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Abstract

Genetic and pharmacological perturbation experiments, such as deleting a gene and monitoring gene expression
responses, are powerful tools for studying cellular signal transduction pathways. However, it remains a challenge to
automatically derive knowledge of a cellular signaling system at a conceptual level from systematic perturbation-response
data. In this study, we explored a framework that unifies knowledge mining and data mining towards the goal. The
framework consists of the following automated processes: 1) applying an ontology-driven knowledge mining approach to
identify functional modules among the genes responding to a perturbation in order to reveal potential signals affected by
the perturbation; 2) applying a graph-based data mining approach to search for perturbations that affect a common signal;
and 3) revealing the architecture of a signaling system by organizing signaling units into a hierarchy based on their
relationships. Applying this framework to a compendium of yeast perturbation-response data, we have successfully
recovered many well-known signal transduction pathways; in addition, our analysis has led to many new hypotheses
regarding the yeast signal transduction system; finally, our analysis automatically organized perturbed genes as a graph
reflecting the architecture of the yeast signaling system. Importantly, this framework transformed molecular findings from a
gene level to a conceptual level, which can be readily translated into computable knowledge in the form of rules regarding
the yeast signaling system, such as ‘‘if genes involved in the MAPK signaling are perturbed, genes involved in pheromone
responses will be differentially expressed.’’
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Introduction

Model organisms, such as Saccharomyces cerevisiae and Drosophila

melanogaster, are powerful systems for studying cellular signal

transduction because they are amenable to systematic genetic and

pharmacological perturbations, enabling biologists to infer wheth-

er a gene is involved in a signal transduction pathway through

studying perturbation-response data. The premise for elucidating

signal transduction pathways from systematic perturbation exper-

iments is that, if perturbation of a set of genes consistently causes a

common cellular response, e.g., a phenotype presented as the

differential expression of a module of genes, the perturbed genes

are likely the members (or modulators) of the signal transduction

pathway that leads to the phenotype.

In this study, we refer to a signal from an information theory [1]

point of view, in which a signal is a latent variable whose state

contains information with respect to another variable, e.g., the

expression state of a gene module or the state of another signal.

From the same viewpoint, a signaling system consists of a set of

latent variables connected as a network, in which an edge exists

between a pair of signals if the state of one signal affects that of the

other, i.e., information can be transmitted between the signals, and

the relay of signals along the paths in the network enables the

system to encode complex information. From a cell biology

viewpoint, a signal transduction pathway consists of a collection of

signaling molecules that detect and transmit a signal that has a

physical or chemical form, e.g., the presence of pheromone in the

environment. In such a system, a signal is encoded as a change in

the state of a signaling molecule, often manifested as a change in

the structural conformation of a protein, a chemical modification

of a signaling molecule, or a change in the concentration of a

signaling molecule. While it would be ideal to find a one-to-one

mapping between the signaling molecules in cells and the signals in

the information theory framework, such a mapping can be difficult

to obtain and too complex to represent. Representing cellular

signaling systems within the abstract information-theory frame-

work provides the following advantages: 1) it enables us to use

latent variables to represent the state of yet unknown signaling

molecules; 2) it allows us to represent the biological signals

encoded by a group of signaling molecules into a single-bit signal,

if the signals encoded by these molecules convey a common piece
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of information with respect to other variables. We refer to such a

group of signaling molecules as a signaling unit. The following

example illustrates the parallelism between the biological entities

and and their counterparts in a computational model. A

pheromone receptor in a yeast cell and its associated G-proteins

can be thought of as one signaling unit, as they function together

inseparably to detect the signal of a pheromone. Another

exemplary signaling unit is the cascade of mitogen-activated

protein kinases (MAPKs), which transduce signals among them-

selves through a chain of protein phosphorylation reactions almost

in a deterministic fashion. The states of these signaling units can be

represented as two single-bit signals in a computational model.

When a yeast cell is exposed to pheromone, the receptor unit

detects the signal and transmits it to the MAPK unit [2,3], which

further relays the signal to downstream signaling units to regulate

the expression of downstream genes involved in mating. These

relationships between signaling units can be represented as edges

in the model. Moreover, in addition to pheromone response, the

MAPK signaling unit also interacts with other signaling units to

transmit the signals that affect filamentation/invasion processes

[2,3]; such branching and cross-talking between different signaling

pathways can be represented as a network of connected signals in

the computational model. Thus, the general task of using

systematic perturbation data to study a cellular signaling system

can be reduced to the following specific tasks: 1) revealing the

signals embedded in the convoluted molecular phenotype data

such as microarrays; 2) identifying perturbed genes that affect a

common signal; 3) grouping perturbed genes into signaling units

based on the information they encode; and 4) inferring the paths

between signaling units where a path may or may not correspond

to a signal transduction pathway in conventional cell biology.

