HP model becomes
apparent as the noise level increases (Fig. 4d). To obtain a more
insightful analysis, we calculated the Euclidean distance (Fig. 4e)
and the cosine similarity (Fig. 4f) between the first hidden layer
activation of the incomplete data and those of the original data
using the same model on the MNIST dataset. As Fig. 4f, e illus-
trates, the HP model diminishes the pattern distance between the
incomplete patterns and original patterns, indicating that the
local modules can help the network leverage the previous asso-
ciative features from incomplete data and therefore benefit the
network fault tolerance capability. We provide the effectiveness
analyses of the HP models in the following section.

Few-shot learning. We next investigate the potential of HP
models for few-shot learning. In this case, the classifier must
adapt to new classes not seen in the training phase when only
given a limited number of samples from each class. To efficiently
establish a mapping relationship from the limited data, it is vital
to leverage prior knowledge or acquire inductive biases. The GP-
based networks succeed in abstracting useful features; however, it
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Fig. 3 The hybrid plasticity approach can effectively ensure the convergence and accuracy of the proposed hybrid synergic learning. a Comparison of
the convergence curves of the single GP-based, LP-based, fine-tuning-based (denoted by Finetune) and the proposed HP model over MNIST, Fashion-

MNIST (F-MNIST), and Sequential MNIST (S-MNIST). b Accuracy histogram for the four models. The error bar indicates the standard derivation for ten
repeated trials. *P < 0.05. Two-sided t-test was applied to assess statistical significance. ¢ T-distributed stochastic neighbor embedding visualization of the

average firing rate in the first hidden layer using S-MNIST.

is difficult for the networks to exploit the prior knowledge hidden
in the limited datasets without resorting to other techniques. In
contrast, the brain is highly efficient in learning from limited data.
Neuroscience findings!! reveal that the response of cortical
neurons to a sensory stimulus can be reliably increased after just a
few repetitions by virtue of local synaptic plasticity, indicating
that such plasticity may play an important role in exploiting the
correlation hidden in limited data. By integrating LP and GP
learning, we expect that the synergic learning model can solve this
problem through a two-fold mechanism: (1) abstract sufficiently
discriminant representation of input data by the GP module; (2)
find a useful inductive bias from a limited number of example
pairs mainly by the LP module.

Here, we used the Omniglot dataset to examine the
performance of the proposed model. We adopted a widely used
network structure31:47:48 to abstract features and compared their
performance. We also fed the training labels to the last layer as
used by ref. 39, during the presentation time so as to help the
network establish an input-to-output correlation via the LP
module. In this manner, when a query sample is received, the LP
module may provide an augmented signal based on the
correlation-based inter-product of the query sample and the
centers of each previously appeared sample. Figure 5a, b depicts
the comparison results. A detailed experimental setup is provided
in Methods. Because vanilla backpropagation has difficulty in
learning useful feature representations when given a limited
number of samples, a single GP model is hardly learned in this

task. The best accuracy of our model for five-way one-shot and
twenty-way one-shot tasks is 98.7% and 94.6%, respectively,
which are comparable with other state-of-art results and
significantly higher than those of the previous SNNs. Compared
with the single GP model, the improved accuracy indicates that
the LP module plays a critical role in performance. In addition,
without resorting to additional techniques, the synergic learning
model can achieve competitive results that are comparable to the
state-of-the-art results, as shown in Table 2.

Continual learning. To further explore the benefits that the HP
model might provide, we further investigate the ability of HP
models for continual learning, that is, an ability to learn new tasks
without forgetting the previous tasks?. Recent studies®® have
shown that the motor cortex disinhibits a sparse subset of den-
dritic branches for new tasks, thereby reducing the disruption of
network memory for previous tasks. It implies that the brain may
multiplex some neuro-circuits while highly activating some
synaptic connections to represent task-related information when
solving new tasks. These motivate us to develop a distributed
synergic learning paradigm, activating a sparse overlapping subset
of weight connections by GP learning and modulating other
synaptic connections by a task-sharing LP learning. Unlike the
previous XdG method?° that uses a sub-network to solve a sub-
task by masking parts of neurons in each task, our method uses a
finer-grained synaptic modulation and a different synergic
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Fig. 4 Hybrid plasticity improves fault tolerance. a An illustration of the memory function provided by the correlation-based local module. When

detecting a strong correlation between presynaptic and postsynaptic neurons, local weight w;, consolidates these synaptic weights with a learnable writing
and decaying mechanism, which can help memorize repeated patterns and facilitate the recognition of similar stimulus. b Generation of incomplete data by
cropping (the second row) and noise mixing (the third row) using N-MNIST data. We randomly cropped raw data (the first row) with different cropping
sizes or added different levels of salt-and-pepper noise. ¢ Performance comparison in the cropping experiments using the N-MNIST (upper) and MNIST
(lower). d Performance comparison in the noise experiments using the N-MNIST (upper) and MNIST (lower). e Euclidean distance between the hidden
activation (membrane potential in the last timestep) of cropped MNIST data and those of the original MNIST data. f Cosine distance between the hidden
activation of cropped MNIST data and original MNIST data. We plotted the average and standard deviations of ten repeated trials in ¢-f with *P < 0.05.

learning scheme. Here we allow the hybrid model to use a small
number of overlapping connections to represent task-specific
information, and LP learning to learn common features among
tasks. By doing so, we expect to alleviate the disruption of net-
work memory in different tasks and expand the learning capacity
of the hybrid model to handle multiple tasks.