In the seminal work by Hughes et al. [4], yeast cells were

subjected to over 300 types of systematic perturbations (gene

deletions and chemical treatments (from here on, we refer to such

a treatment experiment as a perturbation instance), and the

transcriptional responses to the perturbations were measured using

microarrays. This dataset has been widely used to test different

computational approaches for investigating the relationship

between perturbed genes and responding genes [4–9]. For

example, using a conventional hierarchical clustering approach,

Hughes et al. [4] grouped perturbed genes into clusters to elucidate

the cellular functions of some genes, based on the fact that

perturbing these genes produced gene expression profiles similar to

those resulting from perturbing the known members of certain

pathways. To relax the requirement of global similarity by

hierarchical clustering, other researchers have studied approaches

to connect a subset of perturbation instances to a subset of

responding genes in order to find context specific information

between the perturbation and the responses [8]. Such a task is

often cast as a biclustering problem [10–12]. More recently,

sophisticated graph-based algorithms have been applied to the

dataset to study potential signal pathways [5,7,9]. The basic idea

underlying the studies by Yeger-Lotem et al. [9] and Huang et al.

[5] is to model the information flow from perturbed genes to

responding genes through a PPI network by employing graph

search algorithms, such as price collecting Steiner tree algorithms.

While the above studies have led to many biological insights

regarding the system at a gene level, they have not addressed the

task of discovering signaling units and representing the findings at

a conceptual level in order to derive computable knowledge, such

as the rule: if a gene involved in a MAPK pathway is deleted, the cellular

response to pheromone will be affected. Transforming experimental data

into concepts and further elucidating the relationship among the

concepts are critical steps of knowledge acquisition and knowledge

representation. The scale of contemporary biotechnologies further

necessitates computational approaches to automate such tasks in

order to facilitate knowledge discovery by human experts. Yet, the

development of such techniques is severely lagging behind the

pace of data generation. In this paper, we report a proof of

concept framework that unifies knowledge mining and data

mining to derive knowledge regarding a signaling system in an

automatic manner; we refer to the overall approach as ontology-

driven knowledge discovery of signaling pathways (OKDSP). We

tested the framework using the yeast perturbation-response data

by Hughes et al. [4] to illustrate its utility.

Results and Discussion

A key step of ‘‘reverse engineering’’ signaling pathways using

systematic perturbations data is to identify perturbations that

convey the same information or, in other words, to first find the

‘‘jigsaw puzzle’’ pieces belonging to a signal transduction pathway.

For example, a classic yeast genetic approach is to search for

deletion strains that exhibit a common phenotype as a means for

identifying genes potentially involved in a signaling pathway

carrying information with respect to the phenotype [13]. The

advent of genome technologies enables biologists to use genome-

scale data, such as gene expression data, as ‘‘molecular pheno-

types’’ to study the impact of systematic perturbations [4]. In

general, a perturbation treatment, such as deleting a gene, often

affects multiple biological processes. For example, deleting a gene

involved in ergosterol metabolism will affect the organization of

cell membrane, which in turn will affect multiple signaling

pathways located in the membrane. As such, the overall cellular

response to a perturbation instance, which often manifests as a

long list of differentially expressed genes, inevitably reflects a

mixture of responses to multiple signals. Thus, we are confronted

with two fundamental tasks when studying systematic perturbation

data: 1) dissecting signals from the convoluted gene expression

responses to a perturbation instance; i.e., finding a module of

genes whose expression state reflects the state of a signal

transduced along a signaling pathway; and 2) identifying a set of

perturbation instances that affects the signal regulating a common

expression module.

To address the tasks, we hypothesize that, if a module of

genes—whose functions are coherently related—responds to

multiple perturbation instances in a coordinated manner, the

genes in the module are likely regulated by a common signal, and

the perturbation instances affect this signal. Based on this

assumption, we can first decompose the overall expression

response to a perturbation instance into functional modules, with

each module potentially responding to a distinct signal; then we

can investigate if a functional module is repeatedly affected in

multiple perturbation instances. In this study, we developed an

ontology-based knowledge-mining approach to identify functional

modules, and we then developed a novel bipartite-graph-based

data-mining approach to search for perturbation instances

affecting a common signal. Based on the results from the steps

above, we further identified signaling units and revealed their

organization in a signaling system using a graph-based algorithm.

Identifying functional modules through knowledge
mining

The Gene Ontology (GO) [14] contains a collection of

biological concepts (GO terms) describing the molecular biology

aspects of genes. The relationship among the concepts are

represented in a directed acyclic graph (DAG). An edge reflecting

an ‘‘is-a’’ relationship between a pair of GO terms indicates that

Knowledge Discovery of Yeast Signaling Systems
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the concept encoded by the parent term is more general and

subsumes the concept of the child term. The GO has been widely

used to annotate the function of genes of different model

organisms; therefore, it is natural to treat a set of genes annotated

with a common GO term as a functional module, a widely used

approach in bioinformatics analyses [15,16].

We first investigated if original GO annotations from the GO

database are suitable to represent the major functional themes of

genes responding to perturbations in our setting. Based on the

results of gene expression analysis performed by Hughes et al. [4],

5,289 genes were determined to be differentially expressed in

response to one or more perturbation instance(s). We identified all

the GO terms that have been used to annotate these genes and

retained a subset that belong to the Biological Processes domain of

the GO, which consists of 1,739 unique GO terms. We studied the

distribution of the number of genes annotated by each GO term,

and represented the results as a histogram in Figure 1. The figure

shows that a large number of original GO annotations were

associated with only a few genes; in fact almost half (43:93%) of the

GO terms were associated with only 1 or 2 genes. The results

reflect the fact that, while original GO annotations are highly

specific and informative with regard to individual genes, they

would fail to represent the major functional themes of a set of

genes. Therefore, there is a need to identify more general terms to

represent major functional themes.

We then formulated the task of finding functional modules as

follows: given a list of genes responding to a perturbation instance

and their GO annotations, assign the genes into non-disjoint

functional modules, such that genes within a module participate in

coherently related biological processes. This was achieved by

utilizing the hierarchical organization of the GO to group a subset

of genes under a suitable GO term, one which retains as much of

original the semantic information as possible. We developed novel

quantitative metrics for objectively assessing the fitness of a

summarizing GO term, enabling us to find a term that covered

many genes and yet minimized the loss of semantic information

from the original annotations [17]. Our criteria for a summarizing

GO term included: 1) requiring the summarizing term to be

statistically enriched in the input gene list; and 2) requiring the

functions of the genes in a module to be semantically coherent

when measured with a functional coherence metric previously

developed by our group (Richards, et al. 2010 [18] and see

Methods section). This enabled us to dynamically search for

suitable terms along the GO hierarchy and to group genes under

suitable summary terms in a manner that is specific for each input

gene list, rather than using pre-fixed annotations [16]. We refer to

this approach as a knowledge-mining approach because it searches

for a new representation of the function of genes through

assimilating knowledge represented by the original annotations.

Applying this approach, we identified functionally coherent

modules for each perturbation experiment. Further, we merged

the modules from different perturbation instances that shared a

common GO annotation. The procedure led to a total of 527

distinct functional modules, each summarized with a distinct GO

term. The statistics of the modules, the number of genes annotated

by summarizing terms, and the levels of the terms in the GO

hierarchy, are shown in Figure 1. It is interesting to note that while

the summarizing GO terms tend to annotate more genes than the

original ones, the distribution of the terms along the GO hierarchy

is quite close to that of the original annotations, indicating that our

approach retained a level of semantic specificity similar to that of

the original annotations.

We further investigated the modules and found the results

biologically sensible. For example, we found that 38 genes were

grouped into a module annotated with the term GO:0008643

(carbohydrate transport) (from here on, we name a functional module

using its summary GO term), including 17 genes in the hexose

transport {HXT1,HXT2,:::,HXT17}. The original annotations

of the genes in the module included GO:0051594 (detection of

glucose, covering 3 genes), GO:0005536 (glucose binding, covering 3

genes), GO:0005338 (nucleotide-sugar transmembrane transporter activity,

covering 4 genes), GO:0005353 (fructose transmembrane transporter

activity, covering 16 genes), and so on. Our algorithm summarized

the function of the genes using the term GO:0008643 (carbohydrate

transport), which we believe does not result in a significant loss of

information regarding the individual genes, thus providing a

sensible representation of the overall function of a larger group of

genes. A list of function modules is shown in the supplementary

website.