To this end, we examined the HP model performance on the
standard shuffled MNIST dataset and compared it with a single
GP model and the state-of-the-art results>>>1:52. We ran all
models five times and reported the testing results after fifty-task
learning (Fig. 5c). We randomly activated 3% sparse and
overlapping connections with the GP learning for each task and
used the LP learning to learn other connections. The meta-
parameters of local learning were trained using the first 35 tasks
and fixed in the last 15 tasks for evaluation. A more detailed
setting can be found in methods. Figure 5c indicates that during
the 50-task learning, the HP model consistently achieves the best
results compared with other works. The proposed model
obviously outperforms the sparse GP model, which indicates
the effectiveness of the proposed hybrid paradigm. In addition,
because this paradigm allows the hybrid model to flexibly allocate
different learning methods on different connections, the proposed
model can leverage the many-core architecture to optimize the
deployment of on-chip resources. We demonstrate the flexibility
in the following section.

Effectiveness analyses. We next analyze the effectiveness of the
hybrid synergic learning model. Because the learning of such

hybrid models is affected by both the external supervision error
and internal synaptic behaviors, according to different learning
circuits, we assume that the overall loss of the hybrid model can
be decomposed into an explicit classification loss and an implicit
loss driven by the network dynamics (see Methods). Then we
remodel the local weight update from the perspective of the
optimization, and analyze the effectiveness of the approximate
regularization based on hetero-associative memory (HAM)Z27:53
and metric learning.

For the fault tolerance test, if we consider the local weight
increment as a derivative of the implicit loss function, we can
integrate the local weight increment and derive the implicit loss in
a similar form as the energy function used in HAMZ733,
Similarly, Hebbian-based operations can help to encode the
previous patterns triggering neuron concurrent firing behaviors
into a local minimum in the energy landscape. On the one hand,
GP learning ensures that the network can selectively activate
neuron firing and realize the correct response to input patterns.
This indicates that the neuron concurrent firing behaviors are
more likely to represent an adequate response for the previous
training patterns. On the other hand, LP learning can gradually
decrease the energy surface at every update based on the
concurrent firing behaviors (Eq. (15)). Through implicitly
optimizing this surface, local modules place an approximate
regularization on the network structures. This encourages the
network to selectively strengthen the weights triggering these
concurrent firing activities and thereby produce a stronger
stimulus for repeated or similar patterns. By combining LP and
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Fig. 5 Performance evaluations of hybrid plasticity spiking neural networks. a, b Performance curves on the Omniglot dataset with five-way, one-shot
(5N1S, a) and twenty-way, one-shot (20N1S, b) experiments. The average and standard deviation over five runs for each epoch are reported. ¢ Histogram
of the accuracy of different techniques using the shuffle-MNIST dataset. The right side shows the average performance of over 50 tasks. The
sparsification-weight learning is called by the S-GP for short. The error bar is given by the standard deviation over five runs. Note that all models are based
on spiking leaky integrate-and-fire neurons and slightly differ from that in other published work. d The HP model can support multiple spike coding
schemes on the Tianjic and achieve highly efficient inference. Critically, the energy consumption increases slowly as the network size expands owing to the
spike-based paradigm and local-memory structure. e The comparison of inter-core communication resources in three different learning modes. f The
throughput evaluation of on-chip learning in three different learning modes. Details of hardware evaluation methods are described in the Methods.

Table 2 Comparison of the state-of-art results on Omniglot

datasets.

Model 5-way 1-shot 20-way 1-shot
Acc. (%) Acc. (%)

Human level24 - 95.5

MAML47 98.7 95.8

Non-spiking plastic nets3! 98.3 -

Non-spiking Siamese 97.3 88.2

nets48

Spiking LN64 83.8 -

Spiking nets with GP 28.4 8.5

(this work)

Spiking nets with HP 98.7 94.6

(this work)

GP learning, the HP model can optimize the energy regulariza-
tion and gradually relax the hierarchical representation of
networks to local minimum states, which may encode the
previous associative patterns, thereby exploiting the correlation
embedded in the appeared training examples (see Methods).

We deliberate from the perspective of metric learning to
discuss the model performance on few-shot learning. By clamping

label signals into the local module, a correlation-based local
module of the high-level input features and training labels can be
established and a constraint can be placed with respect to the
distribution of classes in the metric space. We prove that the local
module can project an input pattern into a cosine-based
embedding space and further produce a simple inductive bias
by measuring the similarity between the query sample and the
centers of each previously appeared sample (see Method). By
doing so, the network is forced to learn from the embedding
space representations to make the distance between samples
within a class sufficiently small while the distance between
samples from different classes is sufficiently large.

Through the above analysis, we demonstrate that the LP and
GP learning complement each other to form the synergic learning
model. An interesting finding is that we can adapt the hybrid
model to different tasks only with minor modifications to the
local modules. It provides another way for the design of loss
functions. Considering that the brain prominently uses local
learning to perform tasks, transferring a part of the design of loss
functions to local modules is instructive and can bring benefits
from at least two folds: (1) it can reduce the number of manually
designed hyperparameters in the overall loss functions, such as
converting the original regularized weighting coefficients to
model the learning rates of the local module; (2) the LP-based
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Table 3 Parameter settings on different learning tasks.