Searching for perturbation instances affecting a common
signal

Using a functional module from the previous section as a

putative unit responding to a cellular signal, we further searched

for the perturbation instances that affected expression state of the

functional module. Success in finding a set of functionally coherent

genes that repeatedly co-responded to multiple perturbation

instances would provide a strong indication that the responding

genes are regulated, as a unit, by a common signal, and that the

perturbation instances may have affected such a signal. We

addressed the searching task in the following steps: 1) Given a

functional module, we first created a bipartite graph placing all

perturbation instances on one side and the genes in the functional

module on the other side, referred to as a functional-module-based

graph. In such a graph, an edge between a perturbation instance

and a responding gene indicates that the gene is differentially

expressed in response to the instance. 2) We then searched for a

densely connected subgraph satisfying the following conditions: a)

each vertex was, on average, connected to a given percent, r, of

the vertices on the opposite side; and b) the size (number of

vertices) of the subgraph was maximized. We refer to the vertices

on the perturbation side of a densely connected subgraph as a

perturbation module, and those on the responding side as a response

module. The problem of finding such a subgraph from a bipartite

graph belongs to the family of biclustering problems [10–12],

which are NP-hard. There are many approximate algorithms for

solving the problem (see the review by Madeira et al. [12]), but our

formulation has distinct objectives, which allow us to specify the

degree of connectivity between perturbation and responding

modules. We have developed and implemented a greedy

algorithm, referred to as the maximal bipartite subgraph with

expected connectivity (MBSEC) algorithm, to solve this problem

(see Methods).

We performed experiments to test the following two hypotheses:

1) using functional-module-based graphs as inputs for a dense-

subnetwork searching algorithm would enhance the capability of

identifying signaling pathways; and 2) specifically pursuing high

density subgraphs enhances the capability of finding signaling

pathways. To test the first hypothesis, we applied an algorithm

referred to as the statistical-algorithmic method for bicluster

analysis (SAMBA) by Tanay et al. [8] to assess the impact of

different inputs on the quality of perturbation-response modules.

SAMBA is a well-established algorithm that solves the biclustering

problem under a bipartite graph setting, which is similar to our

problem setting. We first applied the SAMBA (implemented in the

Expander program, v5.2), with default settings, to the global

bipartite graph consisting of all 5,289 responding genes and 300

perturbations, which returned a total of 304 subgraphs. We then

Knowledge Discovery of Yeast Signaling Systems
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applied the SAMBA program to each of the functional-module-

based graphs, and a total of 131 subgraphs were returned. To test

the second hypothesis, we applied the MBSEC algorithms to the

same functional-module-based graphs as in the previous experi-

ment, using the following parameter settings: r§0:75 and s§4.

The experiment identified a total of 122 subgraphs that satisfied

the requirements.

We assessed the overall quality of a perturbation (or a

responding) module by determining the functional coherence

score of the module using the method previously developed by our

group [18]. This method measures the functional relatedness of a

set of genes based on the semantic similarity of their functional

annotations, and provides a p-value of the coherence score of a

gene set. The key idea of this method is as follows: given a set of

genes, map the genes to a weighted graph representing the

ontology structure of the GO, in which the weight of an edge

reflects the semantic distance between the concepts represented by

a pair of GO terms; identify a Steiner tree that connects the GO

terms annotating these genes and measure how closely the genes

are located within the graph using the total length of the tree;

apply a statistical model to assess if the genes in the set are more

functionally related than those from a random gene set. A gene set

with a small p-value would indicate that the functions of the genes

are coherently related to each other.

Figure 2 shows the results of functional coherence analysis of

responding modules (Panel A) and perturbation modules (Panel B)

by plotting the cumulative distribution of the modules based on

their p-values. Panel A shows that all responding modules returned

by our MBSEC algorithm, as well as those returned by SAMBA

with functional-module-based graphs as input, were assessed as

functionally coherent. This is not surprising, since all the input

modules were functionally coherent (p-value ƒ0:05), and there-

fore the returned responding modules, which were sets of the input

modules, were likely to be coherent. In comparison, when using

the global perturbation-response bipartite graph as input, about

70% of the responding modules identified by SAMBA were

Figure 1. Characterization of the summary GO terms. A. The histograms of the number of genes associated with each GO term before and
after ontology-guided knowledge mining: 1) the original GO annotations for all responding genes (blue); and 2) the GO terms returned by the
instance-based module search (red). B. The distribution of the levels of the above GO term sets in the ontology hierarchy are shown as normalized
histograms. Level 0 represents the root of the Biological Process namespace.
doi:10.1371/journal.pone.0061134.g001
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assessed to be coherent. The results indicate that, while the

SAMBA algorithm is capable of identifying biclusters with

coherent responding modules, a high percentage of returned

responding modules contains a mixture of genes involved in

diverse biological processes.

Since the goal is to find perturbation instances that likely

constitute a signaling pathway, it is more interesting to inspect if

the genes in a perturbation module are coherently related. We

assessed the functional coherence of the perturbation modules

returned from the three experiments for the impact of different

inputs and algorithms on the results (see Panel B of Figure 2). A

higher percentage of perturbation modules was found to be

functionally coherent when functional-module-based graphs were

used as inputs for SAMBA, as compared with those from the

SAMBA with a global graph, indicating that, indeed, perturbation

instances densely connected to a functionally coherent responding

module were more coherent themselves; i.e., they were more likely

to function together. When comparing the results from the

MBSEC algorithm with those from the SAMBA, our algorithm

returned the highest percentage of functionally coherent pertur-

bation modules. The results indicate that, when inputs are the

same, specifically pursuing high density subgraphs enhances the

quality of identified perturbation modules.

Figure 2. Functional coherence of modules. A. The cumulative distribution of functional coherence p-values of the responding modules
identified by different methods: MBSEC with module-based input graphs (red); SAMBA with module-based input graphs (green); and SAMBA with the
global input graph (blue). B. The cumulative distribution of functional coherence p-values of the perturbation modules identified by different
methods: MBSEC with module-based input graphs (red); SAMBA with module-based input graphs (green); and SAMBA with the global input graph
(blue).
doi:10.1371/journal.pone.0061134.g002
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We further inspected the within-subgraph connectivity, deter-

mined as the number of edges within a subgraph over the number

of maximal possible edges (n|m, with n and m representing the

number of vertices on each side, respectively), to investigate if the

differences in functional coherence of the modules were related to

the capabilities of the algorithms to find densely connected graphs.

Figure 3 shows that there were striking differences in the

connectivity of the subgraphs returned from the three experi-

ments. The results also support the notion that an enhanced

capability of finding densely connected perturbation-response

bipartite graphs underlies the capability of identifying coherent

modules.

In addition to assessing the functional relationship of the genes,

we further quantified and compared within module physical and

genetic interactions, providing another line of evidence for

assessing if genes in the modules were functionally related. Using

protein-protein physical interaction and genetic interaction data

from the BioGrid [19], we calculated the ratio of the number of

known interactions within a module containing N genes over the

maximum number of possible interactions for the module

(1=2 �N(N{1)). In Figure 4, we plot the cumulative distributions

of modules based on their interaction ratios. The Figure shows that

there are more physical and/or genetic interactions within both

perturbation and responding modules identified by our methods,

indicating that, indeed, the genes in these modules are more likely

to function together.

Taken together, these results indicate that, by constraining the

search space to functionally coherent genes and explicitly requiring a

degree of connectivity of subgraphs, our approach enhances the

capability of identifying perturbation modules in which the genes

are more likely to physically interact with each other to participate

in coherently related biological processes. Thus, they are likely to

participate in a common signaling pathway and to carry a

common signal.

Discovering signaling pathways based on perturbation-
responding subgraphs

A subgraph consisting of a perturbation and a responding

module reflects the fact that the perturbation instances affected the

signal controlling the expression state of the genes in the

responding module. It is interesting to see if a perturbation

module contains the members and/or modulators of a signaling

pathway. Indeed, we found many of the identified perturbation

modules corresponded to well-known signaling pathways. For

example, our analysis identified a subgraph consisting of a

responding module of 8 genes annotated by the GO term

GO:0019236 (response to pheromone) and a perturbation module

consisting of 16 perturbation instances: {STE11, STE4, DIG1,

DIG2, HMG2, FUS3, KSS1, RAD6, STE7, STE18, STE5,

CDC42, STE12, STE24, SOD1, ERG28}. In the list of the

perturbation instances, we highlighted (with blue font) the genes

that are known to be members of the well-studied yeast

pheromone response pathway reviewed by Gustin et al. [2], which

listed 20 gene products as the members of the pathway. In the

study by Hughes et al. [4], 12 out of those 20 genes were deleted.

We found that 10 out of these 12 perturbation instances were

included in the perturbation module of this subgraph. This result

indicates that our approach is capable of re-constituting the

majority of the genes involved in the pheromone signaling

pathway. Inclusion of ergosterol metabolism enzymes ERG28 and

HMG2 in the perturbation module indicates that our approach

can also identify the modulators of a signaling pathway.