Parameters Descriptions MNIST FMNIST CIFAR10 DVS-CIFAR10 DVS-Gesture Omniglot
Batch size - 100 100 50 32 12 3

a Gradient width of H 0.5 0.5 0.5 0.5 0.5 0.5

Ny Training epochs 100 100 150 150 150 1000

T, Eq. (10) 40 ms 40 ms 40 ms 200 ms 200 ms 300ms
k, Eq. (10) 0.6 0.7 0.5 03 0.3 0.2

Vip Eq. (10) 0.3 0.4 0.5 0.4 0.4 0.5

operation endows a network with online and high-parallelism
properties, which especially facilitates the implementation on
many-core neuromorphic hardware by the fine-grained paralle-
lism architecture (see Discussion).

Hybrid computation on the Tianjic by algorithm-hardware co-
design. By implementing our model on the Tianjic, next, we
demonstrate that the proposed hybrid model is well suitable for
implementing in the dedicated neuromorphic hardware. We first
instantiated our model on the Tianjic neuromorphic chips (see
Methods) and evaluated the efficiency of on-chip inferences. As
indicated in Fig. 5d, the proposed HP model can flexibly support
the rate-based and temporal-based spiking coding schemes and
meet different on-chip inference requirements for accuracy and
inference latency. As the network size increases, owing to the
spike-based paradigm and local-memory structure, the energy
consumption scales very slowly. More importantly, by virtue of
the neuromorphic many-core architecture, the model can alle-
viate the overall power consumption and achieve speeds that are
orders of magnitude faster than the general-purpose computer
(Supplementary Table 1).

Due to the different weight update manner, the LP and GP
learning complement each other in the computational resources.
This property can be leveraged by the massive parallelism of
many-core hardware for on-chip learning. Since by far there is no
reported solution that can simultaneously support LP and GP
approaches on many-core chips, we exploited the method of
algorithm-hardware co-designs and designed a hybrid on-chip
learning scheme through developing an online learning mapping
scheme with a new cycle-accurate hardware simulator and a
mapping scheme (see Methods), thereby evaluating the computa-
tional resources of on-chip hybrid learning. We evaluated the
hardware efficiency using continual multitask learning. During
this process, we mainly adopted four steps for the entire
evaluation, including mapping design scheme, software tool
configuration, simulating on-chip running process, and data
arrangement (see Methods). Figure 5e, f exhibits the simulation
results of the routes and throughput of implementing the LP, GP,
and HP models on Tianjic chips. The proposed hybrid approach
allows the flexible configuration of GP and LP learning on
different connections. Since only a small number of weight
connections are used to receive task-specific supervision signals,
the workloads of inter-core communications on many-core
architectures can be significantly alleviated (Fig. 5e), and the
local learning can be further deployed in core-in resources by
utilizing the decentralized many-core architecture!3>4. With the
highly parallel and near-memory computing architecture of
neuromorphic architecture, it can efficiently realize local
learning and facilitate on-chip learning with high throughput
(Fig. 51).

In addition, as indicated in Fig.5e, f, the forward and backward
dataflow of the GP circuit cannot make full use of the pipelined
processing mechanism of many-core chips. Thus, how to
efficiently optimize the implementation of the GP circuit in the

neuromorphic chips is an important direction to improve the
overall efficiency further. Alternatively, some emerging neuro-
morphic hardware, such as the Loihi!3, have embedded part of
X86 cores in one single chip, which may provide a potential
candidate for implementing GP in chips in the future. Thus, the
combination of algorithm-hardware co-design is also a feasible
direction to further develop a hybrid computing paradigm. For
example, the main body of many-core structure can be used to
perform local learning, while the embedded microprocessors are
used to perform GP learning, which may improve hybrid on-chip
efficiency and promote applications of the hybrid model.

Discussion

In this work, we reported a spike-based hybrid model that
endows SNNs with an efficient synergic learning capability for
handling multiple learning scenarios. Guided by the hippocampal
plasticity mechanism, we developed a brain-inspired meta-
learning paradigm to integrate these two types of learning and
further explore multiple synergic learning strategies that can
quickly adapt the synergic learning model for solving different
learning scenarios. Our results indicate that with small mod-
ifications of local modules, the hybrid synergic learning model
can achieve significantly higher performances than single-
learning models on sequential classification tasks, and three dif-
ferent learning scenarios. Finally, we implemented the model in
the Tianjic neuromorphic platform by exploiting algorithm-
hardware co-designs and demonstrated the advantages of the
proposed hybrid model on neuromorphic chips.