In addition to ‘‘rediscovering’’ the known signaling pathways,

analysis of subgraphs obtained in this study led to novel

hypotheses. For example, in one subgraph, the responding module

was annotated with GO:0006826 (iron ion transport), and consisted

entirely of genes involved in cellular iron homeostasis, including

iron transporters and ferric reductases (shown in Panel B of

Figure 5). These genes are known to be primarily regulated by the

Figure 3. Subgraph connectivity. Cumulative distribution of within bipartite subgraph connectivity of the modules identified in three
experiments: MBSEC with module-based input graphs (red); SAMBA with module-based input graphs (green); and SAMBA with global input graph
(blue).
doi:10.1371/journal.pone.0061134.g003
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iron-responsive transcription factor Aft1p, and partially comprise

the iron regulon in yeast [20]. Intriguingly, the perturbed gene set

consisted largely of proteins involved in mitochondrial translation,

including gene products involved in mitochondrial ribosomal

subunits (RML2, RSM18, MRPL33), translation (HER2, DIA4,

AEP2), and RNA processing (MSU1). These data lead to a novel

hypothesis that perturbation of mitochondrial protein synthesis

will lead to changes in the iron-sensing process. In fact, such a link

has only recently been suggested, in that iron-sulfur complex

synthesis in mitochondria, which requires a set of 10 distinct

protein components [21], directly impacts cellular iron uptake and

utilization [22,23]. Indeed, these data provide a rationale for the

new hypothesis that mitochondria translation plays an essential

role in cell iron homeostasis through iron-sulfur complex synthesis.

We have visualized all the perturbation-responding module

pairs identified in our experiments, and show the results on the

supplementary website. The data allow readers, particularly yeast

biologists, to inspect the results and assess the quality of the

modules, and, more importantly, to explore new hypotheses

regarding yeast signaling systems. In Figure 5, we show the

subgraphs related to GO:0019236 (response to pheromone) and

GO:0006826 (iron ion transport). Here the perturbation instances

(green hexagons) and responding modules (blue circles) are shown

in two tiers. Due to the fact that the connections between the

perturbation and the responding module are very dense, and thus

would interfere with visualization, we conversely indicate pertur-

bation instances and responding genes that were NOT connected,

shown as the red dash-lines in the Figure. Using a set-cover-based

algorithm [24], we further identified transcription factor modules

Figure 4. Protein-protein physical and genetic interactions within modules. A. The cumulative distribution of the within module PPI/GI
connectivity ratios of responding modules identified by different methods: MBSEC with module-based input graphs (red); SAMBA with module-based
input graphs (green); and SAMBA with the global input graph (blue). B. The cumulative distribution of the connectivity ratios within perturbation
modules identified by different methods: MBSEC with module-based input graphs (red); SAMBA with module-based input graphs (green); and SAMBA
with the global input graph (blue).
doi:10.1371/journal.pone.0061134.g004
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(red triangles) that are likely responsible for the co-expression of

the genes in the responding modules. Including TF information in

data visualization further enhances the interpretation of the

subgraphs. For example, the fact that each responding module in

this Figure is connected (thus potentially regulated) by a TF

module further strengthens the hypothesis that the genes are co-

regulated as a unit responding to a common signal.

Revealing the organization of cellular signals
Our approach enabled us to use responding modules to reflect

major signals in a cellular system and the perturbation instances

that affect these signals. We have found that many perturbation

instances were involved in multiple perturbation-response sub-

graphs, indicating that the signal affected by such perturbation

instances was connected to multiple signals through cross-talks.

This observation offered us an opportunity to further investigate

the organization of cellular signals by studying what signals each

perturbation instance affects, and how the signals are related to

each other. For example, it is interesting to investigate whether a

set of perturbation instances affects a common set of responding

modules—that is, that the information encoded by these genes is

identical—so that we can group them as a signaling unit. Similarly,

it is of interest to investigate whether the responding modules

(signals) affected by one perturbed gene are a subset of those

affected by another perturbed gene, and to utilize such a

relationship to organize the signals. The latter task is closely

related to that addressed by the nested-effect model [6], which

aims to capture the hierarchical relationship among perturbation

instances based on the genes they affect. Since the nested effect

model used an individual gene as a responding unit, the scale of

the problem became intractable (exponential), and a Markov

chain Monte Carlo algorithm was employed. In contrast, our

approach used conceptualized responding modules, providing two

advantages: 1) the projection of high-dimensional data at the gene

level to a low-dimensional and semantic-rich concept level reduces

the complexity of the task; and 2) the unique annotation associated

with each module renders the task of determining subset

relationships among perturbation instances a trivial task. These

characteristics enabled us to develop a polynomial algorithm (see

Methods) to organize the perturbation instances into a DAG. In

such a graph, each node is comprised of a set of perturbation

instances that share common responding modules, i.e., a signaling

unit; an edge between a pair of nodes indicates that the signals

affected by the parent node subsume those carried by the child

node. We collected all perturbation modules that contained at

least 8 perturbation instances, and these organized perturbation

instances into a DAG, as shown in Figure 6.