Understanding how the interconnected neurons in the brain
combine top-down modulation information and bottom-up local
information to learn to solve tasks is an active research area in
both neuroscience and machine learning. The related surrogate
gradient methods®#2 use the continuous relaxation of the gra-
dients and provide a differentiable spiking network to update
weights in a fully local computation. The e-prop’ algorithm
combines the top-down supervision signals and local eligibility
traces to approximate the backpropagation of signals through
time. Unlike the previous studies, we use a meta-learning method
to design the synergic learning circuit. We model the hyper-
parameters of local learning as a special type of meta-parameters
that can be modified by top-down supervision signals and
indirectly influence the behaviors of synapse plasticity. Further-
more, by deriving the implicit loss function from the LP, we prove
that the local modules can act as a regularization over the net-
work topology and temporal dynamics, indicating that the roles
of LP and GP circuits are different from the perspective of
optimization. We deliberate from the associative memory and
metric learning as an illustration and demonstrate that by con-
structing different correlation-based modules, the hybrid synergic
learning model can be linked with several existing powerful
learning algorithms, thereby providing support for the effective-
ness analysis.

Some meta-learning-based global-local learning methods have
been developed for non-spiking models. In the early 1990s, ref. 29
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has proposed a basic framework that can optimize the para-
meterized local learning rule by global supervision signals. Several
recent work3!> use trainable connection weights of local mod-
ules and established large-scale non-SNNs. We adopt the basic
idea of learnable LP as in refs. 2%31:°°. One main difference from
the previous works is that we optimize underlying weights and LP
by the bilevel optimization, and develop a configurable hybrid
strategy that can exploit synergic learning in different ways with
greater flexibilities in solving many other learning scenarios.
More importantly, we incorporate various spiking dynamics for
establishing hybrid neuromorphic models and exploit the
algorithm-and-hardware co-designs to develop feasible hardware
implementations for online hybrid learning. Through the com-
bination with neuromorphic computing, many unreported
advantages of global-local learning are revealed, such as the fault-
tolerance on neuromorphic sensors and the complementary
computational efficiency on neuromorphic chips.

A salient feature of this work is the formulation of spike-based
neuromorphic models. In principle, SNN is a special type of
neural network that memorizes historical temporal information
via intrinsic neuronal dynamics and encodes information into
spike trains, thereby enabling event-driven energy-efficiency
computation. They are suitable for scenarios with rich spatio-
temporal event-driven information and sparse dataflow and have
powered many applications in neuromorphic sensors and neu-
romorphic chips?$°¢. By deriving from neuronal dynamics and
incorporating various dynamic behaviors of spiking neurons, our
model retains many prominent biological attributes and provides
a general method to meta-learn spike-based LP (Supplementary
Note 4). By introducing complementary learning features, the
proposed synergic learning show promises in improving infor-
mation processing on NVSs. Besides that, since the neuromorphic
chips can leverage the asynchronous spike-based communication
and high-parallel computation of local learning, the proposed
hybrid model provides an opportunity to promote efficient
hardware implementation and facilitate the exploration of the
hybrid computing paradigm in the neuromorphic hardware
platform. ref. 7 reports an online functional-level simulation
scheme of meta-learning models on Loihi chips. However,
because the functional-level simulation simplifies the model
performance environment and loses many underlying fine-
grained execution details related to the hardware environment,
it is difficult to accurately evaluate the actual consumption and
practical advantages of hybrid learning on chips. Conversely, we
implement the hybrid model in the Tianjic by developing the new
cycle-accurate hardware simulator and mapping scheme. It can
prompt algorithm-hardware co-designs and the exploration of
hybrid computing paradigms on neuromorphic architecture.

In summary, the neuromorphic synergic learning model
developed in this work exhibits a superior learning ability for
solving multiple different learning tasks and the excellent energy
efficiency of the hybrid computation paradigm on neuromorphic
chips, which may open an avenue for the collaborative develop-
ment of neuromorphic algorithms and neuromorphic
computing chips.

Methods

Model establishment. The hybrid plastic approach is based on two sets of dif-
ferential equations. The first set describes the membrane potential dynamics as
follows:

7, % = (1) + S wy(1)s;(8), @)

() = Sy, 0t~ 1), 3)

where w;; denotes the weight of the synapse connecting pre-neuron j and post-
neuron i, #; denotes the membrane potential of neuron i, 7, denotes the membrane

time constant, s;(t) denotes the afferent spike trains, t]f denotes the firing time, and
I, denotes the number of neurons in the [, layer.
The second set establishes on a type of diffusion dynamics of ion channels®,
modeled by
dw,»j
7, = W = wy(0)+ P, prey(6) post, (1), @
where 7,, denotes the synaptic constant. The first term wi — w;;(t) in the right of

Eq. (4) denotes the recovery of w;;(t) into a ground state u/fj, in which we set zero in
the experiments. The second term P(*) represents general LP controlled by
presynaptic spike activity, pre;(f) = {s;(1)}, postsynaptic spike activity,
post,(t) £ {u;(t),s;(t)}, and a group of layer-sharing controllable factors 6 that
includes the local learning rate, sliding threshold, and other hyperparameters that
are determined by the specific local learning rules (see below).

As P(*) is generic for modeling local learning rule, here we take a specific
expression, a variant of Hebbian rule which is formulized by

PEKs(0(p(ui(1) + B), (©)

where k“" is a weight hyperparameter, p(x) is a bounded nonlinear function, and
B;<0 is an optional sliding threshold to control weight change directions and
prevent weight explosions. It, therefore, can update the weight according to
concurrent presynaptic firing and postsynaptic membrane activity. Integrating Eq.
(4), we get

f=tng

wii(t) = wy(t,0)e ™

ot
+ / P(x, pre;(x), post;(x); G)ef%xdx, 6)
b no

where w;;(t,) denotes the instantaneous phasic state of synaptic weight at the
phase time t,,. Because the HP approach uses a potential trajectory rather than an
equilibrium state for computation, the dependence on the initial parameter w;(t,)
is non-trivial. Based on it, we assume that the HP approach can perform supervised
learning through modifying the phasic weight values wy;(t,) at a certain time t,,,,
in a form of the instantaneous top-down modulated signal. Consequently, we
substitute the synaptic Eq. (6) into the membrane potential Eq. (2) by

du;

L =ty L ! tx
T, = = —u(t) + 2 s(Ow;(t,)e ~ + Z(/ P(x, pre.(x), post;(x); 0)e” = )s;(t)dx.
dt = =) ey, J /
(7)

To enable the continuous dynamics compatible with backpropagation, we use a
modified Euler method to get an explicit iterative version of Eq. (7)

fm—tno

() —1(t,) Ly —
7, M) — (1) 4+ S5 )Wy (e

- ®)
+ZJI-":15j(tm)fi:) P(x, pre;(x), post;(x); 8) e dx,

where we use f,, to refer to the simulation timestep. Sorting the formula and
substituting the specific expression of P(x), we get a set of final signal propagation
equations as follows

fm—tno

Wtyyy) = (1= st = k)ul(t,,) + k5 st )Wh(tg)e ™ +
o]
K ) g KETH 0 = Dt ) + ), O

si(t) = H(ul(t,,) — vy),
where k, £ %, the upper index ! denotes the I, layer, and H(x) is the firing

function determined by the Heaviside function. Specifically, if u!(t,,) exceeds the
threshold vy,, H(x) = 1; otherwise H(x) = 0. Regarding the non-differentiable
points of spike firing function H(x), we use the surrogate gradient methods
proposed by refs. 842 and adopt a suitable rectangle function® for approximating
the derivative of the spiking function. In addition, we multiply the gated signal
(1 — s}) in the membrane attenuation term (1 — k,)u(t,,) to realize the firing-and-
resetting behavior of spiking dynamics.

Finally, to make the expression clearly, we replace the summation of local

activity into an iterative variable Pfj(tm), relax k;’.w" by two elastic regular factors,
k;‘-m" = txfnjl», and transform Eq. (8) into an iterative version,

0 =tm

ln
) = (1= st )1 = kit ) + K, 3 (ij(fno)g
=

+ alP(t,)) 57 (1),

PL(t,) = Ph(t,_)e ™ + s (6,)(p(ud) + B,
$it) = Hui(t,) = vg),
(10)
where dt denotes the length of timestep, o controls the impact of local modules and
1111. controls the local learning rate. It therefore formulizes the meta modules 6' as a

group of layer-wise parameters {«, ', f'}.

For classification output, we take the one-hot encoding and use N neurons of
the output layer to represent classification results. Then we incorporate different
spike coding schemes into a general framework and describe the classification loss

10 | (2022)13:65 | https://doi.org/10.1038/s41467-021-27653-2 | www.nature.com/naturecommunications


www.nature.com/naturecommunications

ARTICLE

function C by

T
cw.0) 2 C (y, 2, q(u”f(tm») : (1)
where y is the ground truth, n; is the number of layers, T denotes the simulation
windows, C is a classification loss, g(x) is a non-decreasing bounded function
depending on specific coding schemes, z, € R, is the weight associated with
timestep ¢,,. This formulization can adapt to the rate-based coding when
z, = 1/T, q(x) = H(x — v;,), and adapt to rank-based coding when
z, =1[t, =T].

Given the signal propagation Eq. (10) and a specific decoding scheme, ideally,
we can search the optimal value of network parameters, # and w, using the BPTT
algorithm. Because the parameter 0 is a higher-level variable to modulate weights,
we exclusively establish the optimization of 6 and formulize a general expression as
follows:

s.t., w¥(0) = arg n}jn Cﬁ;“i”(w*, 0. (12

min Cy 2 ¥ Cy (w¥(6),0),
mell !

The task 7,;2{C(y, x, w|0)} samples from the task distribution set I', and
consists of a certain loss function C and a set of training data and validation data.
Here we use C,V,‘,‘l and Cﬁ,’,“"‘ to distinguish the loss function of training data and
validation data in few-shot learning and multitask learning. In Eq. (12), obtaining
precision solutions of w" is usually prohibitive and computationally expensive. To
ensure convergence and obtain feasible solutions, we formulize the above problem
as a bilevel optimization that is usually used for optimizing two associated upper-
level and lower-level variables*147:60, To this end, we follow the work47:0 to
approximate the w* by one-step gradient update in one training batch. After
updating the weight w, we alternatively update 8 across a validation task batch
using the updated weights to learn fast adaptation of LP. In this manner, the
optimization can be divided into two parts by iteratively optimizing parameters w
and 6. More concretely, in the k iteration, we sample a training task batch and
updated the weights w; by the BPTT. Then we sample a validation task batch using
gradient updates w; and optimize the 8, over task batch by the following Eq. (13)
until the training converges

Ve C= %

mel

Vo, Gl 80~ T VCrl(w, — £V, Cr (W1 0,1, 60,

(13)

where T'; is a task batch set sampled from the task distribution set I', €20 is the
learning rate of approximation weight updates that can be used for accelerating

convergenceﬁo.