Inspecting the perturbation nodes that included multiple genes,

we found that the genes in these nodes tend to participate in

coherently related biological processes, and that they often

physically interact with each other at high frequencies (data not

shown). For example, one perturbation node (highlighted with a

blue border in Figure 6) contained multiple sterility (STE) genes, a

set of well-studied genes that mediates pheromone signaling in

yeast, and they shared common responding modules annotated

with the functions ‘‘response to pheromone’’ (GO:0019236) and

‘‘sexual reproduction’’ (GO:0019953). Thus, our method is

capable of identifying perturbed instances whose information

can be encoded using a one-bit signal—a switch affecting

expression of the genes responding to pheromone signaling.

Visualization of the relationship of perturbation instances in a

DAG enables a biologist to investigate how signals are combined

to generate a cellular response. For example, there is a

perturbation node (highlighted with a red border) in Figure 6

containing DIG1, DIG2, SOD1, FUS3, and KSS1, all of which,

except SOD1, are involved in MAPK activities. Our results show

that there is a path connecting this node to the aforementioned

STE node, and then further to the ‘‘respond to pheromone’’

responding module, indicating that the gene products of the two

nodes work together to transmit signals in response to pheromone.

Indeed, it is well known that MAPK activities are required in the

pheromone signaling pathway [2,3]. Yet, our results reveal that

Figure 5. Example perturbation-responding subgraphs. Two example subgraphs are shown: Panel A, GO:0019236 (response to pheromone)
and Panel B, GO:0006826 (iron ion transport). For each subgraph, the perturbation instances (green hexagons) are shown in the top tier; responding
genes (blue circles) are shown in the middle tiers; and the transcription factor modules (grey triangles) are shown in the bottom tier. To avoid an
overly crowded figure, a red dash line indicates that a perturbation instance and a responding gene are NOT connected.
doi:10.1371/journal.pone.0061134.g005
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the MAPK node, besides carrying information about pheromone

response, also affects the biological processes of ‘‘proteolysis’’

(GO:0006508).

Another interesting observation is that the hierarchical organi-

zation of the perturbation instances reflects their relative position

in a signaling cascade. For example, perturbations of ergosterol

metabolism genes ERG2, ERG3, HMG2, ERG11, and ERG28 tend

to have a broad impact on different signals, including the

pheromone response pathway. This is understandable: as a critical

component of the plasma membrane, ergosterol influences the

organizational compartments of the plasma membrane, such as

lipid rafts [25], which in turn affect the organization of signaling

molecules in the membrane. As such, perturbation of these genes

has a broad impact on diverse cellular signals. Our results indicate

that HMG2 and ERG28 are connected to the STE node to

influence the expression of the pheromone-responding module.

The role of ergosterol metabolism in modulating pheromone

response signaling has only recently been studied by Jin et al. [26].

More interestingly, our results indicate that perturbation of distinct

enzymes of ergosterol metabolism leads to distinct cellular signals,

presumably by perturbing the production of distinct species of

ergosterols. The view that distinct lipid species encode/regulate

disparate signals is widely accepted in the lipidomics research

domain [27].

Summary

In this study, we developed a proof of concept framework for

unifying knowledge mining and data mining to conceptualize the

findings from systematic perturbation experiments in order to

enhance the capability of identifying signal transduction pathways.

The innovations of our approach are reflected in the following

aspects: 1) an ontology-driven approach for identifying functional

modules from a genes list in a dynamic and data-driven (instance-

based) manner, and projecting molecular findings to a conceptual

level; 2) innovative formulation of the biclustering problem in

terms of a constrained search space and new objective functions;

and 3) a novel graph algorithm that enables organizing signaling

molecules at a system level in a tractable manner for the first time.

We have demonstrated that conceptualization of cellular responses

to systematic perturbations enhances the capability of identifying

perturbation instances that participate in specific signal transduc-

tion pathways. To the best of our knowledge, this is the first report

of a computational framework capable of automatically assimilat-

ing the information from systematic perturbation data to reveal

the architecture of a cellular signaling system at a conceptual level, so

that it can be readily interpreted by biologists to gain insights into

a system.