Support rank ordering coding. By deriving from a type of ion-channel dynamics

model, our model maintains the synaptic decay dynamics, k(t) = e%, during
information transmission. Because the presynaptic spike signals must be filtered by
the temporal filtering k(¢) to the postsynaptic neurons, it implies that the arriving
time affects the information transition. On this basis, we find a potential rela-
tionship between the HP model and the classic rank order coding assumption (see
Supplementary Note 3), and develop an evidence-accumulation temporal decoding
scheme. Formally, as long as the first spike is triggered by the winning neuron in
the output layer, the HP SNNs will stop signal inference and produce results based
on the index of the winning neuron. Then, the scaled membrane potential of the
output neurons is used as an output representation to calculate the loss. In this
manner, in addition to supporting a conventional rate-base decoding scheme, we
can utilize the synaptic dynamics and threshold mechanism of spiking neurons to
implement an event-driven inference mode.

Implicit loss function. We consider the impact of local modules as a form of
implicit loss and analyze the effectiveness from the perspective of optimization.
Because the learning process of the HP model is affected by the supervision signals
and internal dynamics, accordingly, its overall loss function E is more likely not
only incorporating an explicit classification loss C, but also building on an implicit
loss function E;, generated by the inherent dynamics of the network. According to
the different learning circuits, we first make the decomposability assumption on the
general overall loss as below:

(14)

where x and y are external input data, n; denotes the total number of layers, and
A2 € R denote the influential factor of each part. We follow the notations of
Eq. (1) and in a slight abuse of notation, we explicitly express the composition
MWep s AW p, on C to highlight the difference between the hybrid model and
single-learning-based model. The expression of E can be regarded as an extension
of a single-learning-based network. In the case of A, = A; = 0, E degenerates to the
conventional classification loss for the GP-based network, and in the case of

A, = 0, the network reduces to the LP-based network. We use the implicit function
to analyze the effectiveness of HP models on fault-tolerance learning and few-shot
learning.

E2 C(t,x,y; MWap , MaWip s 0) + A E, (8, {pre’7post’7w’, 61};12)7

Effectiveness analyses on fault-tolerance learning. If we treat the local weight
increment as an implicit derivative for a part of the overall loss function E, it
inspires us to integrate its weight increment to obtain the implicit loss function E,,,.
For simplicity, we mainly focus on the impact of local weight rules on the opti-
mization of the current layer weight w and illustrate the effectiveness of local
modules for the specific task.

In the fault tolerance learning, we accordingly treat the local weight increment
Awéj_t as the implicit derivative of E/, by

oE; ! - !
awT & _szj‘t & _sj‘tlp(ui‘[)' (15)
i
We use the Hebbian rule and set P(”é,t) = H(uéyt — vy,) in the derivation.
Integrating the above equation, we can get a loss expression E;, as follows:
_ : 1T : dH
By~ S [ = vy = =S s = [ w4,
(16)

Since the derivative of Heaviside function is zero for u # v, the following
equation holds

17)

We note that a form of the loss function in the Eq. (17) is similar to the energy
function used in HAM?27-3361 in which Hebbian-based operations help networks
encode the previous associative patterns into a local minimum of the energy
surface. It inspires us to explain the model effectiveness from the optimization of
energy function. Specifically, in the HP models, the GP-based learning ensures that
the network can selectively activate parts of neurons firing and realizes a correct
response to input patterns. Thus, the associative patterns of neuron concurrent
firing behaviors (ie., sﬁ’ll s!) are more likely to represent an effective response for
input patterns. On the other hand, as shown in Eq. (17), Hebbian-based operation
can decrease the surface at every update. Therefore, by optimizing the energy
surface, the local module places an approximate regularization on the network
structures with the punishment of —E&zsi’ﬂwisi. It encourages the network to
strengthen the weights triggering neuron concurrent firing behaviors, resulting in a
stronger stimulus for similar or repeated patterns. Collectively, by combing the LP
and GP methods, the HP model can relax the hierarchical representation of the
networks to local minimum states that are more likely to encode an effective
response to the previous associative patterns, thereby exploiting the correlation
embedded in the appeared training patterns for the recognition of incomplete
patterns.

Please note that unlike HAM models using one or more bi-directional iterations
for pattern reconstruction?”->3, the HP model leverages the memory matrix for the
classification of disturbance patterns. It can be further illustrated by analyzing the
correlation-based augmented information of local modules. Given a general input
and output dataset D = {(xi,yi)}f\], where y; € R™*! refers to the response of the
current layer to the input x;, let us assume that a querying sample x € R™! is
received and belongs to the D, category. Then the local module produces an
augmented information I;, by

T mo J-17 1 1
By m =21 2ls WSy, (u = vy,).

(18)

Ip=wpx= ijjxfk = Zxkeukyk(x[i) + ij@k}'j(xf’?)

When the network receives a disturbance sample X, w;, provides the
augmented information of the previously stored pattern y; in the form of a
weighting coefficient (x} %). Since the inner product from the same class can
provide stronger augmented information, it also indicates that the local module can
exploit the correlation between the input sample and the previous appeared
associative patterns, thereby facilitating the classification of disturbance patterns.