More importantly, conceptualization of experimental results is a

critical step towards the ultimate goal of systems biology—

acquiring computable knowledge from experimental data for

reasoning and hypothesis generation. Our results already laid the

foundation for deriving abstract knowledge. For example, one can

translate a path from a perturbation node to a responding module

in Figure 6 into a rule, as follows: ‘‘if genes involved in MAPK signaling

are perturbed, genes involved in pheromone responses will be differentially

expressed.’’ A rule like this represents the relationships between

perturbed genes and responding genes at a conceptual level.

Equipped with rules and facts, a computing agent can then make

the prediction that perturbation of a newly discovered gene may

lead to the differential expression of genes involved in pheromone

responses, if the gene is found to be involved in MAPK signaling.

Ongoing research is devoted to acquiring and representing facts,

assertions, and rules from systems biology data in an accurate and

generalizable manner.

Materials and Methods

The microarray data from the systematic perturbation exper-

iments by Hughes et al. [4] were collected, and differentially

expressed genes responding to each perturbation were identified

based on the analysis of the original paper. Given a list of

Figure 6. Organizing perturbation instances and responding modules. In this graph, responding modules are represented as green oval
nodes, with each being annotated by a GO term. The rectangle nodes are perturbation nodes, which may contain one or more genes that share a
common set of responding modules.
doi:10.1371/journal.pone.0061134.g006
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differentially expressed genes responding to a perturbation

instance, we represent the genes and their annotations using a

data structure referred to as GOGene graph [28]. In such a graph,

a node represents a GO term and a directed edge between a pair

of nodes reflects an ‘‘is-a’’ relationship between the GO terms; in

addition, each node keeps track of the genes it annotates.

Therefore, the graph contains information on both GO terms

and genes. The procedure for searching for summarizing GO

terms iterates through the following steps: 1) perform an

enrichment analysis [29] for each leaf GO term among the

instance-specific responding genes; 2) select the GO term with the

biggest p-value (least enriched) and merge its genes to the parent

node with the shortest semantic distance as defined by Jin et al.

[30]; 3) trim the term from the graph; 4) repeat the above

procedures. We stop trimming a GO term once it is significantly

enriched (p-valueƒ0.05) and the genes summarized by the term

Figure 7. Greedy algorithm to find the highly dense bipartite subgraph.
doi:10.1371/journal.pone.0061134.g007

Figure 8. Algorithm for organizing perturbation instances and RMs.
doi:10.1371/journal.pone.0061134.g008
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remain functionally coherent [18]. Its associated genes are treated

as a functionally coherent module; otherwise, all non-significant

terms would eventually be merged to the root node of the GO

hierarchy and their associated genes are deemed as not coherently

related.

To assess the functional coherence, we applied the method

developed by Richards et al. [18]. In this approach, the ontology

structure of the GO is represented as a weighted graph, in which

an edge weight represents the semantic distances between a pair of

GO terms. Given a list of genes, we associate them to their GO

annotations, and identify a Steiner tree that connects them all.

Using the total length of the Steiner tree as a score reflecting the

functional relatedness of the genes, we apply a statistical model to

assess the probability of observing such a score if sets with the same

size are randomly drawn from the yeast genome. See paper [18]

for details.

To search for a densely connected perturbation-responding

subgraph in a bipartite graph, we formulated the task as follows:

given a bipartite graph G, find a subgraph G’~(V ’1,V ’2,E’) of G
that satisfies the following conditions: 1) (DV ’1D§s)

T
(DV ’2D§s),

where s is a user defined threshold for cluster size; 2) each vertex in

V ’1 connects to at least DV ’2D|r vertices in V ’2, and each vertex in

V ’2 connects to at least DV ’1D|r vertices in V ’1, where the

parameter r[½0,1� is a connectivity ratio defined by users; and 3)

the size of the subgraph (DV ’1DzDV ’2D) is maximized. We set the

parameters as follows: s~4 and r~0:75. The algorithm for

searching for the subgraph is shown in Figure 7.

To organize perturbation instances based on their signals, we

developed an algorithm to organize the perturbed instances into a

DAG. In such a graph, there are two types of nodes: responding

module nodes and perturbation nodes. Our algorithm groups

perturbation instances that share identical responding modules

into a common perturbation node, a signaling unit, and connect

the perturbation node to its corresponding responding modules.

The algorithm further organizes perturbation nodes such that, if

signals by a perturbation node subsume those of another, a

directed edge pointing to the subsumed node is added between

them. The algorithm is shown in Figure 8.

Supplementary Website
http://pubreview.dbmi.pitt.edu/Supplement/functional_modules.

html
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