Effectiveness analyses on few-shot learning. Next, we show that the correlation-
based local module can place a constraint with respect to the distribution of classes
in the cosine-based metric space to accelerate convergence. Assume that we have a
set of training samples D = {(xk.,yk)}k}\]:“1 where x, € R™*! is an m-dimensional
feature vector, y, € R"*! is the one-hot label, N}, denotes the sample number of
dataset D. We refer x; to the general features coming from raw data or the last
n; — 1 layer. By introducing the training labels to the output neurons, the local
module constructs a Hebbian-like matrix as follows:

(19)

T K N, T K T
Wip = ZkEND VX = 2emt (Vi 1% ) = Zg Vs

where K denotes the class number of D and D denotes the subset of examples
h ; _ | —
within the same class. Here we set the learning rate 7, = NosTs and refer ¢, =

N
N;Dk Ay H;‘le to the sample mean of the class Dy. To keep the clarity of proof, we
also simplify the modeling of other meta-parameters. Based on Eq. (18), when
entering a query sample X, the local module produces an inductive bias I, p(x) with

intensity Zleyk(c[i). Then the membrane potential of output neuron is governed
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by

' () = MIgp () + (L= ADLp (1) = )llzj";llwqij(tm) +0- Al)EkK:Jk,icki(tm):
(20)

where y, ; is the i element of the one-hot label y;, which satisfies that y, ; = 1;,(i).
In the experiment, we initialize A, with a small positive value to strengthen the
impact of I, in the early training phase. In this manner, we can give an intuitive
interpretation for the inductive bias I;, from the Euclidean distance L between the
label y and u'. Assuming that the input pattern belongs to i class, L can be
calculated by

L, y) = £ Ol + (1= A 0) + (1 — (M Igp; + (1 — Al)(ciT;z))))2

=Y piMigpy + (1= A)elD)” + (1 = % = Xy (Ugp; — /D)),
@1)

where we set T = 1 and omit the index ¢ for neatness. Note that the A, is a pre-
defined small amount, thus, the L; has the two main components (1 — cin()zand
1- )\l)chTi. To minimize the distance L, the network is forced to learn the
specific feature mapping that projects the distance between samples within a class
sufficiently small (by the punishment of (1 — ciTi)z) and the distance between
samples from different classes sufficiently large (by the punishment of cgi)). In this
manner, the inductive bias I, enables the HP model to learn from the feature

similarity between the query data and the feature centers of the previous training
data in the metric space.

Details of baseline performance evaluation. In the MNIST and Fashion-MNIST
experiments, we used Bernoulli sampling to encode the pixel into spike trains. In
the sequential MNIST and CIFAR10 experiments, we took the first spiking layer as
the encoding layer>® to convert the pixel information into spike signals. Here, the
sequential MNIST is a variant of MNIST dataset, which inputs the original image
in a row-by-row pixel manner. In the CIFAR10-DVS and DVS-gesture experi-
ments, we accumulated spike trains (8 and 10 ms, respectively) for acceleration and
directly input them into SNNs. We applied the batch normalization (BN) tech-
nique to convolutional layers on the DVS-Gesture dataset by following the work®2,
We optimized the HP model in all datasets using the mean square error (MSE) and
the adaptive moment estimation optimizer (ADAM). A four-layer MLP with [28-
256FC-256FC-10] was trained on sequential MNIST, a six-layer CNN with [input-
128C3-AP2-256C3-AP2-256C3-AP2-512FC-10] was trained on MNIST and
Fashion-MNIST datasets, a nine-layer CNN with [input-64C3S2-BN-128C3S1-
BN-256C3S1-BN-256C3S1-BN-256C3S1-BN-256C3S1-AP2-800 FC-512FC-11FC]
was trained on DVS-Gesture datasets, and a nine-layer CNN with the CIFARNet
structure® was trained on CIFAR10 and CIFAR10-DVS. We took the local
learning rules in Eq. (5) and meta-parameters in Eq. (10) in all experiments unless
otherwise stated. In comparison with fine-tuning models, we used the same
learning rules and fixed these meta-parameters after random initialization during
training. To reduce computation, we equipped the local module in the hidden fully
connected layers in all classification tasks. Other parameter configurations can be
found in Table 3.

Details of fault-tolerance learning. In the cropping experiment, we increased
cropping area gradually on the center of each image or each NVS frame, denoted
by (2ci)?, where ci represents for cropping intensity with a range of 0 ~ 14. In the
noise experiment, since salt-and-pepper noise can maintain the spike binary
representation, we use it for evaluating the robustness to the noise in the N-MNIST
and MNIST experiments. We also increased the proportion of noise region on each
image or each NVS frame gradually, denoted by the noise-level (nl), where nl value
refers to the nlx 2e~2 region with a range of 0 ~ 14. All models were pre-trained
on the standard training dataset and tested on the cropping (noise) data with the
same parameter configuration, network structure [input-512FC-10FC], and the
MSE loss. For the distance comparison, we calculated the membrane potential of
the first hidden layer in the last timestep as representations to calculate the distance
between the incomplete data and the original data. We randomly sampled 1000
testing data from MNIST and plotted its average distance on Fig. 4e, f.

Details of few-shot learning. The Omniglot is a standard few-shot learning
dataset that contains 1623 categories and each category contains 20 samples. In one
training episode, we first randomly selected N classes and sampled S sample pairs
from each class (called N-way S-shot). Then, we fed the S-labeled samples (named
by the presentation time) into the classifier. After that, we randomly sampled a new
but unlabeled instance from the same N classes and queried the classifier for the
labels. We used four convolutional layers with 3 x 3 kernel size and two strides,
followed by a fully connected layer and an N-way classifier layer. We followed the
work3! to configure the network parameters and divide the training sets and testing
sets. During the training phase, we sampled three task episodes from the task
distribution I', and used the one-step updated weights w to approximate w using
training task samples, and alternatively iterated the meta-parameters 6 by re-

sampling from the same tasks. To reduce the computation, we equipped the local
module in the fully connected layers. The training label was fed into the last
classifier layer by the one-hot coding scheme to guide the correct classifications.
We adopted the encoding strategy as used ref. > to produce spike trains. We
trained the network of 3,000,000 episodes and reported the best results over the last
1000 episodes.

Details of continual learning. The shuffled MNIST experiments include multiple
image classification tasks. All tasks are to classify handwritten digits from zero to
nine. Each task is a variant of the MNIST dataset with a different permutation. For
each new task, the image pixels were randomly permuted with the same rando-
mization across all digits and different randomization are used in different tasks.
We trained each task by ten epochs. We adopted a four-layer spiking network with
[784-1024-1024-10] structure and minimized the MSE loss by the ADAM. During
the training process, we fixed the meta-parameters of the local module and ran-
domly generated a sparse and fixed connection matrix to receive supervision sig-
nals. We used the BPTT to update these sparse weights and local learning to update
other connections. After each task is learned, we fixed the weights and updated the
hyperparameters of the local modules for one epoch. Other comparison methods
were adopted from the corresponding publications?>>1->2 and applied to spiking
models.

Details of hardware implementation. The Tianjic chip is a cross-paradigm
neuromorphic computing platform that supports a broad spectrum of neural
coding schemes, computational models, and network structures. It is fully digital
and fabricated using 28-nm high-performance low-power technology. Each Tianjic
chip contains 156 functional cores (FCores), which are arranged in a 2D-mesh
manner. Each FCore contains a group of neurons, a group of axons, and synaptic
connections between them. Among the FCores, spikes can be transmitted to one or
more cores in the mesh through the routing network in a form of routing packets.
At the same time, through the inter-chip communication interface, multiple chips
can expand the internal routing network connections into a larger computing
platform.

We mapped the model onto multiple FCores. Different FCores are configured
to perform different basic operations and transformations. Taking the MNIST
dataset as an example, we deployed 70 FCores to implement a fully connected
structure [784-1024-1024-10]. We tested the energy consumptions with different
coding schemes. Because the rank coding shortens the average decision time, it can
effectively reduce the on-chip inference latency and the average compute ratio,
thereby alleviating average dynamic power consumption. The average on-chip
inference latency required for rate coding and rank coding are 0.27 and 0.18 us, the
compute ratios are 0.63, 0.45, and the dynamic power consumptions are 0.48 and
0.38 W, respectively. We reported the on-chip performance on MNIST, F-MNIST,
and N-MNIST datasets and compared it with GPU-based running results in
Supplementary Table 1. With the massive parallelism and the near-memory
computing architecture, the execution time on the Tianjic can be much faster than
that of the general-purpose computer. The energy consumptions scale only slightly
as the network size increases owing to the spike-driven paradigm and local-
memory many-core architecture (Fig. 5d).

The cycle-accurate simulator can well capture the hardware chip properties at
runtime and is commonly used for chip evaluation. We based on Tianjic’s hybrid
structure to design an on-chip hybrid learning scheme and a feasible cycle-accurate
hardware simulation scheme to evaluate on-chip computational resources. Here we
took an extended version of Tianjic chip with re-configurability and functionalities
to support continuous execution of multiple operations (see Supplementary
Note 1). On this basis, we developed a mapping scheme to disassemble the overall
dataflow into performable fine-grained basic operations and further transformed a
mapping design into executable configuration (see Supplementary Note 2). We
simulated three on-chip learning modes (LP, GP, and HP) using the software
toolchain. A detailed simulation scheme is provided in Supplementary Fig. 1. With
this simulation scheme, we estimated the throughput and route cost of different
learning modes using an MLP structure [784-512-10] and the time window T = 3.
Regarding the route cost in Fig. 5e, we accumulated the amount of data volume
whenever data transmission occurs. Regarding the throughput in Fig. 5f, we
recorded the time spent in each phase when executing computational tasks on all
allocated FCores. After that, we summed the time consumptions together to count
the total clock consumption and thereby the throughput.

Data availability

All data used in this paper are publicly available and can be accessed at http://
yann.lecun.com/exdb/mnist/ for the MNIST dataset, https://www.cs.toronto.edu/~kriz/
cifar.html for the CIFAR dataset, https://www.garrickorchard.com/datasets/n-mnist for
the N-MNIST dataset, and https://github.com/brendenlake/omniglot/ for the Omniglot
dataset.

Code availability
Implementation of hybrid learning model is made public together with the publication of
this paper https://github.com/yjwul7/Spiking-hybrid-plasticity-model. Codes related to
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the detailed hardware implementations are available from the authors upon reasonable
request.
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